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Abstract

The Ensemble Kalman Filter (EnKF) is a data assimilation method de-

signed to provide estimates of the state of a system by blending information

from a model of the system with observations. It maintains an ensemble of

state estimates from which a single best state estimate and an assessment

of estimation error may be calculated. Compared to more established meth-

ods it offers advantages of reduced computational cost, better handling of

nonlinearity, and greater ease of implementation.

This dissertation starts by reviewing different formulations of the EnKF,

covering stochastic and semi-deterministic variants. Two formulations are

selected for implementation, and the adaptation of their algorithms for bet-

ter numerical behaviour is described. Next, as a subject for experiments, a

simple mechanical system is described that is of interest to meteorologists

as an illustration of the problem of initialisation. Experimental results are

presented that show some unexpected features of the implemented filters,

including ensemble statistics that are inconsistent with the actual error. Ex-

planations of these features are provided and point to a potential flaw in

the general framework for semi-deterministic formulations of the EnKF, af-

fecting some but not all such formulations. This flaw appears to have been

overlooked in the literature.
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Chapter 1

Introduction

1.1 Background

Data assimilation addresses the problem of incorporating observations into a

model of some system. For example, the system could be the atmosphere of

the Earth, the model could be a weather forecasting model, and the observa-

tions could be measurements made by surface stations, radiosondes, weather

radars, and satellites. In this case the problem is to combine the state of

the atmosphere as predicted by an earlier forecast with recent observational

data to produce an updated estimate of the state of the atmosphere (known

as the analysis) that can be used as the starting point for a new forecast.

For a detailed overview of data assimilation in a meteorological context see

Kalnay [15] or Swinbank et al [22].

The data assimilation techniques of 3D-Var and 4D-Var are currently pop-

ular at national meteorology centres. These are variational techniques that

use numerical methods to minimise a cost function that is a weighted measure

of the distances from the analysis to the forecast and the observations. The

weightings in the cost function are intended to reflect the relative uncertain-

ties in different components of the forecast and observations. The resulting

analysis thus represents a combination of the twin information sources of

forecast and observation, with greater weight being given to more certain in-

formation. The difference between 3D-Var and 4D-Var is that 3D-Var treats
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all observations as having occurred at the forecast time, whilst 4D-Var takes

some account of the evolution of the system between the forecast time and

the observation time. A detailed comparison of 4D-Var and the Ensemble

Kalman Filter methods that are the subject of this dissertation may be found

in Lorenc [18]. A major part of the effort in implementing 3D-Var or 4D-Var

lies in modelling the forecast uncertainty for use in the cost function. This

uncertainty is usually modelled the same for all time, which is less than ideal

because the forecast uncertainty will vary depending on both the quality of

the observations contributing to the analysis on which it is based, and the

way in which the system evolves between the analysis and the forecast.

An evolving forecast uncertainty is provided by the Extended Kalman

Filter (EKF), which is a nonlinear generalisation of the linear Kalman Filter

(KF). As well as an estimate of the state of the system, these filters maintain

an error covariance matrix that acts as a measure of the uncertainty in the

estimate. This covariance matrix is updated with every analysis to reflect the

new information provided by the observations, and is evolved along with the

state estimate from the time of an analysis to the time of the next forecast.

The KF and EKF are described in more detail later in this dissertation;

for a comprehensive treatment see Gelb [9] or Jazwinski [14]. The EKF

rose to prominence in aerospace applications where the dimension of the

state space for the model is relatively small, typically nine or less. Directly

extending the filter to the sort of systems encountered in numerical weather

prediction (NWP), where the state space dimension may be 107, is beyond

the capabilities of current computer technology. The EKF also shares with

4D-Var the need to implement tangent linear operators (Jacobians) for the

nonlinear forecast model and the model of how observations are related to

the state of the system. Doing this for a large, complicated system such as

an NWP model is labour-intensive.

The Ensemble Kalman Filter (EnKF) is an attempt to overcome the draw-

backs of the EKF. Two of its key ideas are to use an ensemble (statistical

sample) of state estimates instead of a single state estimate and to calculate

the error covariance matrix from this ensemble instead of maintaining a sep-

arate covariance matrix. If we take an ensemble size that is small but not
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so small that it is statistically unrepresentative, then the extra work needed

to maintain an ensemble of state estimates is more that offset by the work

saved through not maintaining a separate covariance matrix. The EnKF also

does not use tangent linear operators, which eases implementation and may

lead to a better handling of nonlinearity.

The EnKF was originally presented in Evensen [7]. An important sub-

sequent development was the recognition by Burgers et al [4] (and indepen-

dently by Houtekamer and Mitchell [11]) of the need to use an ensemble of

pseudo-random observation perturbations to obtain the right statistics from

the analysis ensemble. Deterministic methods for forming an analysis ensem-

ble with the right statistics have also been presented. The former approach

to the EnKF is comprehensively reviewed in Evensen [8], whilst variants of

the latter approach are placed in a uniform framework by Tippett et al [23].

These variants include the Ensemble Transform Kalman Filter (ETKF) of

Bishop et al [3] and the Ensemble Adjustment Kalman Filter (EAKF) of

Anderson [2].

1.2 Goals

The goals of this dissertation are: to review the principal formulations of

the EnKF; to select one or more formulations for implementation and to

implement them; to perform experiments with the implemented filters using

a simple mechanical system (see below) as a test case and searching for

interesting phenomena; and to interpret the experimental results and draw

any important conclusions.

The mechanical system to be used as a test case in the experiments is

the two-dimensional swinging spring. This simple system is of interest to

meteorologists because it possesses interacting motions with two distinct

timescales, analogous to the Rossby and gravity waves of the atmosphere.

It may be used as an illustration of the problem of initialisation (see Chap-

ter 4).
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1.3 Principal Results

The ETKF and EAKF are selected for implementation in Chapter 3. It

is found to be advantageous to reformulate the raw algorithms reviewed in

Chapter 2 to give algorithms that are analytically equivalent but numerically

better behaved.

Experiments with the ETKF and the swinging spring in Chapter 5 show

a collapse in the number of distinct ensemble members after assimilating

each observation. This collapse is explained in Section 6.2 and points to

a limited usefulness of the ETKF for low-dimensional systems such as the

swinging spring, although the high-dimensional systems typical of NWP are

unaffected.

The most important result of the dissertation is that there is a poten-

tial flaw in the general framework for semi-deterministic formulations of the

EnKF as presented in Tippett et al [23]. This flaw may lead some formu-

lations of the EnKF to produce analysis ensembles with statistics that are

inconsistent with the actual error, being both biased (mean tending to be

in the wrong place) and overconfident (standard deviations of coordinates

too small). This is demonstrated experimentally in Chapter 5 and explained

theoretically in Section 6.1. The ETKF is affected by this flaw (at least in

some circumstances), but the EAKF is not.

1.4 Outline

Several alternative formulations of the EnKF have been published since the

original paper of Evensen [7]. The principal alternatives are reviewed in

Chapter 2. Formulations may be classified as stochastic or semi-deterministic

depending on the degree to which they rely upon pseudo-random numbers

to represent uncertainty in the system model and the observations.

The ETKF and EAKF are selected for implementation in Chapter 3. This

chapter also describes the reformulation of the raw algorithms of Chapter 2

to give algorithms that are analytically equivalent but numerically better

behaved.
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In Chapter 4, as a subject for experiments, the two-dimensional swinging

spring is introduced. This simple mechanical system is of interest to me-

teorologists as an illustration of the problem of initialisation. The chapter

discusses the concept of initialisation and its importance for NWP.

Chapter 5 presents the results of experiments using the filter implemen-

tations described in Chapter 3 and the swinging spring system of Chapter 4.

The experiments reveal some unexpected features in the ETKF, including

ensemble statistics that are inconsistent with the actual error.

Chapter 6 provides explanations of the features observed in Chapter 5.

The explanation of the inconsistent statistics points to a potential flaw in the

general framework for semi-deterministic formulations of the EnKF, affect-

ing some but not all such formulations. The ETKF is affected (at least in

some circumstances), but the EAKF is not. This flaw appears to have been

overlooked in the literature.

The dissertation concludes in Chapter 7 with a review of the preceding

chapters and some suggestions for further work.
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Chapter 2

Formulations of the Ensemble

Kalman Filter

This chapter presents a unified exposition of various formulations of the En-

semble Kalman Filter. It encompasses the stochastic formulation reviewed

in Evensen [8] and the semi-deterministic formulations reviewed in Tippett

et al [23]. We start by looking at the problem in data assimilation that the

filter is designed to solve and the standard data assimilation techniques of

the Kalman and Extended Kalman Filters.

2.1 Sequential Data Assimilation

Data assimilation seeks to solve the following problem: given a noisy discrete

model of the dynamics of a system and noisy observations of the system, find

estimates of the state of the system. Sequential data assimilation techniques

such as the Kalman Filter and its variants break this problem into a cycle

of alternating forecast and analysis steps. In the forecast step the system

dynamical model is used to evolve an earlier state estimate forward in time,

giving a forecast state at the time of the latest observations. In the anal-

ysis step the observations are used to update the forecast state, giving an

improved state estimate called the analysis. This analysis is used as the

starting point for the next forecast.
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We shall denote the dimension of the state space of the system by n and

vectors in this space by x, usually with various arguments, subscripts, and

superscripts. In particular the true state of the system at time tk will be

denoted by xt(tk) and the forecast and analysis at this time by xf (tk) and

xa(tk) respectively. We shall denote the dimension of observation space by

m and the observation vector at time tk by y(tk). The argument tk will

be dropped from state and observation vectors when all quantities being

discussed occur at the same time.

We shall be using random variables to model errors in the system dynam-

ical model and in the observations. These errors lead to random errors in

the forecasts and analyses. We seek forecasts and analyses that are unbiased

in the sense that

〈xf − xt〉 = 0

〈xa − xt〉 = 0

where angle brackets denote the expectation operator. Information about the

size and correlation of the error components is given by the error covariance

matrices

Pf = 〈(xf − xt)(xf − xt)T 〉
Pa = 〈(xa − xt)(xa − xt)T 〉.

We seek methods that calculate covariance matrices Pf and Pa as well as

state estimates xf and xa.

2.2 The Kalman and Extended Kalman Fil-

ters

We now briefly review two established data assimilation techniques. For a

detailed treatment see Gelb [9] or the mathematically more sophisticated

Jazwinski [14]. The Kalman and Extended Kalman Filters originally rose
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to prominence in aerospace applications and are popular for uses such as

tracking airborne objects with radar. For these applications the state space

dimension is relatively small, typically nine or less. As we shall see, there are

problems extending the techniques to the much larger state space dimensions

frequently encountered in geoscience applications.

2.2.1 The Kalman Filter

The Kalman Filter (KF) is a sequential data assimilation technique for use

with linear models of the system dynamics and observations. It assumes that

the system dynamics can be modelled by

xt(tk) = Mxt(tk−1) + η(tk−1) (2.1)

where M is a known matrix and η(tk−1) is random model noise with known

covariance matrix Q. It is assumed that η(tk−1) is unbiased and that its

values at different times are uncorrelated. The observations are assumed to

be modelled by

y(tk) = Hxt(tk) + ε(tk) (2.2)

where H is a known matrix and ε(tk) is random observation noise with

known covariance matrix R. It is assumed that ε(tk) is unbiased and that

its values at different times are uncorrelated. It is also assumed that there is

no correlation between model noise and observation noise at any times (the

same or different). It is not difficult to extend these models to the case where

M, Q, H, and R vary with time, but for notational simplicity this case is

not explicitly considered here.

In addition to the models of the system dynamics and the observations,

an initial state estimate xa(t0) is required and so is its error covariance matrix

Pa(t0). It is assumed that the error in this estimate is unbiased and uncorre-

lated with model noise and observation noise at any time. If observations are

available at time t0, the initial estimate may be treated as a forecast rather

than an analysis.

The forecast step of the Kalman Filter evolves the analysis and analysis
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error covariance matrix at time tk−1 forward to time tk using the equations

xf (tk) = Mxa(tk−1) (2.3)

Pf(tk) = MPa(tk−1)M
T + Q. (2.4)

The analysis step at time tk starts by calculating the Kalman gain matrix

K(tk) = Pf(tk)H
T (HPf(tk)H

T + R)−1. (2.5)

The observation y(tk) is then assimilated using

xa(tk) = xf (tk) + K(tk)(y(tk) −Hxf (tk)) (2.6)

Pa(tk) = (I − K(tk)H)Pf(tk). (2.7)

Good points about the Kalman Filter include that the state update equa-

tions (2.3) and (2.6) preserve unbiasedness; that the error covariance update

equations (2.4) and (2.7) are exact; and that the filter is optimal in the sense

that the analysis defined by (2.6) minimises the cost function

J (x) = (x − xf)T (Pf)−1(x − xf ) + (y −Hx)TR−1(y −Hx). (2.8)

This function is a weighted measure of the distances from the state x to the

forecast xf and the observation y. Thus the analysis represents a combina-

tion of the twin information sources of forecast and observation, with greater

weight being given to the more certain components.

Bad points about the Kalman Filter are that it only works for linear sys-

tems and that in applications such as numerical weather prediction (NWP)

the covariance matrices are huge. A national meteorological service may

use a forecasting model with 107 state variables and currently have to as-

similate 105–106 observations per assimilation period. This gives state error

covariance matrices of size 107 × 107 and potentially requiring hundreds of

terabytes of storage. Also, the calculation of the Kalman gain (2.5) involves

the inversion of a matrix of size 105 × 105 or larger. In the near future with

more satellite data being assimilated the number of observations is expected
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to become comparable with the number of state variables, which will make

matters worse.

2.2.2 The Extended Kalman Filter

The Extended Kalman Filter (EKF) is an attempt to extend the Kalman

Filter to nonlinear dynamical systems and nonlinear observations. The linear

models of dynamics (2.1) and observations (2.2) are replaced by the nonlinear

variants

xt(tk) = M(xt(tk−1)) + η(tk−1) (2.9)

y(tk) = H(xt(tk)) + ε(tk) (2.10)

where the matrices M and H have been replaced by potentially nonlinear

functions M and H . Note the convention of using bold upright type for linear

operators and standard italic type for corresponding nonlinear operators.

Again, it is not difficult to extend these models to the case where M and H

vary with time.

The nonlinear functions are used in the state update equations of the

forecast and analysis steps:

xf (tk) = M(xa(tk−1))

xa(tk) = xf (tk) + K(tk)(y(tk) − H(xf
k)).

The error covariance update equations (2.4) and (2.7) and the calculation

of the Kalman gain (2.5) remain the same with the proviso that M and H

are now the tangent linear operators (Jacobians) of M and H evaluated at

xa(tk−1) and xf (tk) respectively.

The EKF can work well, especially if the system is only weakly nonlinear.

However, it relies on linear approximations to nonlinear functions and does

not strictly possess several of the good features of the Kalman Filter. In

particular the state update equations can no longer be guaranteed to preserve

unbiasedness; the error covariance update equations are no longer exact; and

the filter is no longer optimal in the sense of minimising the cost function

20



(2.8) (with Hx replaced by H(x)). The EKF also does nothing to address

the problem of huge covariance matrices. In addition it is labour-intensive

to implement because of the need to derive and implement tangent linear

models of the dynamics and observations.

2.3 The Ensemble Kalman Filter

The EKF represents nonlinearity using derivatives that only take into ac-

count behaviour in an infinitesimal neighbourhood of a point. The Ensemble

Kalman Filter (EnKF) is an attempt to represent nonlinearity by using some-

thing more spread out. The details of this approach will be discussed in the

following sections, but the key ideas are to use an ensemble (statistical sam-

ple) of state estimates instead of a single state estimate; to calculate the

error covariance matrix from this ensemble instead of maintaining a separate

covariance matrix; and to use this calculated covariance matrix to calculate

a common Kalman gain that is used to update each ensemble member in the

analysis step. The hope is that the use of an ensemble will provide a better

representation of nonlinearity than is achieved by the EKF.

At first sight the need to maintain a whole ensemble of state estimates

makes the EnKF look computationally much more expensive that the EKF.

However, the EnKF may be the cheaper of the two filters. One saving comes

from the absence of a separate covariance matrix to be evolved and updated.

In the case of high-dimensional systems another saving comes if we use en-

semble sizes that are small compared to the number of observations (as long

as they are not so small that they are statistically unrepresentative). Such

ensembles lead to covariance matrices with reduced rank, and this can be

exploited in the analysis step to lower the computational cost. The use of a

common Kalman gain for all ensemble members also reduces the overhead of

the additional ensemble members.

Another benefit of the EnKF is that it does not require tangent linear

models to be implemented. This makes it especially attractive to individual

researchers or small groups who wish to use data assimilation to solve prob-

lems in meteorology or oceanography without having the manpower resources
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of a large organisation at their disposal.

The original presentation of the EnKF was in Evensen [7]. This section

follows in essence the review article Evensen [8] which incorporates later

advances including the important recognition by Burgers et al [4] (and inde-

pendently by Houtekamer and Mitchell [11]) of the need to use an ensemble

of pseudo-random observation perturbations in the analysis step.

2.3.1 Notation

We shall use the subscript i to denote the individual members of an ensemble

and N to denote the size of an ensemble. Thus the members of an ensemble

in state space will be denoted by xi (i = 1, . . . , N). A superscript f or a will

frequently be added to denote a forecast or analysis ensemble.

In situations where we must give a single best state estimate from an

ensemble, we shall use the ensemble mean

x =
1

N

N∑

i=1

xi.

When we require the error covariance matrix we shall use the ensemble co-

variance matrix

Pe =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T .

Note the division by N − 1 rather than N . This ensures than Pe is an

unbiased estimate of the population covariance matrix P.

It is convenient to introduce the ensemble matrix

X =
1√

N − 1

(
x1 x2 . . . xN

)
(2.11)

and the ensemble perturbation matrix

X′ =
1√

N − 1

(
x1 − x x2 − x . . . xN − x

)
. (2.12)
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The ensemble covariance matrix may then be expressed as

Pe = X′X′T . (2.13)

2.3.2 The Forecast Step

At its simplest the EnKF assumes the same underlying nonlinear stochastic

system model (2.9) as the EKF. The forecast step evolves each ensemble

member forward in time using this model:

x
f
i (tk) = M(xa

i (tk−1)) + ηi(tk−1)

where ηi(tk−1) is pseudo-random noise to be drawn from a distribution with

mean zero and covariance Q. There is no covariance matrix to evolve and

this offsets the extra work needed to evolve an ensemble of states. Note that

the evolution of each ensemble member is independent of all other ensemble

members, thus making the forecast step well-suited for implementation on a

parallel computer.

In the EnKF there is no need to make the assumptions about lack of au-

tocorrelation of model noise and lack of correlation between model noise and

the initial analysis error that were made in Section 2.2.1. These assumptions

are required in the KF and EKF so that η(tk−1) is uncorrelated with the

analysis error xa(tk−1)−xt(tk−1), thus justifying the error covariance update

equation (2.4). In the EnKF this equation is no longer used and the as-

sumptions are not necessary. The simulation of time-correlated model noise

is discussed in Evensen [8, Section 4.2.1].

The EnKF is not limited to the simple dynamical model (2.9). Any

stochastic difference or differential equation capable of numerical integration

may be used. This issue is discussed in Evensen [8, Section 3.4.2].

An initial ensemble is required at time t0. Assuming we have an initial

best-guess estimate and some idea of the error in this estimate expressed

through a covariance matrix, we may generate an initial ensemble by taking

the best-guess estimate and adding random perturbations from a distribution

determined by the covariance matrix. Because the initial estimate and covari-
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ance matrix may be crude, Evensen [8, Section 4.1] recommends integrating

the initial ensemble over a time interval containing a few characteristic time

scales of the dynamical system to ensure that the system is in dynamical

balance and that proper multivariate correlations have developed. This is

fine as long as we are not required to assimilate any observations during this

interval. Other, perhaps more sophisticated, methods of ensemble genera-

tion have been devised in the context of ensemble prediction systems; see,

for example, Kalnay [15, Section 6.5].

2.3.3 The Analysis Step

There are various formulations of the analysis step of the EnKF. In this sec-

tion we consider the stochastic formulation of Evensen [8]. Alternative, deter-

ministic formulations are the subject of Section 2.4. We start by considering

a linear observation operator, postponing the case of nonlinear observations

to Section 2.3.4. In the linear case the KF update equations (2.5) to (2.7)

are exact and optimal. Therefore we wish to mimic these in the ensemble

version of the analysis step.

We may define an ensemble version of the Kalman gain by

Ke = Pf
eH

T (HPf
eH

T + R)−1.

We could try updating each ensemble member using the KF equation with

this gain:

xa
i = x

f
i + Ke(y − Hx

f
i ).

This yields an update of the ensemble mean update that is like the KF:

xa = xf + Ke(y − Hxf)

but the ensemble perturbations satisfy

X′a = (I − KeH)X′f
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which implies that the ensemble covariance updates as

Pa
e = (I − KeH)Pf

e (I −KeH)T .

Compared to the KF covariance update (2.7) this is too small by a factor of

(I − KeH)T .

To obtain the desired statistics from the analysis ensemble we define an

observation ensemble

yi = y + εi (2.14)

where εi is pseudo-random noise drawn from a population with mean zero

and covariance R. We may define an observation ensemble matrix Y, an

observation ensemble perturbation matrix Y′, and an observation ensemble

covariance matrix Re directly analogous to the matrices X, X′, and Pe as-

sociated with a state ensemble by (2.11) to (2.13). We define the ensemble

Kalman gain with Re in place of R:

Ke = Pf
eH

T (HPf
eH

T + Re)
−1 (2.15)

and update each ensemble member using this gain and the members of the

observation ensemble:

xa
i = x

f
i + Ke(yi − Hx

f
i ). (2.16)

The ensemble mean updates as

xa = xf + Ke(y − Hxf)

which is like the KF but with the mean of the synthetic observation ensemble

y in place of the actual observation y. We can either accept this result as

it is, noting that y tends to y as the ensemble size increases, or following

Evensen [8] we may impose the constraint ε = 0 on our random vectors

to ensure that y = y unconditionally. The ensemble perturbation matrix

updates as

X′a = (I − KeH)X′f + KeY
′
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which implies

Pa
e = (I −KeH)Pf

e + (I− KeH)X′fY′TKT
e + KeY

′(X′f)T (I − KeH)T .

The first term on the right is the desired expression for Pf
e . As long as our

random vectors εi are independent of the forecast ensemble perturbations

x
f
i − xf , the product X′fY′T and hence the second and third terms on the

right hand side will tend to zero as the ensemble size increases. Once again

we may either accept this result as it is or follow Evensen [8] and impose the

additional constraint (xf − xf )εT = 0 on our random vectors εi to ensure

the desired covariance update unconditionally.

As presented so far the algorithm for the analysis step consists of gener-

ating an observation ensemble using (2.14), calculating the ensemble Kalman

gain using (2.15), and updating the ensemble members using (2.16). This

does little to address the problems with huge covariance matrices that were

mentioned at the end of Section 2.2.1. The calculation of Ke involves the

calculation and storage of the n × n covariance matrix Pf
e and the inversion

of the m × m matrix HPf
eH

T + Re. We now consider how the calculation

may be arranged to avoid these problems.

We start by rewriting (2.15) in terms of ensemble matrices:

Ke = X′f(X′f)THT (HX′f(X′f)THT + Y′Y′T )−1.

The structure of the right hand side is revealed more clearly if we introduce

an ensemble of forecast observations

y
f
i = Hx

f
i .

Thus y
f
i is what the observation would be if the true state of the system was

x
f
i and there was no observation noise. We define matrices Yf and Y′f for

this ensemble in the same way as Y and Y′ are defined for the ensemble yi.

In terms of these matrices

Ke = X′f(Y′f)T (Y′f(Y′f)T + Y′Y′T )−1. (2.17)
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We now note that if we constrain the random vectors εi in the way dis-

cussed above so that X′fY′T = 0, then it follows (on multiplying by H) that

Y′fY′T = 0 and hence that the matrix we must invert can be written as

Y′f(Y′f)T + Y′Y′T = (Y′f + Y′)(Y′f + Y′)T . (2.18)

We can make this substitution in the formula for the Ke even if we are

not constraining the εi, justifying it on the grounds that as long as the

εi are independent of the forecast observation perturbations y
f
i − yf , the

product Y′fY′T tends to zero as the ensemble size increases and hence the

new formula for Ke is as good an approximation to the true Kalman gain K

as the old one. Now we take the singular value decomposition (SVD) of the

m × N matrix that is multiplied by its transpose on the right hand side of

(2.18):

Y′f + Y′ = UΣVT

where Σ is the p× p diagonal matrix of nonzero singular values (p being the

rank of the matrix) and U and V are column-orthogonal matrices of sizes

m × p and N × p respectively. From this decomposition we can find the

eigenvalue decomposition

Y′f(Y′f)T + Y′Y′T = UΛUT

were Λ = ΣΣT is the diagonal matrix of nonzero eigenvalues, and the inverse

follows as

(Y′f(Y′f)T + Y′Y′T )−1 = UΛ−1UT .

If p < m then the matrix to be inverted is singular and this inverse is a

pseudo-inverse. If the number of observations m is large as in the NWP

example and the ensemble size N is small compared to m, we have reduced

an expensive inversion of an m × m matrix requiring O(m3) floating point

operations to a cheaper SVD of an m×N matrix requiring O(m2N +N3) =

O(m2N) operations (see Golub and Van Loan [10, Section 5.4.5])1.

1The O(mN) used in Evensen [8, Section 4.3.2] appears to be an error.
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With the inverse in the calculation of Ke taken care of, we consider how

the analysis step may be completed without having to compute and store

excessively large matrices. We confine ourselves to systems sized as in the

NWP example in which p ≤ N � m ≤ n. We assume that the ensemble

and ensemble perturbation matrices have been computed and stored for the

forecast, observation, and forecast observation ensembles. None of these

matrices is larger than n × N and the majority are m× N . We also assume

that the above SVD has been computed and U and Λ−1 stored. These

matrices are smaller still at m × p and p × p respectively. The ensemble

update equation (2.16) can be written in matrix form as

Xa = Xf + Ke(Y − Yf) (2.19)

= Xf + X′f(Y′f)TUΛ−1UT (Y −Yf).

The computations are best performed in the order set out in the following

table, which also shows the size of the resulting matrix and the number of

floating point operations required to compute it.

Computation Size Operations

Z1 = Λ−1UT p × m mp

Z2 = Z1(Y − Yf) p × N mNp

Z3 = UZ2 m × N mNp

Z4 = (Y′f)TZ3 N × N mN2

Xa = Xf + X′fZ4 n × N nN2

The largest matrix is the final analysis ensemble matrix Xa which has size

n × N . The most expensive computation is also the final one with O(nN2)

operations.

Assuming that multiplication by H and generating the random vectors

εi are relatively cheap, the total cost of an efficient implementation of the

analysis step is therefore O(m2N + nN2) and the largest matrix that has

to be stored is of size n × N . This compares to O(m2n + n2N) and n × n

for a naive implementation, and O(n3) and n × n for the analysis step of

the KF (see Appendix A). However, it should be added that floating point
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operation counts are not the whole story, especially with modern computer

architectures. Memory access may be the main bottleneck, which is why the

size of matrices stored is important. On parallel machines the minimisation

of communication between processors will be the dominant consideration.

2.3.4 Nonlinear Observation Operators

Evensen [8, Section 4.5] presents the following technique for extending the

preceding formulation of the analysis step to nonlinear observation operators

of the type in (2.10). We augment the state vector with a diagnostic variable

that is the predicted observation vector:

x̂ =


 x

H(x)




and define a linear observation operator on augmented state space by

Ĥ


 x

y


 = y.

We then carry out the analysis step in augmented state space using x̂ and

Ĥ in place of x and H. Superficially, this technique appears to reduce the

nonlinear problem to the previously-solved linear one. However, the linear

problem created is not quite the same as the problem solved in Section 2.3.3,

because the valid states of our system only occupy a submanifold of aug-

mented state space instead of the whole space. Thus, whilst this is a rea-

sonable way of formulating the EnKF for nonlinear observation operators,

it is not as well-founded as the linear case, which can be justified as an

approximation to the exact and optimal KF.

We now translate the augmented state space formulation of the analysis

step to a formulation that does not explicitly refer to that space. First note

that the observation ensemble yi is independent of state space, so it and the

matrices Y and Y′ are the same as before. The forecast observation ensemble
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is

y
f
i = Ĥx̂

f
i = H(xf

i ).

The mean of this ensemble is

yf = H(xf)

and thus the forecast observation ensemble and ensemble perturbation ma-

trices are

Yf =
1√

N − 1

(
H(xf

1) . . . H(xf
N)

)
(2.20)

Y′f =
1√

N − 1

(
H(xf

1) − H(xf) . . . H(xf
N) − H(xf)

)
. (2.21)

We can now use (2.17) and (2.19) to write the ensemble update in augmented

state space as

K̂e = X̂′f(Y′f)T (Y′f(Y′f)T + Y′Y′T )−1

X̂a = X̂f + K̂e(Y − Yf).

Taking the first n rows of these equations we obtain

Ke = X′f(Y′f)T (Y′f(Y′f)T + Y′Y′T )−1 (2.22)

Xa = Xf + Ke(Y − Yf) (2.23)

which is the same ensemble update as in the linear case except that Yf and

Y′f are given in terms of the nonlinear observation operator H by (2.20) and

(2.21).

2.4 Deterministic Formulations of the Anal-

ysis Step

The analysis step of the EnKF as presented in Section 2.3.3 uses a syn-

thetic observation ensemble created by adding random vectors to the real
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observation. This stochastic element exposes the method to sampling errors.

We now consider the alternative formulations reviewed in Tippett et al [23].

These are deterministic formulations that do not require a synthetic obser-

vation ensemble. However, it should be pointed out that there is a potential

flaw in some of these methods that appears to have been overlooked in the

literature. This is illustrated experimentally in Chapter 5 and demonstrated

theoretically in Section 6.1. We shall ignore this flaw for now and give an

exposition that follows in essence Tippett et al [23].

Unless otherwise stated we assume a nonlinear observation operator as in

Section 2.3.4.

2.4.1 The General Framework

All the methods to be described in this section split the ensemble update

into two parts: first the analysis ensemble mean is calculated, then the anal-

ysis ensemble perturbations. We start by examining what the method of

Section 2.3.3 does to the ensemble mean. Taking the mean of both sides of

(2.23) gives

xa = xf + Ke(y − yf).

Recall from Section 2.3.3 that we have y = y, either exactly if we impose

the right constraint on our random vectors or in the limit of large ensembles.

Making this substitution gives us an update equation for the ensemble mean

in which the observation ensemble has been averaged out2:

xa = xf + Ke(y − yf) (2.24)

= xf + Ke(y − H(xf)).

We shall use this equation in all our deterministic formulations of the analysis

step. However, we cannot use Ke as defined by (2.22) because we no longer

have an observation ensemble perturbation matrix Y′. Instead we must

2Lorenc [18, Equation (4)] uses H(xf ) instead of H(xf ). The version given above
has the advantage that it arises naturally out of averaging the stochastic formulation
as shown. It also takes more account of the nonlinearity of H . For linear observation
operators H(xf ) = H(xf ).
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go back to using the population version of the observation error covariance

matrix R instead of the ensemble version Re = Y′Y′T . Thus we take

Ke = X′f(Y′f)T (Y′f(Y′f)T + R)−1.

The matrix inverted in this expression is the ensemble version of the in-

novations covariance matrix. It appears frequently in what follows, so we

introduce a special notation for it:

S = Y′f(Y′f)T + R. (2.25)

We now consider the update of the ensemble perturbations. In the case of

a linear observation operator we would like the ensemble covariance matrix

to update like the KF covariance update (2.7). Thus in this case we require

X′a(X′a)T = Pa
e

= (I −KeH)Pf
e

= (I −X′f(Y′f)TS−1H)X′f(X′f )T

= X′f(I − (Y′f)TS−1Y′f)(X′f)T .

The first and last terms in this chain of equations make no mention of the

linear operator H, so we impose their equality as a condition in the case of

nonlinear observation operators as well. The equality will be satisfied if

X′a = X′fT (2.26)

where T is an N×N matrix that is a matrix square root of I−(Y′f)TS−1Y′f

in the sense that

TTT = I − (Y′f)TS−1Y′f . (2.27)

Note that T satisfying (2.27) is not unique and may be replaced by TU

where U is an arbitrary N × N orthogonal matrix. The methods that we

shall now consider differ in their choice of T.
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2.4.2 The Direct Method

Tippett et al [23] introduce a so-called direct method which, as its name

suggests, takes a direct approach to finding a T satisfying (2.27). The first

step is to solve the linear system

SZ = Y′f (2.28)

for the m×N matrix Z. In the case where N � m (as in the NWP example)

Tippett et al [23] suggest exploiting the identity

S−1 = R−1 −R−1Y′f(I + (Y′f)TR−1Y′f)−1(Y′f)TR−1

which may be verified by multiplying by S and using the definition (2.25)

of S. Computing R−1 for use in this identity is usually much easier than

computing S−1 because R has a simple structure, typically diagonal. The

other matrix that needs to be inverted is the N×N matrix I+(Y′f)TR−1Y′f .

Thus the identity reduces the inversion of an m×m matrix to the inversion

of an N ×N one (although this is not the full story in the reduction of work

needed to solve (2.28) because the equation can be solved without finding

S−1 explicitly).

With Z found, the next step is to form

I − (Y′f)TS−1Y′f = I − (Y′f)TZ

and find its matrix square root T. Tippett et al [23] do not enjoin a par-

ticular method for finding the matrix square root. Since I − (Y′f)TS−1Y′f

is positive definite (as follows from (2.31) below) one possibility is to use

a Cholesky factorisation algorithm such as those given in Golub and Van

Loan [10, Section 4.2].

2.4.3 The Serial Method

If the observations represented by the individual components of the obser-

vation vector y have uncorrelated errors, they may be assimilated one at a
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time instead of all at once. This is a standard technique of Kalman filtering

and has the advantage that it reduces the inversion of a large matrix to the

inversion of a sequence of scalars. The procedure is justified because it is

in effect a sequence of standard assimilation cycles with zero-length forecast

steps. What is not obvious is that the result is the same as processing all

observations at once. For a proof in the context of the standard KF see

Dance [5, Appendix A].

The assumption of uncorrelated observation error components is the basis

of the serial method of Tippett et al [23], which repeatedly applies an analysis

scheme designed for an observation space of dimension one. In such an

observation space R and S are scalars and Y′f is a row vector. The method

uses a closed form expression for T obtained by substituting

T = I − β(Y′f)TY′f (2.29)

into (2.27) and solving for β, giving

β =
1

S ±
√

RS
. (2.30)

The serial method avoids expensive matrix inversions, but this has to be

traded off against the need to apply the method multiple times at each anal-

ysis step. See Tippett et al [23] for a more detailed account of the issues.

Other instances of the use of serial processing with the EnKF include

Houtekamer and Mitchell [13], where it is used with a stochastic formulation

of the analysis step; Bishop et al [3], which discusses its use with the En-

semble Transform Kalman Filter to be described shortly; and Whitaker and

Hamill [25], where it is used in a deterministic formulation of the analysis

step that Tippett et al [23] show to be equivalent to (2.29) with the plus sign

taken in (2.30).

2.4.4 The Ensemble Transform Kalman Filter

The Ensemble Transform Kalman Filter (ETKF) was originally introduced

in Bishop et al [3], which describes its use to make rapid assessment of

34



the future effect on error covariance of alternative strategies for deploying

observational resources. The ETKF exploits the identity

I − (Y′f)TS−1Y′f = (I + (Y′f)TR−1Y′f)−1 (2.31)

which may be verified by multiplying I− (Y′f)TS−1Y′f by I+(Y′f)TR−1Y′f

and using the definition (2.25) of S. The method starts by computing the

N × N matrix (Y′f)TR−1Y′f . This is usually much easier than computing

(Y′f)TS−1Y′f because R usually has a simple structure. We then compute

the eigenvalue decomposition

(Y′f)TR−1Y′f = UΛUT

where U is orthogonal and Λ is diagonal. It follows from (2.31) that

I − (Y′f)TS−1Y′f = U(I + Λ)−1UT

and hence that a square root of the type we seek is

T = U(I + Λ)−
1

2 .

Note that I + Λ is diagonal, so raising it to a power is easy. Using this T in

(2.26) gives the ETKF.

2.4.5 The Ensemble Adjustment Kalman Filter

The Ensemble Adjustment Kalman Filter (EAKF) was originally introduced

in Anderson [2]. The EAKF differs from the deterministic methods discussed

so far in that it may be written in the form

X′a = AX′f (2.32)

although it may be written in the post-multiplier form (2.26) as well. We here

assume that the observation operator is linear. The method may be extended

to nonlinear observation operators by using the augmented state space of
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Section 2.3.4. The first stage in finding A is to compute the eigenvalue

decomposition

Pf
e = FG2FT (2.33)

where G is the p × p diagonal matrix of positive square roots of nonzero

eigenvalues and F is an n × p column-orthogonal matrix. We next perform

the eigenvalue decomposition

(HFG)TR−1HFG = ŨΛ̃ŨT

where Λ̃ is p × p diagonal and Ũ is p × p orthogonal. We then define

A = FGŨ(I + Λ̃)−
1

2G−1FT . (2.34)

To see that the above gives the right analysis ensemble statistics note

that we can find F and G in (2.33) from the SVD

X′f = FGWT (2.35)

where W is an N × p column-orthogonal matrix. Substituting (2.34) and

(2.35) into (2.32) gives

X′a = FGŨ(I + Λ̃)−
1

2 WT (2.36)

and hence

Pa
e = X′a(X′a)T

= FGŨ(I + Λ̃)−1ŨTGFT

= FG(I + (HFG)TR−1HFG)−1GFT .

Now HFG is a matrix with the property

HFG(HFG)T = HFG2FTHT

= HPf
eH

T

= S −R
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which is precisely the property of Y′f that was used to establish (2.31).

Therefore we may apply this identity to HFG to obtain

Pa
e = FG(I − (HFG)TS−1HFG)GFT

= Pf
e − Pf

eH
TS−1HPf

e

= (I − KeH)Pf
e

which is the required ensemble covariance update.

To write the EAKF in the post-multiplier form (2.26) note that (2.35)

and (2.36) imply

X′a = X′fWŨ(I + Λ̃)−
1

2 WT .

Note, however, that the EAKF does not quite fit into the framework of

Section 2.4.1, which consists of not just the post-multiplier equation (2.26)

but the square root condition (2.27) as well; see Appendix B for details.

Another deterministic formulation of the analysis step capable of being

written in the pre-multiplier form (2.32) is given in Whitaker and Hamill [25].

2.5 Summary

Following the introductory material in Sections 2.1 and 2.2, this chapter has

presented five formulations of the EnKF. All formulations differ from the

KF and EKF in using an ensemble of state estimates instead of a single

state estimate and not maintaining a separate error covariance matrix. They

all offer advantages over the standard filters of reduced computational cost,

better handling of nonlinearity, and greater ease of implementation through

not using tangent linear models.

All formulations share the forecast step described in Section 2.3.2 and the

technique for dealing with nonlinear observation operators described in Sec-

tion 2.3.4. Where the formulations differ is in the analysis step. Section 2.3.3

described a stochastic formulation that makes use of an ensemble of pseudo-

random observation perturbations. The other formulations are deterministic

formulations that fit into a general framework described in Section 2.4.1.
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This framework encompasses the direct method (Section 2.4.2, not as pre-

cisely defined as the other methods), the serial method (Section 2.4.3, lim-

ited to uncorrelated observations), the ETKF (Section 2.4.4), and the EAKF

(Section 2.4.5). It was pointed out that there is a potential flaw in some of

these methods; this is a major topic of Chapters 5 and 6.

The next chapter discusses the selection of an EnKF algorithm for im-

plementation. It also describes the problems encountered in implementing

the raw algorithms as presented in this chapter and how they may be refor-

mulated to give algorithms that are analytically equivalent but numerically

better behaved.
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Chapter 3

Implementing an Ensemble

Kalman Filter

This chapter is about the implementation of an EnKF. It describes some

problems that were encountered, the solutions that were adopted, and some

further improvements to the algorithms of Chapter 2. The EnKF is intended

for experiments with the low-dimensional mechanical system described in

Chapter 4, although it is capable of being used with other systems as well.

Of the formulations of the EnKF in Chapter 2, it was initially decided to im-

plement the ETKF. A deterministic formulation of the analysis step has the

advantage over a stochastic formulation of eliminating one source of sampling

error. Compared to the other deterministic formulations in Section 2.4, the

ETKF has the advantage over the direct method of a more clearly defined

algorithm, the advantage over the serial method of not requiring uncorre-

lated observations, and the advantage over the EAKF of avoiding one of the

eigenvalue decompositions. However, there are some unexpected problems

with the ETKF that are illustrated experimentally in Chapter 5 and ex-

plained theoretically in Chapter 6. Once these were discovered, the EAKF

was implemented as well for comparison. The implementation of both filters

is described in this chapter in order to keep similar material together.
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3.1 Implementing the ETKF

The initial implementation of the ETKF closely followed the algorithm of

Section 2.4.4. This created a problem with the eigenvalue decomposition

(Y′f)TR−1Y′f = UΛUT (3.1)

which produced eigenvalues and eigenvectors having significant imaginary

parts. The reason for this is the lack of associativity in machine multipli-

cation, leading to the ostensibly symmetric matrix (Y′f)TR−1Y′f becoming

asymmetric when evaluated as ((Y′f)TR−1)Y′f . This may be avoided by

introducing the scaled forecast observation ensemble perturbation matrix

Ŷf = R− 1

2 Y′f (3.2)

and writing

(Y′f)TR−1Y′f = (Ŷf)T Ŷf . (3.3)

As long as machine multiplication is commutative this way of evaluating

(Y′f)TR−1Y′f leads to a symmetric matrix with real eigenvalues and eigen-

vectors. Note that finding R− 1

2 is easy in the common case of diagonal R.

Indeed, it is often R
1

2 (the diagonal matrix of observation error standard

deviations) that is the primary given quantity rather than R, which makes

evaluating R− 1

2 easier still.

Regardless of the matter of symmetry, it is in any case advantageous

to scale observation space quantities such as Y′f by R− 1

2 before processing

them further. Such scaling has the effect of normalising observations that

are possibly of disparate physical quantities with different error standard

deviations so that they are dimensionless with standard deviation one. This

is useful because it prevents information becoming lost due (say) to rounding

errors. The advisability of such a scaling in the context of the stochastic

formulation of the EnKF is mentioned in Evensen [8, Section 4.3.2]. A scaled

observation operator is also part of the original presentation of the ETKF

in Bishop et al [3] (although there it is not explicitly exploited to ensure
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symmetry as above).

With Ŷf available, further improvements to the ETKF algorithm become

possible. There is no need to perform the multiplication in (3.3) with conse-

quent loss of accuracy and then perform the eigenvalue decomposition (3.1).

Instead, we may start with the SVD

(Ŷf)T = UΣVT (3.4)

where U is N ×N , Σ is N ×m, and V is m×m. The matrix U is the same

as the matrix of eigenvectors in (3.1). The eigenvalues may be found from

Λ = ΣΣT .

The ensemble perturbation matrix is then updated by

X′a = X′fT

= X′fU(I + Λ)−
1

2 . (3.5)

We shall see shortly that it is advantageous not to evaluate T, but instead

to evaluate X′a by building up the product (3.5) from left to right.

The SVD (3.4) may also be exploited in the update of the ensemble mean.

The ensemble Kalman gain may be written as

Ke = X′f(Y′f)T (Y′f(Y′f)T + R)−1

= X′f(Ŷf)T (Ŷf(Ŷf)T + I)−1R− 1

2

= X′fUΣ(ΣTΣ + I)−1VTR− 1

2 .

Note that the expensive inversion of Y′f(Y′f)T + R has been reduced to the

inversion of the diagonal matrix ΣTΣ+I. Instead of computing Ke and then

computing the ensemble mean update using

xa = xf + Ke(y − yf)
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it is better to first build up the product

z = Σ(ΣTΣ + I)−1VTR− 1

2 (y − yf)

from right to left and then update the ensemble mean using

xa = xf + X′fUz.

This procedure avoids storing the matrix Ke and only needs to store a vector

at each stage of building up z. Note that the observation space quantity

y − yf is once again scaled by R− 1

2 before being processed further. The

matrix product X′fU that is used in the final step is already available from

building up X′a using (3.5).

The experiments presented in this dissertation use an ETKF implemented

as described above in MATLAB. The SVD (3.4) is performed using the stan-

dard MATLAB svd function which uses the LAPACK [1] routine DGESVD.

3.2 Implementing the EAKF

This section takes the techniques that were used to improve the implemen-

tation of the ETKF in Section 3.1 and applies them to the EAKF. We start,

however, by revisiting the SVD that is already present in the description of

the EAKF in Section 2.4.5.

In was noted in Section 2.4.5 that the matrices F and G from the eigen-

value decomposition Pf
e = FG2FT that forms the first stage of the EAKF

algorithm may be found from the SVD

X′f = FGWT (3.6)

where G is a p× p diagonal matrix of nonzero singular values and F and W

are column-orthogonal matrices of sizes n × p and N × p respectively. The

reason for requiring G to contain only nonzero singular values is because

G−1 is required in the formula (2.34) for the ensemble adjustment matrix A.
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However, if we compute the EAKF analysis ensemble perturbation matrix as

X′a = FGŨ(I + Λ̃)−
1

2 WT (3.7)

then there is no need to evaluate A. It may be verified that X′a so calculated

is unchanged if we allow G to include zero singular values whilst remaining

square, in which case p is an upper bound for the rank of X′f instead of

being equal to it as before. In implementing the EAKF we use the SVD

in preference to the eigenvalue decomposition to avoid the potential loss of

accuracy in forming Pf
e , and we allow the diagonal elements of G to be zero.

A benefit of the latter relaxation is that if we have an SVD routine that is

not guaranteed to eliminate all zero singular values from G, then we may

still use it in the EAKF if the consequent ease of implementation is judged

to be sufficient trade-off for the loss of computational efficiency that comes

from not keeping matrices as small as possible.

Turning now to the application of the techniques of Section 3.1 to the

EAKF, the analogue of the observation space scaling (3.2) is the m × p

matrix

Ỹf = R− 1

2 HFG.

This reduces the second matrix for which an eigenvalue decomposition is

required to the machine symmetric form

(HFG)TR−1HFG = (Ỹf)T Ỹf .

Once again we do not directly perform an eigenvalue decomposition of this

matrix but instead perform the SVD

(Ỹf)T = ŨΣ̃ṼT (3.8)

where Ũ is p × p, Σ̃ is p × m, and Ṽ is m × m. The eigenvalue matrix is

Λ̃ = Σ̃Σ̃T .

We may now evaluate X′a by building up the product (3.7) from left to right.
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For the update of the ensemble mean we may write the ensemble Kalman

gain as

Ke = Pf
eH

T (HPf
eH

T + R)−1

= FG2FTHT (HFG2FT HT + R)−1

= FG(Ỹf)T (Ỹf(Ỹf)T + I)−1R− 1

2

= FGŨΣ̃(Σ̃T Σ̃ + I)−1ṼTR− 1

2

where the inverted matrix is again diagonal. As in the ETKF we do not store

Ke. Instead we first build up the product

z = Σ̃(Σ̃T Σ̃ + I)−1ṼTR− 1

2 (y − yf)

from right to left. Once again this scales the observation space quantity

y−yf by R− 1

2 at the earliest opportunity and only requires storing a vector

at each stage. We then update the ensemble mean by evaluating

xa = xf + FGŨz

where FGŨ is already available from building up X′a using (3.7).

The experiments presented in this dissertation use an EAKF implemented

as described above in MATLAB. The SVDs (3.6) and (3.8) are performed us-

ing the standard MATLAB svd function which uses the LAPACK [1] routine

DGESVD. The first SVD uses the ’econ’ variant of svd, which is equivalent

to taking p = min(n, N).
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Chapter 4

The Swinging Spring and

Initialisation

Chapter 5 presents the results of experiments that illustrate features of the

filters discussed in Chapters 2 and 3. The system used in those experiments

is the two-dimensional swinging spring introduced in this chapter. This sim-

ple mechanical system is of interest to meteorologists as an illustration of

the problem of initialisation. The current chapter accordingly begins with

a section introducing the concept of initialisation in the context of NWP.

There follows a section on the swinging spring and a section on the numer-

ical method used to integrate the swinging spring equations to produce the

results presented in this chapter and the next. The chapter concludes with

a section showing the use of the swinging spring to illustrate the techniques

of linear and nonlinear normal mode initialisation. With the exception of

the section on the numerical method, this chapter largely follows parts of

Lynch [20], but with additions and expansions.

Investigation of the initialisation characteristics of the EnKF is an active

area of research, although one that time has not permitted to be followed

very far in this dissertation. A recent study using a different low-dimensional

dynamical system and a purely stochastic rather than a semi-deterministic

EnKF may be found in Neef et al [21].
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4.1 Initialisation

In synoptic weather forecasting we are interested in atmospheric motions

having a timescale greater than a day. These phenomena are typified by the

Rossby wave solutions to the equations of motion used in NWP. These same

equations also permit faster gravity wave solutions having a shorter timescale.

These solutions may be of significance locally (in the lee of a steep mountain,

for example) but generally they are not of interest to the forecaster and may

be regarded as noise. It is advantageous to prevent the development of these

unwanted high speed solutions because doing so permits longer time steps to

be used in numerical integration methods without encountering instability.

It is quite possible for observational errors to create inaccurate initial con-

ditions that trigger spurious gravity waves in NWP forecasts. These waves

can lead to problems even if they do not cause numerical instability. For

example, the quality control component of the forecasting system may check

new observations for reasonableness against a forecast. If the forecast is inac-

curate, good observations may be rejected and bad ones accepted. Another

problem occurs in precipitation forecasting. A forecast with excessive gravity

wave noise may have an unrealistically large vertical velocity that interacts

with the humidity field to give inaccurate rainfall patterns.

A data assimilation scheme must therefore take precautions to ensure

that the initial conditions for the forecast step as produced by the preceding

analysis step to not inadvertently allow large gravity waves to develop. The

process of taking these precautions is known as initialisation. The precau-

tions may take the form of constraints applied within the analysis step or a

post-analysis adjustment of the initial conditions.

Instead of using a complex and computationally intensive NWP model

for the experiments described in this dissertation, a model of a far simpler

system is used, yet one that still possesses the key property of having motions

with two distinct timescales. We now define this system.
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Figure 4.1: Coordinates and forces for the swinging spring. Coordinates are
radius r and angle θ. Bob has mass m. Gravitational force is mg; elastic
force is k(r − `0) where k is spring elasticity and `0 its unstretched length.

4.2 The Swinging Spring

Consider a heavy bob of mass m suspended from a fixed point in a uniform

gravitational field of acceleration g by a light spring of unstretched length `0

and elasticity k. The bob is constrained to move in a vertical plane. The

spring may stretch along its length but is unable to bend. (See Figure 4.1.)

We locate the bob using polar coordinates (r, θ) where r is measured from

the point of suspension and θ is measured from the downward vertical. The

corresponding generalised momenta are the radial momentum pr = mṙ and

the angular momentum pθ = mr2θ̇. The Hamiltonian of the system is the

sum of the kinetic and potential energies:

H =
1

2m

(
p2

r +
p2

θ

r2

)
+

1

2
k(r − `0)

2 − mgr cos θ.

From this we may derive the equations of motion

θ̇ =
pθ

mr2
(4.1)

ṗθ = −mgr sin θ (4.2)

ṙ =
pr

m
(4.3)
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ṗr =
p2

θ

mr3
− k(r − `0) + mg cos θ. (4.4)

This dynamical system has two stationary points: a stable equilibrium

with the spring stretched and the bob at rest vertically below the suspension

point, and an unstable equilibrium with the spring compressed and the bob

at rest vertically above the suspension point. We shall not consider the

unstable equilibrium further. The coordinates of the stable equilibrium are

(θ, pθ, r, pr) = (0, 0, `, 0) where the equilibrium length ` satisfies k(` − `0) =

mg. Linearising the system about this point we obtain

θ̇ =
pθ

m`2
(4.5)

ṗθ = −mg`θ (4.6)

ṙ =
pr

m
(4.7)

ṗr = −k(r − `). (4.8)

Thus we see that for small oscillations the system splits into two independent

systems in the variables (θ, pθ) and (r, pr). The angular or rotational motion

satisfies the second order differential equation

θ̈ +
g

`
θ = 0

whilst the radial or elastic motion satisfies

r̈′ +
k

m
r′ = 0

where r′ = r−`. These are equations of simple harmonic motion with angular

frequencies

ωθ =

√
g

`

and

ωr =

√
k

m
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respectively. The ratio of frequencies is

ε =
ωθ

ωr

=

√
mg

k`
=

√
` − `0

`
< 1.

We shall be using parameter values such that ε � 1. The rotational motion

is a low frequency mode analogous to Rossby waves; the associated variables

(θ, pθ) are called the slow variables. The elastic motion is a high frequency

mode analogous to gravity waves; the associated variables (r, pr) are called

the fast variables. For finite oscillations the motions will not be independent

but will interact.

Figure 4.2 shows coordinates against time for a sample trajectory of the

swinging spring obtained using the numerical method to be described in

Section 4.3. It also shows the modulus of the Fourier transform of the co-

ordinates. Following Lynch [20] the parameter values are m = 1, g = π2,

k = 100π2, and ` = 1. These give motions with cyclic frequencies fθ =

ωθ/2π = 0.5 and fr = ωr/2π = 5, and hence a frequency ratio ε = 0.1.

The initial conditions are (θ, pθ, r, pr) = (1, 0, 1.05, 0). It can be seen from

the Fourier transforms that most of the energy of the slow variables is con-

centrated around f = fθ and most of the energy of the fast variables is

concentrated around f = fr. However, there is sign of interaction between

the variables in the minor peak in the Fourier transforms of r and pr around

f = 1 = 2fθ.

4.3 Numerical Method of Integration

Note: Most of the notation in this section is not used elsewhere in the dis-

sertation and is not included in the List of Symbols.

In the experiments presented in this dissertation, the swinging spring

equations are integrated using the standard MATLAB ode45 function. This

function uses an explicit Runge-Kutta (4,5) pair with an adaptive step size.

That is to say, an explicit fifth-order Runge-Kutta method is used to integrate

the equations whilst the difference between this and a related fourth-order

method is used to estimate the truncation error. The step size is adjusted
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Figure 4.2: Coordinates and their Fourier transforms for an uninitialised
swinging spring. Parameter values are such that rotational and elastic
frequencies are fθ = 0.5 and fr = 5 respectively. Initial conditions are
(θ, pθ, r, pr) = (1, 0, 1.05, 0).

50



to keep the error estimate within a user-specified tolerance. The original

reference for the Runge-Kutta pair used in ode45 is Dormand and Prince [6];

it is also discussed under the name DOPRI(5,4) in Lambert [17, Section 5.10].

The tolerance determining the step size is specified in terms of two pa-

rameters: a scalar RelTol specifying a relative tolerance and a vector AbsTol

specifying an absolute tolerance for each state space coordinate. If y(j) is

the jth component of the solution vector at some time and e(j) is the corre-

sponding component of the error estimate from the Runge-Kutta pair, then

the step size is adjusted so that

|e(j)| ≤ max(RelTol× |y(j)|, AbsTol(j)). (4.9)

The experiments in Chapter 5 use observations of state space coordinates

with error standard deviations at least one-tenth the amplitude of the oscil-

lations in the truth, where the truth is as in Figure 4.5. If we take as our

primary aim in selecting values for the tolerance parameters the need to keep

the truncation error small compared to the observational error, this aim may

be achieved with a comfortable margin by using the default values, which

are 10−3 for RelTol and 10−6 for every component of AbsTol.

There is also a parameter MaxStep that acts as an upper bound on the step

size. This may be used to ensure stability of the numerical method. Stability

analysis of a nonlinear system is a complex problem, so we confine ourselves

to analysing the linearised system (4.5)–(4.8). This system decouples into two

independent simple harmonic oscillators, so we consider the single oscillator

that may be written in complex form as

ẏ = iy

and relate it to the complete linear system using scaling arguments after-

wards. Lambert [17, Section 5.12] shows that a Runge-Kutta method applied

to the general linear scalar system

ẏ = λy
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leads to a difference equation of the form

yk+1 = R(ĥ)yk

where ĥ = λh. R is called the stability function of the method. Lambert

gives the stability condition

|R(ĥ)| < 1.

However, it should be borne in mind that this is in the context of solving

systems with Re(λ) < 0 and for which the exact solution satisfies y → 0 as

t → 0. Our harmonic oscillator has Re(λ) = 0 and |y| = constant. Since the

exact solution satisfies the difference equation

y(tk+1) = eihy(tk)

it is better for us to seek ĥ such that R(ĥ) has modulus close to one and

argument close to h.

For DOPRI(5,4) Lambert [17, Section 5.12] gives

R(ĥ) = 1 + ĥ +
ĥ2

2
+

ĥ3

6
+

ĥ4

24
+

ĥ5

120
+

ĥ6

600
.

If we plot |R(ĥ)| − 1 and arg(R(ĥ)) − h against h, we obtain the curves in

Figure 4.3. We see that both quantities are very close to zero for h ≤ 0.3.

Since the period T of our harmonic oscillator is 2π, we may conveniently take

the upper bound on h to be T/20, which enables us to generalise immediately

to an arbitrary simple harmonic oscillator. The swinging spring with the

parameter values given in Section 4.2 has periods Tθ = 2 and Tr = 0.2.

Therefore we take MaxStep = 0.01. Using this value there has been no

evidence of instability in the experiments.

It should be pointed out that the above is not the last word on the analysis

of the numerical method or indeed on the selection of a numerical method

to integrate the equations of motion. Some remarks on taking the matter

further may be found in Section 7.2.1.

One must take care in using a numerical method that has not been fully
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Figure 4.3: Stability function for ode45 and the simple harmonic oscillator
y′ = iy. Stability function R(ĥ) (where ĥ = ih) is plotted as modulus relative
to one and argument relative to h. We want both to be close to zero.
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analysed. It is always possible that the discrete system may not have the

same behaviour as the continuous system of which it is a model. Thus the

results of experiments with the discrete system cannot legitimately be used to

draw conclusions about the continuous system. However, this is not what we

shall be doing here. For the purposes of this dissertation we may regard the

discrete system as primary. We are interested in it because, as we shall verify

experimentally in Section 4.4, it has properties that illustrate the problems

and techniques of initialisation. The role of the continuous system then

becomes that of a theory about how the system of primary interest might be

working. This theory may be used to suggest what experiments it would be

useful to perform and what the results might be, but we must always verify

its predictions by experiment.

Similarly, when we come to use the swinging spring in our experiments

with the EnKF, it will be the discrete system that we use to generate our

truth and use in the forecast step. There will be no direct reference to the

continuous system of which the discrete system is supposed to be a model.

4.4 Normal Mode Initialisation

A comprehensive account of the possible motions of the swinging spring may

be found in Lynch [19]. Here we confine ourselves to exhibiting a few sample

trajectories. We supplement the trajectory of Figure 4.2 with a couple of

related trajectories illustrating the techniques of linear and nonlinear normal

mode initialisation.

Suppose that we know that high frequency oscillations are absent from

the motion of the swinging spring, yet due to observational errors we have

predicted the motion shown in Figure 4.2. How can we adjust the initial

conditions to get rid of the high frequency noise?

The technique of linear normal mode initialisation attempts to suppress

high frequency oscillations by setting their initial amplitude to zero. In the

case of the swinging spring this entails setting r(0) = ` and pr(0) = 0. In the

linear system (4.5)–(4.8) this would suppress oscillations in the fast variables

for all time. However, in the full system (4.1)–(4.4) the nonlinear interac-
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Figure 4.4: Coordinates and their Fourier transforms for a swinging spring
with linear normal mode initialisation. Parameter values as in Figure 4.2 but
with initial conditions (θ, pθ, r, pr) = (1, 0, 1, 0). Note that r and pr scales are
one-tenth those in Figure 4.2
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tion between the variables leads to the motion in the slow variables exciting

high frequency oscillations in the fast variables as shown in Figure 4.4. Nev-

ertheless, there is an improvement compared to Figure 4.2: the amplitude

of the high frequency oscillations is much reduced and an underlying slow

oscillation in r of frequency f = 1 = 2fθ is clearly emerging.

The technique of nonlinear normal mode initialisation sets the initial rates

of change of the fast variables to zero, the hope being that this will prevent

large amplitude high frequency oscillations from developing. In the case of

the swinging spring we must adjust the initial conditions so that ṙ(0) = 0

and ṗr(0) = 0. To achieve the first of these we simply use (4.3) and set

pr(0) = 0. To achieve ṗr(0) = 0 we calculate θ̇(0) from (4.1), substitute into

(4.4), and rearrange to obtain the adjusted initial value of r:

r(0) =
`(1 − ε2[1 − cos θ(0)])

1 − (θ̇(0)/ωr)2
. (4.10)

One further adjustment is needed.1 In order to ensure that the value of θ̇(0)

used in (4.10) is consistent with (4.1) and the new value of r(0), we must set

pθ(0) = mr(0)2θ̇(0).

The results of nonlinear normal mode initialisation are shown in Figure 4.5.

The high frequency oscillation has been largely suppressed, with just a small

residual in the Fourier transforms of the fast variables at f = fr. Radial

variation does not vanish, however. The spring is stretched twice per an-

gular cycle at the bottom of the swing where the speed of the bob and the

centrifugal effect are at their greatest. This leads to the observed oscillation

in r and pr of frequency f = 1 = 2fθ. The radial motion is said to be slaved

to the angular motion and the phenomenon is sometimes called ‘balanced

fast motion’.

1Lynch [20] does not mention this step, presumably because in cases where pθ(0) =
θ̇(0) = 0 it makes no difference.
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Figure 4.5: Coordinates and their Fourier transforms for a swinging spring
with nonlinear normal mode initialisation. Parameter values as in Figures 4.2
and 4.4 but with initial conditions (θ, pθ, r, pr) = (1, 0, 0.99540, 0). Note that
pr scale is one-quarter that in Figure 4.4
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Chapter 5

Experimental Results

This chapter presents the results of experiments with an ETKF and an EAKF

implemented as described in Chapter 3 using observations of the swinging

spring system described in Chapter 4. The true trajectory in all experiments

is the nonlinear normal mode initialised trajectory of Figure 4.5. The model

used in the forecast step is the same as the model used to generate the true

trajectory. The model noise is taken be zero. The experiments differ in the

analysis step, the ensemble size, and whether the observations are perfect

(noise-free) or imperfect.

The experiments reveal some features of the filters that require explana-

tion. These explanations are furnished in Chapter 6.

5.1 Experiments with the ETKF

We start by looking at the results of experiments with the ETKF and fre-

quent, perfect observations of all four coordinates. The first observation is at

time 0.1 and subsequent ones follow at intervals of 0.1. Although the actual

observation errors are zero, the covariance matrix R passed to the filter is

that of observations having uncorrelated errors with the standard deviations

listed in Table 5.1. These standard deviations are close to one-tenth of the

amplitude of the oscillations in the truth. The same covariance matrix is used

in generating the initial ensemble, which is done as follows. An ensemble of
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Coordinate Standard deviation
θ 0.1
pθ 0.3
r 7 × 10−4

pr 5 × 10−3

Table 5.1: Observation error standard deviations passed to the filter in ex-
periments with perfect observations. These standard deviations are also used
to generate the initial ensemble.

pseudo-random vectors is drawn from a normal distribution with the given

covariance matrix as its covariance matrix and the true initial state as its

mean. This ensemble is then translated slightly so that the ensemble mean

coincides exactly with the true initial state (this is an analogue for the initial

ensemble of taking perfect observations). The translated random ensemble

is used as the initial ensemble.

The result of an experiment with ensemble size N = 10 is shown in Fig-

ures 5.1 and 5.2. The graphs show the difference between the filter and the

truth. Figure 5.1 shows the individual ensemble members, whilst Figure 5.2

shows the ensemble mean and the ensemble mean ± ensemble standard de-

viation. All graphs show the expected initial rapid decrease in filter error.

However, after about two seconds the filter settles into an oscillation about

the true trajectory with only a slight further decrease in the general level of

the error. The graphs of ensemble statistics show some considerable inter-

vals of time during which the true state of the system (represented by zero

on the vertical axis) is outside the band defined by the ensemble mean ±
ensemble standard deviation. This suggests that the ensemble statistics may

be inconsistent with the actual error, either the mean being biased or the

standard deviation being too small or both. This is confirmed by comput-

ing the fraction of analyses having an ensemble mean within one ensemble

standard deviation of the truth for each coordinate. For unbiased, normally-

distributed, analysis errors with standard deviation equal to the ensemble

standard deviation, one would expect this fraction to be about 0.68 (from

statistical tables such as Kreyszig [16, Appendix 5, Table A7]). The actual

errors need not be normally-distributed, but this is still a useful guide. In the
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Experiment θ pθ r pr

ETKF, perfect observations, N = 10 0.31 0.32 0.32 0.29
ETKF, perfect observations, N = 50 0.92 0.93 0.90 0.93
ETKF, imperfect observations, N = 10 0.56 0.56 0.94 0.94
ETKF, imperfect observations, N = 50 0.66 0.67 1.00 1.00
EAKF, perfect observations, N = 10 1.00 1.00 1.00 1.00
EAKF, perfect observations, N = 50 1.00 1.00 1.00 1.00
EAKF, imperfect observations, N = 10 0.67 0.68 0.95 0.96
EAKF, imperfect observations, N = 50 0.70 0.72 1.00 1.00

Table 5.2: Fraction of analyses with ensemble mean within one ensemble
standard deviation of truth. Computed from 100 runs of the filters with
different random initial conditions and, in the case of imperfect observations,
different random observation errors. For normally-distributed errors this
fraction should be about 0.68.

case shown in Figure 5.2 the actual fractions are 0.43, 0.43, 0.23, and 0.37

for θ, pθ, r, and pr respectively. Further confirmation is provided by running

the filter 100 times with different random initial ensembles and computing

the same fractions. The first row of Table 5.2 shows that they are all around

0.3.

The result of increasing the ensemble size to N = 50 is shown in Fig-

ures 5.3 and 5.4. The statistics in Figure 5.4 look more consistent than those

in Figure 5.2, with the band defined by the ensemble mean ± ensemble stan-

dard deviation encompassing the truth (zero on the vertical axis) most of

the time. This is confirmed by running the filter 100 times again to obtain

the numbers in the second row of Table 5.2. The fraction of analyses with

ensemble mean within one ensemble standard deviation of truth is 0.90 or

more for each coordinate. That this is in excess of the expected 0.68 is ex-

plainable by the observations being error-free whilst the filter is operating

on the assumption that they have the error standard deviations shown in

Table 5.1.

Figure 5.3 reveals another feature of the ETKF that is visible in Figure 5.1

but becomes more obvious when the ensemble size is increased: after the first

observation is assimilated, the number of distinct ensemble members collapses

to five, some trajectories presumably being occupied by multiple members.
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Figure 5.1: ETKF, perfect observations, N = 10: ensemble members. Co-
ordinates are plotted relative to truth. Lines showing individual ensemble
members are superimposed on observations plotted as error bars. Radius of
error bars equals standard deviation passed to filter. Because observations
in this case are frequent and perfect, error bars form a grid vertically centred
on zero.
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Figure 5.2: ETKF, perfect observations, N = 10: ensemble statistics. Co-
ordinates are plotted relative to truth. Three lines showing ensemble mean
and ensemble mean ± ensemble standard deviation are superimposed on ob-
servations plotted as error bars. Errors bar conventions are as in Figure 5.1.
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Coordinate Standard deviation
θ 0.1
pθ 3
r 0.06
pr 1.5

Table 5.3: Standard deviations used to generate the initial ensemble in ex-
periments with imperfect observations.

Like the inconsistent ensemble statistics for N = 10 this is a feature requiring

explanation.

In the experiments presented so far, the observations have been specialised

in that they have been noise-free, frequent, and made of all four coordinates of

the system. We now relax these assumptions to see what effect this has on the

ensemble statistics and number of distinct ensemble members. For the next

experiments the interval between observations is increased to 0.37. As well as

being larger than the previous interval of 0.1, this interval is chosen because

it is not a submultiple of the natural oscillation periods Tθ = 2 and Tr = 0.2

of the system (thus removing another specialising assumption of previous

experiments). Instead of observing all coordinates, only θ is observed. As

before, the observation error standard deviation passed to the filter for θ

is 0.1, but now random errors of this magnitude really are added to the

observations. The initial ensemble is generated using a diagonal covariance

matrix corresponding to the standard deviations listed in Table 5.3. The

standard deviation for θ is the same as that used for observations. The

standard deviations for the other coordinates are approximately equal to the

amplitudes of the uninitialised oscillations in Figure 4.2. The intention is

that the initial ensemble represents almost complete ignorance about these

coordinates. The initial ensemble is generated using pseudo-random vectors

as in the experiments with perfect observations except that there is no final

translation to make the ensemble mean coincide exactly with the true initial

state.

The result of an experiment with imperfect observations and an ensemble

size N = 10 is shown in Figures 5.5 and 5.6. Statistics from 100 runs are

shown in the third row of Table 5.2. These runs use different random obser-
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Figure 5.3: ETKF, perfect observations, N = 50: ensemble members. Plot-
ting conventions as in Figure 5.1.
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Figure 5.4: ETKF, perfect observations, N = 50: ensemble statistics. Plot-
ting conventions as in Figure 5.2.
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vation errors as well as different random initial ensembles. The fraction of

analyses with the ensemble mean within one standard deviation of the truth

is 0.56 for θ and pθ, which is short of the expected 0.68 but an improve-

ment on the just over 0.30 in the perfect observation case. For r and pr the

fractions are unexpectedly large at 0.94. A possible explanation is that this

is due to ignorance on the part of the filter rather the accuracy. It can be

seen from the lower two graphs in Figure 5.6 that there is no decrease in the

general level of the ensemble standard deviation in r and pr from its initial

value representing complete ignorance of the values of these coordinates, so

it is not surprising that the ensemble mean should agree with the truth to

within this large margin of error. That observations of θ alone should provide

little or no information about r and pr is not surprising when it is recalled

that in the linearised system (4.5)–(4.8) θ and pθ are totally independent of

r and pr. It is also possible that the improved ensemble statistics in θ and pθ

are due to larger standard deviations rather than more accurate means, the

increase in standard deviation coming from the longer time interval between

observations of θ and the absence of any direct observations of pθ. The in-

crease in standard deviation may be seen on comparing the top two graphs

of Figure 5.2 with the corresponding graphs of Figure 5.6 and noting that

the vertical axis range of the latter is at least 10 times that of the former

(the scales may also be compared by noting that the error bars in the top

graphs have the same length in each case).

As for the collapse in the number of distinct ensemble members, there is

nothing visible in Figure 5.5 in the graphs for pθ, r, and pr (the unobserved

coordinates) but the graph for θ shows a collapse to two distinct states after

the assimilation of each observation. There is a subsequent a fanning out

of distinct ensemble members from one of these states (presumably due to

differences in the other coordinates) whilst the other state continues as a

single ensemble member on its own.

Increasing the ensemble size to N = 50 gives the graphs in Figures 5.7

and 5.8 and the 100-run statistics in the fourth row of Table 5.2. As in

the case of perfect observations, increasing the ensemble size improves the

ensemble statistics. The numbers for θ and pθ in Table 5.2 are close the ideal
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Figure 5.5: ETKF, imperfect observations, N = 10: ensemble members.
Plotting conventions as in Figure 5.1. Only the first graph shows error bars
because only the first coordinate is observed.
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Figure 5.6: ETKF, imperfect observations, N = 10: ensemble statistics.
Plotting conventions as in Figure 5.2. Only the first graph shows error bars
because only the first coordinate is observed.
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of 0.68. The numbers for r and pr are both 1.00, quite possibly for the reason

given above in the case N = 10: the ensemble standard deviation for these

two coordinates does not decrease from its initial value representing complete

ignorance (see the bottom two graphs of Figure 5.8).

The graph of θ in Figure 5.7 shows the same collapse-and-fan structure

noted above in the case N = 10. There is now also sign of an outlier in the

graph of pθ, presumably due to the influence of the outlier in θ through the

equation of motion (4.2). There may be some sign of this in Figure 5.5 too,

but it is clearer in this case.

This ends the experiments with the ETKF. There is a summary of the

results in Section 5.3 at the end of the chapter.

5.2 Experiments with the EAKF

Repeating the ETKF experiments with the EAKF reveals neither of the

features observed for the former in Section 5.1. The 100-run EAKF statistics

in the lower half of Table 5.2 show no sign of inconsistency. For the perfect

observations (fifth and sixth rows) the ensemble mean is within one ensemble

standard deviation of the truth for virtually all analyses, as one would expect

with perfect observations. For the imperfect observations (seventh and eighth

rows) the fraction is close to the expected 0.68 for θ and pθ, and is close to

1.00 for r and pr. The latter may be explained as in Section 5.1 by the filter

having a large standard deviation that correctly reflects its almost complete

ignorance of the true state of these variables.

Also absent from the EAKF results is the collapse in the number of dis-

tinct ensemble members that occurs with the ETKF. Graphs illustrating

both this and the absence of inconsistent ensemble statistics may be found

in Appendix C
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Figure 5.7: ETKF, imperfect observations, N = 50: ensemble members.
Plotting conventions as in Figure 5.5.
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Figure 5.8: ETKF, imperfect observations, N = 50: ensemble statistics.
Plotting conventions as in Figure 5.6.
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5.3 Summary

The experiments in this chapter have revealed two features of the ETKF

that require further investigation. The first is that the filter may produce

analysis ensembles with statistics that are inconsistent with the actual error,

either the mean being biased or the standard deviations of the coordinates

being too small or both. This statistical inconsistency seems to decrease with

increasing ensemble size. It may also be masked or reduced by increased filter

uncertainty due to uncertain initial conditions, less frequent observations, or

fewer observed coordinates.

The second feature is that each assimilation of an observation by the

ETKF produces a collapse in the number of distinct values of the observed

coordinates in the ensemble. It may be conjectured from the results presented

that when m coordinates are observed, there is a collapse in the number of

distinct values of each observed coordinate to m + 1 following assimilation.

It may be further conjectured from the results that m of these values are

occupied by single ensemble members whilst the remaining N −m members

occupy the remaining value. Note that such a collapse will only have an effect

on ensembles with N > m + 1. Thus a collapse is likely to be apparent with

low-dimensional systems such as the swinging spring, but not with NWP-

type systems that have N � m.

The EAKF appears not to possess either of these features. An explanation

for their presence in the ETKF is given in Chapter 6.
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Chapter 6

Explanation of Experimental

Results

Two features of the ETKF emerged from the experiments of Chapter 5. The

first is that the filter may produce analysis ensembles with statistics that are

inconsistent with the actual error, and the second is that each assimilation

of an observation produces a collapse in the number of distinct values of the

observed coordinates in the ensemble. This chapter presents explanations

of both features. The explanation of the inconsistent statistics reveals a

potential flaw in deterministic formulations of the analysis step of the EnKF.

This flaw appears to have been overlooked in the literature and its discovery

is probably the most important thing in this dissertation.

6.1 Inconsistent Analysis Ensemble Statistics

We start by reviewing the general framework for deterministic formulations

of the analysis step of the EnKF. This framework was given in Section 2.4.1

and is based on Tippett et al [23]. The ensemble update is broken into two

parts. First the analysis ensemble mean is calculated using

xa = xf + Ke(y − yf). (6.1)
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Then the analysis ensemble perturbation matrix is calculated using

X′a = X′fT (6.2)

where T is an N × N matrix satisfying

TTT = I − (Y′f)TS−1Y′f . (6.3)

The analysis ensemble members are formed by adding xa to the columns of√
N − 1X′a in accordance with the definition (2.12) of an ensemble pertur-

bation matrix.

It is tacitly assumed in Tippett et al [23] that (6.2) yields a valid analysis

ensemble perturbation matrix for any choice of T satisfying (6.3). However,

definition (2.12) implies that the mean of the columns of an ensemble per-

turbation matrix must be zero, and this does not necessarily follow from

(6.2) and (6.3). To see this, let T be a particular solution of (6.3). Then a

general solution is TU where U is an arbitrary N × N orthogonal matrix.

The corresponding general analysis ensemble perturbation matrix is

X′a = X′fTU.

Now let Z denote the mean of the column vectors of the matrix Z; that is, if

Z =
(

z1 z2 . . . zN

)

where the zi are column vectors, then

Z =
1

N

N∑

i=1

zi.

Note that Z1Z2 = Z1Z2. It follows that

X′a = X′fTU. (6.4)

Thus X′a = 0 if and only if U lies in the null space of X′fT. The vector U has
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length 1/
√

N and can be made to point in any direction by an appropriate

choice of U. Therefore, unless X′fT = 0 (in which case the analysis ensemble

collapses to a point), there will be at least some choices of U that give X′a 6= 0

and hence an invalid analysis ensemble perturbation matrix. We shall see

that the individual methods discussed in Section 2.4 differ as to whether they

yield X′a = 0 unconditionally.

At first glance the length 1/
√

N of U in (6.4) appears to offer hope

of proving that X′a is a valid analysis ensemble perturbation matrix in the

limit of large ensembles. This hope is reinforced by the observation that X′fT

should be bounded in some sense as N → ∞ on account that X′fT(X′fT)T =

Pa
e , which should tend to a limit Pa as N → ∞ or at least remain bounded.

However, recall that there is a factor of 1/
√

N − 1 in the definition (2.12) of

an ensemble perturbation matrix and it is in fact the mean of the columns

of
√

N − 1X′a that we require to be zero. This factor of
√

N − 1 cancels the

length of U and has so far foiled the author’s attempts at a proof of a result

along these lines (although one may be possible).

Equation (6.2) in conjunction with the general solution of (6.3) remains a

valid way of transforming a matrix square root X′f of the covariance matrix

Pf
e into a matrix square root X′a of the covariance matrix Pa

e with Pf
e and Pa

e

related as in the Kalman Filter. However, although all ensemble perturbation

matrices are matrix square roots of the corresponding ensemble covariance

matrix, the converse (as we have seen above) is not true.

To see the effect of constructing an analysis ensemble from xa calculated

using (6.1) and an invalid analysis ensemble perturbation matrix, introduce

the notation x′a
i for the columns of

√
N − 1X′a. Then the members of the

analysis ensemble will be

xi = xa + x′a
i .

The mean of this ensemble will be

x = xa + x′a.

But x′a =
√

N − 1X′a 6= 0 (because we are assuming X′a is invalid), and so

there is a bias in the ensemble mean. Furthermore, the ensemble covariance
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matrix of the ensemble xi is

Pe =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T

=
1

N − 1

N∑

i=1

(x′a
i − x′a)(x′a

i − x′a)T

=
1

N − 1

(
N∑

i=1

x′a
i (x′a

i )T − Nx′a x′aT

)

= Pa
e −

N

N − 1
x′a x′aT

. (6.5)

Thus Pe 6= Pa
e and in particular the ensemble standard deviation will be too

small for any coordinate in which there is also a bias in the mean.

Analysis ensembles with biased mean or too small standard deviations

or both is exactly what was observed in the experiments with the ETKF in

Chapter 5. This suggests that the ETKF is one of those methods that may

yield an invalid analysis ensemble perturbation matrix in at least some cir-

cumstances. This may be confirmed algebraically, as shown in Appendix D.

The experiments of Chapter 5 also suggest that the statistical inconsistency

becomes less significant as the ensemble size increases or the filter becomes

more uncertain due to other factors (see Sections 5.3). This is an area for

further investigation; the author has not yet able to prove a result along these

lines.

The EAKF always yields a valid analysis ensemble perturbation matrix

because it may be written in the pre-multiplier form

X′a = AX′f

which implies

X′a = AX′f = 0.

This explains why inconsistent analysis ensemble statistics were not observed

with the EAKF in Chapter 5.

The direct method of Section 2.4.2 does not specify how the matrix square

root T in (6.3) is to be found, so no general statement can be made about
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whether this method yields a valid analysis ensemble perturbation matrix.

The serial method of Section 2.4.3 always yields a valid matrix because by

(2.29)

X′a = X′fT = X′f − βX′f(Y′f)TY′f

and hence

X′a = X′f − βX′f(Y′f)TY′f = 0.

In summary, there is a potential flaw in deterministic formulations of the

analysis step of the EnKF, leading to analysis ensembles with statistics that

are inconsistent with the actual error. The EAKF and serial method are

immune, but the ETKF and direct method are not. This flaw appears to

have been overlooked in Tippett et al [23] and elsewhere in the literature.

6.2 Collapse in Number of Distinct Ensemble

Members

It was conjectured in Section 5.3 on the basis of experimental results that

when the ETKF assimilates an observation of m system coordinates there

is a collapse in the number of distinct values of each of these coordinates in

the ensemble to m +1. It was further conjectured that m of these values are

occupied by single ensemble members whilst the remaining N −m members

occupy the remaining value. This will now be demonstrated algebraically in

the case of an arbitrary linear observation operator H and an ensemble size

N greater than the observation space dimension m.

Define a matrix Y′a by

Y′a = HX′a.

This may interpreted as an analysis observation ensemble perturbation ma-

trix analogous to Y′f , but such an interpretation is not essential to what

follows. For the ETKF we have (in the notation of Section 3.1)

Y′a = HX′fU(I + Λ)−
1

2

= Y′fU(I + Λ)−
1

2
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= R
1

2 ŶfU(I + Λ)−
1

2

= R
1

2 VΣT (I + Λ)−
1

2 . (6.6)

Since we are assuming N > m, we may assume that the N × m matrix Σ

has the form

Σ =


 Σ1

0




where Σ1 is an m × m diagonal matrix and 0 stands for an (N − m) × m

matrix of zeros. It follows that

Λ = ΣΣT =


 Λ1 0

0 0




where Λ1 = Σ1Σ
T
1 . It may then be shown that

ΣT (I + Λ)−
1

2 =
(

ΣT
1 (I + Λ1)

− 1

2 0
)

where 0 stands for an m × (N − m) matrix of zeros. Substituting into (6.6)

gives

Y′a =
(

R
1

2 VΣT
1 (I + Λ1)

− 1

2 0
)

.

Thus Y′a has at most m nonzero columns and at least N −m zero columns.

In the case where H is the projection operator onto m of the system

coordinates, the rows of Y′a equal the rows of X′a corresponding to the

observed coordinates. It follows that at least N −m of the analysis ensemble

members will coincide in these coordinates with xa calculated from (6.1)

whilst at most m members will differ. This is what was conjectured with the

slight weakening that there may be a further collapse in the number of distinct

values for observed coordinates due to zero columns in R
1

2 VΣT
1 (I + Λ1)

− 1

2 .

Unlike the discovery of Section 6.1, this result is a limitation of the ETKF

rather than a potential flaw. It says that one should not apply the filter to en-

sembles with N > m+1. This limits the filter’s usefulness for low-dimensional

systems such as the swinging spring (or more precisely for systems with low-

dimensional observation spaces). NWP-type applications with N � m are
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not affected.
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Chapter 7

Conclusions

7.1 Summary and Discussion

Chapter 2 introduced the EnKF and gave several alternative formulations of

the algorithm. These alternatives may be classified as stochastic (reviewed

in Evensen [8]) or semi-deterministic (reviewed in Tippett et al [23]). The

difference between the formulations is in the analysis step; all share the same

stochastic forecast step. The deterministic formulations of the analysis step

all fit into the general framework described in Section 2.4.1.

In Chapter 3 two algorithms were selected for implementation: the ETKF

(originally presented in Bishop et al [3]) and the EAKF (originally presented

in Anderson [2]). The chapter described how the raw algorithms of Chap-

ter 2 were reformulated to give algorithms that are analytically equivalent

but numerically better behaved. The first main step in the reformulation is

to scale observation space quantities by the inverse square root of the ob-

servation error covariance matrix R− 1

2 at the earliest possible opportunity.

This has the effect of normalising observations of possibly disparate physical

quantities with different error standard deviations so that they are dimen-

sionless with standard deviation one. This prevents information becoming

lost due to rounding errors. The scaling also enables all matrices for which

an eigenvalue decomposition is required to be written in the form ZZT . This

is a precursor to the second step in the reformulation, which is to replace all
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such eigenvalue decompositions with an SVD of Z. There is then no need

to form ZZT with the consequent loss of accuracy. Chapter 3 also showed

how to order the computations in the ETKF and EAKF so as to minimise

storage requirements and maximise reuse of intermediate results.

Chapter 4 introduced the two-dimensional swinging spring. As moti-

vation for its study the chapter also briefly introduced the concept of ini-

tialisation that is of importance in NWP. It used the swinging spring to

illustrate the techniques of linear and nonlinear normal mode initialisation.

The method used to numerically integrate the equations of motion was de-

scribed and approximately analysed to find method parameter values that

give acceptable truncation error and guard against instability.

The results of experiments using an ETKF and an EAKF with observa-

tions of the swinging spring were presented in Chapter 5. The experiments

revealed two features of the ETKF that were explained in Chapter 6. The

first is that the filter may produce analysis ensembles with statistics that are

inconsistent with the actual error, the mean being biased and the standard

deviations of the coordinates too small. This was traced to a potential flaw

in the general framework for deterministic formulations of the analysis step

of the EnKF. This flaw appears to have been overlooked in the literature and

its discovery is probably the most important thing in this dissertation. Put

briefly, the general framework uses the transform X′a = X′fT for suitable

T to convert the forecast ensemble perturbation matrix X′f into an analysis

ensemble perturbation matrix X′a. It is tacitly assumed that any X′a result-

ing from this transform is a valid ensemble perturbation matrix. However, a

valid ensemble perturbation matrix must have the mean of its column vectors

equal to zero, and it is shown in Section 6.1 that the restrictions placed on

T are not sufficient to ensure this in the general case. Whether or not X′a is

a valid ensemble perturbation matrix depends on the particular choice of T.

For the EAKF it is always valid, whilst for the ETKF it need not be.

The inconsistent analysis ensemble statistics thus produced are undesir-

able for a number of reasons beyond the simple fact that a biased mean

tends to put the filter’s supposed best estimate in the wrong place. Such a

bias would not be too great a problem if it were accompanied by an increase
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in the size of the error estimate provided by the filter’s covariance matrix.

Users of the output would then be aware of the increased error, although

they would remain unaware that part of the error is systematic rather than

random. However, here we have a decrease in the size of the error estimate

rather than an increase, and indeed equation (6.5) shows that the worse the

bias, the worse the overconfidence of the error estimate.

A biased and overconfident analysis has the potential to create problems

at later times in any Kalman-type filter. Such an analysis is likely to lead to a

biased and overconfident forecast. The filter will then give more weight than

it should to the forecast in the next analysis step and less to the observation.

This will prevent the observation from properly correcting the bias in the

forecast and the next analysis will be biased and overconfident as well. In

extreme cases the filter may become increasingly overconfident until it is in

effect a free-running forecast model diverging from the truth and taking no

notice of observations.

Inconsistent ensemble statistics have been observed in formulations of the

EnKF other than the ETKF. Houtekamer and Mitchell [11] present results

showing problems with a stochastic EnKF and Anderson [2] discusses the

issue in the context of the EAKF. The causes of the inconsistencies in these

cases must be different to that described for the ETKF in Section 6.1. The

authors attribute them to the use of small ensembles and to other approxi-

mations made in the course of deriving the filters. Various solutions to the

problem have been proposed in the literature. Houtekamer and Mitchell [11]

use a pair of ensembles with the covariance calculated from each ensemble

being used to assimilate observations into the other. The justification for

such an approach is discussed further in van Leeuwen [24] and Houtekamer

and Mitchell [12]. Anderson [2] uses a tunable scalar covariance inflation

factor.

The other feature of the ETKF revealed by the experiments only affects

systems in which the observation space dimension m and the ensemble size N

satisfy N > m+1 (thus it does not affect NWP-type systems with N � m).

When m of the system coordinates are observed, then each assimilation of an

observation is followed by a collapse in the number of distinct values of each
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of the observed coordinates in the ensemble to m+1. Of these values, m are

occupied by single ensemble members and the remaining value is occupied

by the remaining N −m members. Unlike the first feature this is not really a

flaw in the ETKF, but rather a limitation on the dimension of the systems to

which it may be usefully applied. In particular, it is now seen not to be well-

suited to experiments with low-dimensional systems such as the swinging

spring.

7.2 Further Work

Three areas may be identified for further investigation: the numerical method

used to integrate the swinging spring equations, initialisation techniques

for the EnKF, and the inconsistent analysis ensemble statistics from semi-

deterministic formulations of the EnKF.

7.2.1 Numerical Integration of the Swinging Spring

Equations

It must be admitted that the stability analysis of Section 4.3 was rather crude.

A more careful treatment would at least investigate the discrete system that

results from applying the Runge-Kutta method to the full nonlinear system of

ODEs rather than to the linearised system. Better knowledge of the stability

properties may allow a larger value to be used for the MaxStep parameter

to ode45. It was decided to err on the side of caution in choosing the value

in Section 4.3 on account of possible differences between the nonlinear and

linear systems; as a result it is MaxStep rather than the error estimate (4.9)

that is the dominant factor in limiting the step size. Increasing step size and

reducing run time is especially useful when one wishes to carry out many

Monte Carlo runs such as those used to produce Table 5.2.

There is also the question of the choice of method used to integrate the

equations. The MATLAB ode45 function is a good general-purpose ODE

solver, but may not be the best choice for the swinging spring. Given that

the system possess motions with two distinct timescales and we are primarily
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interested in solutions in which the fast motions are suppressed, it could

be argued that we should be using a solver designed for stiff systems; and

indeed it is the fast motion timescale Tr that determined the size of MaxStep

in Section 4.3 rather than the ten-times larger Tθ. However, this is not the

whole story, especially if we are conducting experiments with ensembles in

which some members have significant fast motion.

7.2.2 Initialisation and the Ensemble Kalman Filter

The original plan for this dissertation involved using the swinging spring

system to investigate initialisation techniques for the EnKF. Unfortunately,

investigation of the issues arising from the implementation and testing of

the filters themselves did not leave time to pursue this line of enquiry. A

recent study where it is pursued is Neef et al [21], which uses a different

four-dimensional dynamical system (the extended Lorenz model) to inves-

tigate initialisation properties of a stochastic EnKF in comparison with a

conventional EKF. It would be an interesting exercise to repeat the study

using the swinging spring to see whether the same conclusions are reached.

The EnKF could be a stochastic formulation or the EAKF, or both could be

used and compared.

7.2.3 Inconsistent Analysis Ensemble Statistics

As previously mentioned, probably the most important thing in this disser-

tation is the discovery that some deterministic formulations of the EnKF

produce invalid analysis ensemble perturbation matrices, leading to analysis

ensembles with statistics that are inconsistent with the actual error. The pos-

sibility of this is shown experimentally with the ETKF in Section 5.1, proved

algebraically in the context of the general framework for deterministic for-

mulations of the analysis step in Section 6.1, and again proved algebraically

with a specific example for the ETKF in Appendix D. It is also shown in

Section 6.1 that the EAKF is immune to this problem.

There remains the question of how significant the statistical inconsistency

is and what parameters control the degree of inconsistency. The experimental
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results of Section 5.1 suggest that the inconsistency decreases with increasing

ensemble size, and an analytic proof of this conjecture is the first priority,

either in the general case or in the specific case of the ETKF. Some of the

factors aiding and frustrating such a proof are mentioned in Section 6.1.

It is noted in Section 5.3 that other factors appearing to affect the degree

of inconsistency are the uncertainty of the initial conditions, the frequency of

the observations, and the number of observed variables. The first two factors

are probably only relevant as far as they affect the spread of the forecast

ensemble that is passed to the analysis step. It is this spread as expressed

through the ensemble covariance matrix and the relation of this matrix to the

observation error covariance matrix that are likely to be key. Note that the

number of observed variables—the third factor mentioned in Section 5.3—

may be regarded as a property of the observation error covariance matrix.

Results relating these factors to the degree of statistical inconsistency may

be sought analytically or experimentally. In the latter case note that the

problem is purely one of the analysis step and no dynamical model or forecast

step is required. A forecast ensemble to pass to the analysis algorithm may

be randomly generated from an assumed forecast covariance matrix and the

true state. It is true that in practice one may have a forecast ensemble with

inconsistent statistics, but by starting with a consistent forecast ensemble

we may isolate the effect of the analysis step algorithm. An observation to

pass to the analysis algorithm may likewise be randomly generated from the

true state and an assumed observation error covariance matrix. By varying

the two covariance matrices (and possibly other parameters as well) and

assessing the effect on the analysis ensemble statistics, it may be possible to

form conjectures for analytic proof.

Finally, if many Monte Carlo runs are to be performed for these or other

experiments, it would be best to employ a little more finesse than was used

to generate the statistics in Table 5.2. There the number 100 was almost

arbitrarily decided upon as the number of runs to perform in each case. If

the machinery of statistical hypothesis testing can be brought to bear on the

design of the experiments, then the number of runs may be reduced to the

minimum necessary to produce meaningful results and the number of cases
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that may be tested in a given time will be maximised.
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Appendix A

Additional Operation Counts

This appendix is a supplement to Section 2.3.3. The following operation

counts are based on O(a3) to invert an a×a matrix and O(abc) to multiply an

a×b matrix by a b×c matrix. Recall that we are considering an NWP system

with N � m ≤ n. Recall also that we are assuming that multiplication by

H is cheap.

A.1 Analysis Step of KF

• O(m3) to form inverse of HPfHT + R in formula (2.5) for K.

• O(m2n) to form K as product of this inverse and PfHT .

• O(n3) to form Pa = (I− KH)Pf .

• State update is negligible.

• Total O(m3 + m2n + n3) = O(n3).

A.2 Naive Implementation of Analysis Step

of Stochastic EnKF

• O(n2N) for multiplication Pf
e = X′f(X′f)T .
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• O(m3) to form inverse of HPf
eH

T + Re in formula (2.15) for Ke.

• O(m2n) to form Ke as product of this inverse and Pf
eH

T .

• O(mnN) to form Xa = Xf + Ke(Y − HXf).

• Total O(m3 + m2n + mnN + n2N) = O(m2n + n2N).

88



Appendix B

The EAKF and the General

Deterministic Framework

This appendix is a supplement to Section 2.4.5. It is shown there that the

EAKF may be written in the post-multiplier form (2.26) with

T = WŨ(I + Λ̃)−
1

2 WT .

This is one half of the general framework discussed in Section 2.4.1; the other

half is the square root condition (2.27). For T defined as above it can be

shown that

TTT = WWT − (Y′f)TS−1Y′f .

Thus to conclude that (2.27) holds we must show that

WWT = I. (B.1)

But W is an N × p column orthogonal matrix, so for the above to be true

we must have p = N . Recall that p is the number of nonzero eigenvalues

of Pf
e or equivalently the rank of X′f . But X′f is an n × N matrix with at

least one linear relation between the columns (they sum to zero). Therefore

p < N and (B.1) does not hold. Thus the EAKF only partially fits into the

general framework.

There is an argument in Tippett et al [23, Section 3a] purporting to
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show that T for the EAKF is equal to T for the ETKF post-multiplied by

an orthogonal matrix. This would show that the EAKF fully fits into the

general framework. But the supposed orthogonal matrix is G−1FTX′f (in

the notation of this dissertation). This has size p×N and is thus not square

and consequently not orthogonal.
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Appendix C

Graphs of EAKF Experiments

This appendix is a supplement to Section 5.2. Figures C.1 to C.8 correspond

to Figures 5.1 to 5.8 and result from repeating the ETKF experiments with

the EAKF. They have been placed in an appendix because they merely con-

firm that the unexpected features of the ETKF observed in Section 5.1 are

absent from the EAKF. The graphs of ensemble statistics (Figures C.2, C.4,

C.6, and C.8) show no sign of inconsistency with the actual error, whilst

the graphs of ensemble members (Figures C.1, C.3, C.5, and C.7) show no

collapse in the number of distinct ensemble members in any coordinate or at

any time.

91



0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

t

θ
−

θ
t

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

t

p
θ
−

p
t θ

0 1 2 3 4 5 6 7
−4

−2

0

2

4
x 10

−3

t

r
−

r
t

0 1 2 3 4 5 6 7
−0.05

0

0.05

t

p
r
−

p
t r

Figure C.1: EAKF, perfect observations, N = 10: ensemble members. This
corresponds to Figure 5.1 for the ETKF.

92



0 1 2 3 4 5 6 7
−0.1

−0.05

0

0.05

0.1

t

θ
−

θ
t

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

t

p
θ
−

p
t θ

0 1 2 3 4 5 6 7
−2

−1

0

1

2
x 10

−3

t

r
−

r
t

0 1 2 3 4 5 6 7
−0.04

−0.02

0

0.02

0.04

t

p
r
−

p
t r

Figure C.2: EAKF, perfect observations, N = 10: ensemble statistics. This
corresponds to Figure 5.2 for the ETKF.
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Figure C.3: EAKF, perfect observations, N = 50: ensemble members. This
corresponds to Figure 5.3 for the ETKF.
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Figure C.4: EAKF, perfect observations, N = 50: ensemble statistics. This
corresponds to Figure 5.4 for the ETKF.
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Figure C.5: EAKF, imperfect observations, N = 10: ensemble members.
This corresponds to Figure 5.5 for the ETKF.
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Figure C.6: EAKF, imperfect observations, N = 10: ensemble statistics.
This corresponds to Figure 5.6 for the ETKF.
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Figure C.7: EAKF, imperfect observations, N = 50: ensemble members.
This corresponds to Figure 5.7 for the ETKF.
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Figure C.8: EAKF, imperfect observations, N = 50: ensemble statistics.
This corresponds to Figure 5.8 for the ETKF.
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Appendix D

Example of an Invalid X′a from

the ETKF

This appendix is a supplement to Section 6.1. We shall construct a forecast

ensemble that leads to an invalid analysis ensemble perturbation matrix (one

with X′a 6= 0) from the ETKF. We assume that the observation operator is

linear with H = R = I. Suppose that n > N and that the forecast ensemble

matrix has the form

Xf =


 I

0


 .

Introduce the notation 1N to stand for the N × N matrix in which every

element is 1/N . Note that 1N and hence I−1N is idempotent. The forecast

ensemble perturbation matrix is

X′f = Xf − Xf1N = Xf(I − 1N) =


 I − 1N

0


 .

For the ETKF we must find the eigenvalue decomposition of

(Y′f)TR−1Y′f = (X′f)TX′f = I− 1N .

Define column N -vectors zi (i = 1, . . . , N − 1) to have 1 in the first i rows,

−i in the next row, and 0 elsewhere. It is not difficult to show that these zi
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are mutually orthogonal and

(I − 1N )zi = zi.

Define zN to be the column N -vector with 1 in every row. Then zN is

orthogonal to the other zi and

(I − 1N )zN = 0.

If we let U be the orthogonal matrix with columns equal to normalised

versions of zi (i = 1, . . . , N) then we have the eigenvalue decomposition

I − 1N = UΛUT

where

Λ =


 IN−1 0

0 0




IN−1 being the (N − 1) × (N − 1) identity matrix. Let UN−1 denote the

N × (N − 1) matrix consisting of the first N − 1 columns of U. Then the

ETKF update equation is

X′a = X′fU(I + Λ)−
1

2

=


 I − 1N

0


U




1√
2
IN−1 0

0 1




=


 UN−1 0

0 0






1√
2
IN−1 0

0 1




=




1√
2
UN−1 0

0 0


 .

Since the columns of UN−1 are N − 1 orthonormal vectors, it follows that

the length of X′a is
√

N − 1/
√

2N . Therefore X′a 6= 0 and X′a is an invalid

analysis ensemble perturbation matrix.
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