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Abstract

This thesis is primarily concerned with the use of moving mesh methods for

the approximate solution of non�linear partial di�erential equations of parabolic

type� Such methods have become a popular means for the solution of problems

which may contain sharp features that are hard to approximate� whilst e	ciently

managing computational overheads�

Initially� a novel moving grid technique known as Contour Zoning is discussed�

This 
static
 method is able to reduce numerical resources by grouping together sets

of nodes as a moving contour of the solution�

Motivated by the �ndings from this method� a 
dynamic
 moving mesh method

is developed� initially powered by conservation of mass and later by equidistribution

principles� The unusual feature of the method is that the resulting system is solved

entirely through the grid co�ordinates� with the underlying partial di�erential equa�

tion solution being constructed algebraically a posteriori from the mesh� Numerical

results are compared with an analytical solution to the porous media equation which

drives the development of the method� Self�similar theory is also used to verify our

approximate solutions�

In one dimension the method is highly successful when applied to non�linear

di�usion problems incorporating moving or �xed boundaries and problems with

blow�up� However� in higher�dimensions we encounter oscillatory solutions emanat�

ing from an inability to manipulate our solution technique into square� invertible

systems which satisfy all of the conditions required for this style of mesh movement�
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Chapter �

Introduction

The use of adapted meshes in the numerical solution of partial di�erential equa�

tions �PDEs� has become a popular technique for improving existing approximation

schemes� In problems in which features with large solution variations are common�

such as steep fronts and sharp variations� the choice of a non�uniform mesh can not

only retain the accuracy but also improve the e�ciency of an existing method by

concentrating mesh points within regions of interest� This thesis is primarily con�

cerned with the use of such methods for the solution of non�linear parabolic PDEs

of the form

ut 	 �D�u�ux�x 
Q�u��

In particular� we shall be considering problems involving non�linear di�usion and

solution blow�up�

The advantages of such an approach go hand in hand� Firstly� since such areas

of interest in the mesh inevitably involve large variations in the solution� for any

numerical scheme a smaller spatial resolution in the mesh is essential for a reliable

approximation and accurate representation� However� to enforce this requirement

over the entire grid will be an expensive process� especially in higher dimensions�

It becomes obvious then� that for e�ciency it is desirable to concentrate nodes and

hence computational e�ort in those parts of the grid that require most attention�

A successful approach will then ensure suitable mesh resolution whilst retaining

computational e�ciency�

�



In general there are three classi�cations of grid adaption� The �rst� h�re�nement�

adds extra nodes to an existing mesh to improve local grid resolution� A second

technique� p�re�nement� employs higher order numerical schemes to improve local

accuracy as well as to approximate troublesome derivatives� The third approach is

r �re�nement� which maintains the existing number of nodes globally but relocates

them strategically and� more importantly� e�ciently over the domain� It is this

latter idea that we shall be concerned with in the course of this thesis�

Having decided upon the use of an adapted mesh for the problem in hand the

obvious question is� how does one choose a suitable grid
 There are many techniques

reported in the literature relating to both �xed and moving grids� When considering

a moving mesh algorithm for the solution of a time�dependent PDE� the techniques

which underpin the grid movement are often found in the literature for the generation

of adapted grids for the numerical approximation to steady problems� One such

technique is equidistribution� �rst introduced by de Boor ����� involving locating

mesh points such that some measure of the solution geometry or error is equalized

over each subinterval� Another technique is functional minimisation� which generates

the mesh from a variational principle� The line of thinking is that if the properties

of a mesh can be measured they can also be controlled� Early examples of this

methodology are found in the work of Winslow ���� and Brackbill � Saltzman �����

who adapt the mesh so that it exhibits desirable properties such as smoothness and

orthogonality� These techniques can be carried over into a moving mesh method� the

di�erence being that the mesh is moved in conjunction with the developing numerical

approximation through time in such a way that the underlying motivations of the

gridding strategy are retained� It is at this point where two categories of r �re�nement

appear� static and dynamic methods�

For static methods� the approximate solution is de�ned initially on a given mesh�

During the calculation a new mesh �which may or may not have the same number

of nodes� is generated using an existing grid generation technique� The solution

is then interpolated onto the new mesh� so the redistribution and�or addition of

grid points and the interpolation are all carried out at a �xed time in the solution

process� Although successful� these methods carry large computational overheads

�



due to the intermittent changes in the data structure describing the mesh in any

arithmetic code �����������������

In dynamic methods� a mesh equation is employed to prescribe the speeds of

nodes in order to move a mesh in such a way that gridpoints remain concentrated in

regions of rapid variation as the solution evolves with time� In general in these meth�

ods the number of nodes in the grid remain the same� For this type of moving mesh

method two coupled equations need to be considered� the moving mesh equation

controlling the development of the mesh and that associated with the underlying

problem ������ ����� ������ The mesh then develops continuously with no interpola�

tion steps required� During this thesis we shall look at both types of moving mesh

method� with the principle interest lying in the former�

Both static and dynamic methods require some underlying motivation for their

distributive strategies� It seems that in general the principles behind moving a grid

through time employ the same techniques involved in generating a stationary mesh�

for example a static method may redistribute grid points via an equidistribution

principle� Indeed� many dynamic methods are derived by introducing a time deriva�

tive into an existing grid generation technique� For instance� in the functional min�

imisation approach to grid generation moving mesh equations can be derived from

solving the gradient �ow equations associated with the minimal grid functional �see

Huang and Russell ����� ������

This thesis begins by outlining some of the existing literature on both grid gener�

ation and moving mesh methods� The next chapter will introduce both the equidis�

tribution and functional minimisation approaches to grid generation� It is hoped

that the reader� by �rst understanding the aims and means of grid generation� will

�nd it easier to grasp the implementation of these techniques when applied to mov�

ing mesh problems� The chapter concludes by introducing recent work by Budd et

al ��������� and ���� which suggests that� where applicable� the moving mesh method

should be chosen in such a way to mirror any self�similar properties lying in the

underlying PDE� We will introduce some self�similar theory with speci�c reference

to the porous medium equation �PME�� for which an analytical solution exists in

����� We shall take advantage of both these particular solutions and the self�similar

�



qualities in later chapters to verify our numerical computations�

We continue in Chapter � by describing the development of an e�cient static

moving mesh method from an existing technique known as Contour Zoning� The

major advantage of the method is a notable reduction in computational e�ort via the

use of one equation for a single value de�ned over a contour of the solution comprising

several gridpoints� In two dimensions we adapt the contours in a static manner by

moving them into positions governed by an easily enforceable equidistribution rule�

We introduce the Contour Zoning method in one and two dimensions and in Chapter

� use the method to compute numerical solutions to the PME and for a problem

arising in semiconductor manufacturing� Our �ndings lead us to develop another

moving mesh technique� initially in one dimension� motivated by the principle of

conservation of mass�

Chapter � follows the development of this moving mesh technique� Here the

underlying PDE is coupled with a local mass conservation law and the resulting

single equation generates the speeds of the nodes from which the grids are found�

The approximate solution to the PDE is then reconstructed from the current state of

the mesh and a parameter ��t� associated with the mass conservation via an algebraic

relation� This method is then extended to couple the PDE with various styles of

equidistribution� again with particular reference to the PME� This style of moving

mesh implementation di�ers from the techniques described in Chapter � in the way

that the coupled system is solved for in terms of the grid speeds alone and not in a

standard interleaving approach for both the mesh and the solution� This approach

is then extended further in Chapter � and numerical solutions are generated for the

semiconductor problem and for a problem involving solution blow�up�

The penultimate chapter attempts to translate the success of the method in one

dimension from the previous chapters to higher dimensions� with speci�c regard to

the PME� We concentrate on the idea of mesh movement via mass conservation�

employed to compute radially symmetric solutions� Several attempts are made to

construct a genuinely two�dimensional algorithm using the same philosophy as in

one�dimension� However� the results are subject to a greater or lesser extent to

lateral oscillations in the solution� which we were unable to eliminate�

�



The �nal chapter summarises our �ndings and outlines possible areas of future

research�

�



Chapter �

Grid Generation and Moving

Mesh Methods

In general� moving mesh methods are derived from introducing node speeds� i�e�

velocities of computational nodes� into existing algorithms for generating computa�

tionally advantageous meshes for steady state problems� An obvious example of this

development is the several variations of moving mesh partial di�erential equations

�MMPDE�S� presented by Huang� Ren and Russell 	

�� Here a simple equidistribu�

tion relation in one spatial dimensional is di�erentiated with respect to time in order

to derive equations prescribing the correct velocities of nodes in order to preserve

the equidistribution principle as the solution and grid evolve� In higher dimensions�

due to the lack of a strict extension of the equidistribution idea in more than one

spatial dimension� a popular idea is to evolve mesh speeds by attempting to keep a

functional concerned with static grid generation minimal 	
��� 	

��

In the �rst section of this chapter we shall explore some of the existing ideas in

static grid generation so as to give a good understanding of the aims and methods

behind many moving mesh methods� We then continue� by following how many of

these methods are used to derive moving mesh techniques in one and two dimensions�

The last section in the chapter details recent work in which moving mesh methods

are chosen in accordance with theoretical properties of the underlying PDE�

�



��� Grid Generation Methods and Techniques

The simplest place to start an exposition of the basic philosophy behind the use

of an adapted� irregular grid is in one dimension� The most widely used method

is the equidistributed mesh� �rst introduced by De Boor 	��� for obtaining good

discrete approximations to continuous functions� The principles of the method were

later applied to generating e�cient computational grids for the numerical solution

of steady PDEs� For example White 	�
� used a transformation to arc�length coor�

dinates to generate equidistributing meshes for the numerical solution of two�point

boundary value problems� Another approach is given in Denny � Landis 	���� where

the one�dimensional mesh was iterated by trying to reduce the truncation error of

the solution of the underlying PDE after each iteration� This is a convenient point

at which to formally introduce and de�ne the equidistribution principle�

The main strategy behind the equidistribution idea is quite self�explanatory� The

idea is to choose a mesh such that a measure of either the geometry of the represented

function� or of the error of the numerical solution� is distributed equally between

adjacent nodes� This measure is prescribed via a user�de�ned function known as the

monitor� a positive�de�nite function of the solution u and�or its derivatives ux�uxx�

of the form�

M �M�x� u� ux� uxx�� �����

Later on in this section� we shall introduce various choices of monitor function

and illustrate their e�ect on the resulting mesh� However� we begin by stating how

this measure is distributed over the grid in a formal de�nition�

Given a mesh representing a physical space in one�dimension x � 	a� b� with N��
mesh points xi� i � �� � � � � N � such that x� � a and xN � b� the equidistribution

principle can be written

Z xi��

xi

Mdx �
�

N

Z b

a
Mdx i � �� � � � � N � �� �����

However� in most grid generation applications it is often more convenient to think

of the equidistribution idea as one of a co�ordinate mapping from a computational

�



space to a physical one� The goal of the grid generation problem then becomes one

of �nding a suitable co�ordinate mapping or transform� This approach is common

and forms the basis of most grid generation techniques and� indeed� moving mesh

methods� Good explanations of this co�ordinate transform idea can be found in

Baines 	�� and Huang� Ren � Russell 	

�� Concentrating still on one dimension� we

de�ne the computational space � � 	�� ��� so that the mesh points in physical space
are related to the �usually regularly spaced� grid points �i in the computational

domain� Written formally� x is then a mapping from � to x

x � x����

Within this framework the equidistribution idea is written as

Z x��i�

�
Md�x � �i

Z �

�
Md�x �����

or

Z x��i���

x��i�
Md�x �

�

N

Z �

�
Md�x� ���
�

Di�erentiating ����� with respect to � once gives the equation used by White 	�
��

di�erentiating yet again yields the equation presented in Baines 	��

�

��
�M

�x

��
� � �� �����

Following this approach� the solution of ����� with Dirichlet boundary conditions

x��� � a x��� � b

produces an equidistributed grid for the given monitor function� However� equation

����� is non�linear since M depends not only on x but also on the solution u� To

overcome this� an iterative approach is suggested using the algorithm

�M�xp�xp��� �� � � �p � �� �� ����

which may be discretised in a semi�implicit style as follows�






M�xp
i� �

�
��xp��i�� � xp��i ��M�xp

i� �
�
��xp��i � xp��i�� � � �� �����

The resulting tridiagonal system is easily solved using� for example� a Jacobi�iteration

method�

When generating an equidistributed grid for good representation of a function

or initial condition� the values of the monitor are known exactly and the iteration

is usually quick and successful� However when using this type of iterative process

for adapting a mesh to give a better numerical solution to an underlying di�erential

equation� it is common to use an interleaving approach where the grid and solu�

tion are alternately updated� with the solution being interpolated between changing

states of the mesh�

We now consider a few examples of possible monitor functions� The simplest such

monitor�M � �� produces an uniform equi�spaced grid� This monitor has been used

in a moving mesh method with a moving boundary by Budd et al 	���� as it permits

attractive theoretical properties of the solution within the mesh movement� �details

of which shall be discussed later in Section ����� Elsewhere� early work by Carey

� Dinh 	��� showed that minimising the error between a numerical approximation

over a computational cell was equivalent to equidistributing the curvature monitor

raised to a speci�c power� depending on which error norm was considered� However�

the most common desired feature of using the technique of equidistribution is that

the resulting grids have high mesh resolutions where solution gradients are steep

and lower resolutions where the solution is less active� This in turn implies that

the grid will then provide good approximations of derivative terms when using a

suitable numerical scheme or solver� For this reason it is common for the monitor

to involve derivative terms of the solution u� In this case� the simplest idea is to use

the �rst derivative of u with respect to x� i�e�

M � juxj� �����

The e�ect of the gradient monitor on a monotonic function is that the solution

values themselves become equi�spaced� since�

�



Z
xi

xi��Mdx � ui�� � ui

see Figure ���� The most popular choice of monitor is the arc�length of the solution

which has been used in many mesh generation and moving mesh methods �e�g�

White 	�
�� Dor� � Drury 	����� The arc�length monitor is written as

M �
q
� � u�x� ���
�

This monitor gives a smoother mesh overall than the gradient monitor� especially

when encountering large variations in u� as shown in Figure ����
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Figure ���� Examples of Grids using the gradient monitor ����� �left� and the arc�

length monitor ���
� �right��

In practice the derivative term in the arc�length monitor is often scaled by some

parameter �� for example

M �
q
� � �u�x� �����

We shall comment more on the choice of monitor functions later on in Section ����

Although equidistribution is the most common tool used when generating irreg�

ular computational meshes in one�dimension� the principle does not however extend

strictly into two�dimensions and an alternative is needed�

One of the earliest� and most celebrated of such grid generation approaches in

two dimensions is given in the appendix of Winslow�s paper 	���� The main body

��



of which contains a method for the solution of a quasi�linear Poisson equation on

a non�uniform triangular mesh� and the accompanying appendix outlines how to

form such a mesh for regular domains� The ideas presented in this paper provide

a basis for many of the higher�dimensional grid generation methods that followed�

Once again� the approach is based on a mapping from a computational domain �c

to a physical domain �p� The computational domain is represented as a regular

equilateral triangular mesh composed of � sets of straight lines� associated with the

inverse mappings ��x� y� and ��x� y� which satisfy the Laplace equations

r�� � �� ������

r�� � �� ������

The solution to ����� and ������ results in intersecting equi�potentials� i�e� � �

constant and � � constant� with the mesh completed using the intersections of the

resulting sets of lines� The required mesh is found by inverting the transforms and

putting them in terms of x��� �� and y��� �� using the Jacobian J � x�y� � x�y�� so

that ����� and ����� become

�x�� � ��x�� � 	x�� � �� ������

�y�� � ��y�� � 	y�� � � ������

where

� � �x�� � y����

� � �x�x� � y�y���

	 � �x�� � y�� ��

These equations can be discretised by the �nite di�erence method outlined in the

main body of the Winslow article 	��� and solved via an iterative successive over�

relaxation algorithm� Due to the averaging property of the Laplace equation the

��



constructed mesh is in some sense smooth and is also easily applicable to quadrilat�

eral meshes� Notice that the method is in no�way linked to a function or numerical

solution represented on the grid� The purpose of this early grid generation algorithm

is to produce grids adapted to a particular domain� the shape of which is imposed via

boundary conditions used in conjunction with ����� and ������ Winslow�s method

as outlined above was adopted by Thompson et al 	��� to generate meshes around

multiple curvilinear bodies used in modelling �ow over various shaped airfoils�

Brackbill and Saltzman 	��� took advantage of the idea and extended the method

by allowing discretionary control of various mesh properties such as the smoothness

and the orthogonality of the grid� Their paper highlights that solving the Laplace

equations ����� and ����� is equivalent to minimising the functional ����
� below

which relates to the smoothness of the mesh� over the computational domain �c�

Is �
Z
�c
	�r��� � �r����dV� ����
�

Similarly� by solving the Euler equations associated with minimising the func�

tional related to the orthogonality of the mesh �see �������� an orthogonal grid is

produced�

Io �
Z
�c
�r��r���dV� ������

In practice� Brackbill and Saltzman suggested the use of linear combinations

of such functionals� with the preferences of the user implemented through choices

of coe�cients� The over�riding theme seems to be that as such properties can be

measured they can also be controlled� In their paper the variational approach was

used in conjunction with a numerical solution to a steady PDE and results show

that� as the chosen functional is minimised� so too is the numerical error� Hence

we see the development of the idea of a choice of functional in higher dimensions

mirroring the e�ect of a monitor function in one�dimensional equidistribution�

The methodology of Winslow 	��� and Brackbill � Saltzman 	��� can be thought

of as special cases of a more general framework outlined later by Huang � Rus�

sell 	
��� 	
�� and 	

�� Speci�cally� 	

� presents the following functional ������ as a

general form of a grid adaptation functional�

��



I	�� �� �
�

�

Z
�p
	r�TG��� r� �r�TG��� r��dxdy ������

where G� and G� are given symmetric positive de�nite matrices� referred to as the

monitor functions� The desired mesh transformation is derived from the solution to

the associated Euler�Lagrange equations�

r��G��� r�� � �� ������

r��G��� r�� � �� ����
�

It is easy to see that by choosing G� � G� � I this general methodology reduces

to Winslow�s original ideas� Moreover Huang � Russell 	

� give forms of G� and

G� which correspond to Brackbill�s mesh generation method 	����

Equations ������ and ����
�� together with Dirichlet boundary conditions form

a harmonic map from the physical to computational domains and the reliability of

the method stems from the guaranteed existence and uniqueness of the transform�

provided that the boundary of �p is convex and that G� � G�� Details can be found

in Dvinsky 	���� Again� in 	
��� details of the speci�c monitor used in 	��� are given�

involving distances from a given surface� As an illustrative example� below is the

�arc�length�like� monitor presented in 	

�

G� � G� �
�q

� � kruk�
�I �ruruT�� ������

Further work by Cao et al 	��� proved by the use of Green�s functions that

the mesh can be aligned in certain directions and mesh concentrations can also be

in�uenced in certain directions by controlling the eigenvectors and eigenvalues of

the monitor matrices �speci�cally when G� � G��� In particular� �ndings from this

paper suggest that minimising the function I concentrates nodes in regions where the

eigenvectors of G�� 
� and 
� change signi�cantly� This seems to have stemmed from

earlier work by Brackbill 	��� and Knupp 	�
�� The latter followed his own earlier

work� this time combining the Winslow functional and another functional giving a

certain amount of directional control over the grid by attempting to align mesh lines

��



with a prescribed vector �eld related to the approximate solution� Knupp 	�
� also

used the variational approach to grid generation� using weights from sets of vector

�elds� with the resulting meshes aligning themselves with the same vector �elds in

some least�squares sense� of course some prior knowledge of the appropriate vector

�elds being needed�

Another interesting example of the application of Winslow and other such meth�

ods� is outlined in Farmer 	��� for use in modelling geological features� Here grids

are needed which honour �control lines� representing features such as faults� These

control lines are extended to the boundaries of the domain via interpolation� leaving

the domain sectioned into several rectangular domains� which are then discretised

using the outlined grid generation techniques�

This functional framework for �nding the desired mesh transformation is a pop�

ular and convenient one� especially when used as the basis of a higher dimensional

moving method� as we shall see later� For completeness� it is worth noticing that in

one dimension� minimising the functional

I	�� �
�

�

Z �

�

�

M

�
��

�x

��

dx

yields the equidistribution equation for a given monitor M 	

�� Since this general

framework has been developed to work as part of high dimensional moving methods�

solution procedures for these methods incorporating the mesh movement process will

be outlined later in Section ����

Alternative two�dimensional analogues of equidistribution for grid generation can

be found in Baines 	�� and Huang � Sloan 	���� In the former paper an equation

to solve for the appropriate monitor function is given as a natural generalisation of

equation ������

r��M�n�r�n� � �

where n is a coordinate along the direction of ru and � � ��� ��� This translates

into a �local equidistribution in the direction of ru�� Replacing n by x or y gives the
equations below� which are of the familiar Euler�Lagrange form presented earlier�

�




r��Mr�x� � ��

r��Mr�y� � ��

These equations are again solved with an interleaving approach with Dirichlet

conditions� The resulting grid is unable to equidistribute M precisely but clusters

grid points in regions of high M as desired� Further� Baines 	
� shows that a least

squares minimization of a residual of a vector �eld is equivalent to a least squares

measure of equidistribution on triangular meshes� in some sense extending the work

in one dimension by Carey � Dinh 	����

Elsewhere� the work of Huang and Sloan 	��� follows ideas set out by Dwyer 	���

and Catherall 	��� and a local equidistribution is obtained by imposing the strict

one�dimensional form over two sets of co�ordinate lines�

It is worth taking time to grasp an understanding of these grid generation tech�

niques as a precursor to studying moving�mesh methods� As we shall see in the

following section� many moving grid algorithms are based upon an underlying prin�

ciple for constructing meshes with e�ective grid resolutions�

��� Moving Mesh Methods

In the previous section� we have outlined the aims and some techniques behind the

generation of irregular grids� We now turn our attention to methods which aim to

move the mesh in time to solve non�steady di�erential equations� whilst retaining

the properties �and hence the numerical bene�ts� of the ideas presented above� We

shall make constant reference to the techniques in Section ���� so it makes sense

to follow the same order of events� starting with the use of the equidistribution

principle in deriving moving mesh methods in one dimension�

An early incorporation of the equidistribution idea into a moving mesh method

is outlined by Petzold 	�
�� Here a natural extension of the interleaving numer�

ical solution approach for a stationary� adaptive grid is presented� Since the so�

lution of the problem now develops with time� the equidistribution part of the

��



interleaving solution approach is undertaken at intervals� usually chosen by some

pre�determined error measure� during the forward integration in time� In other

words� at certain times throughout the numerical solution of the equation� the grid

is re�equidistributed� hence moving the nodes throughout time� the solution on the

new grid being found via some interpolation process� In a slight variation on this

technique Blom et al 	��� used a predictive step� re�equidistribute the grid using the

prediction and then update the solution on the new grid� The update step is written

in a Lagrangian form� involving the movement of the nodes in the redistribution�

hence no interpolation step is required� The Blom approach bridges the gap between

the static� regridding technique of Petzold� and more dynamic traditional moving

mesh methods� The major di�erence between the two is the interpretation of mesh

speeds included within the solution procedure� We continue this theme further and

explore the various forms of this continuously moving mesh idea�

In contrast to the regridding idea� an early dynamic moving mesh technique

was devised by Dor� � Drury 	���� Here a separate equation for mesh speeds is

developed via a function R to control mesh resolution which acts in the same way

as a monitor function �despite no formal mention of equidistribution ideas�� A

simple relation between the speeds of the points �x and R is solved in conjunction

with the underlying PDE� Other early additional moving mesh equations include

the work by Adjerid � Flaherty 	��� who used a moving mesh equation within a

�nite�element framework to equidistribute the local discretisation error within the

scheme� Petzold 	��� followed the regridding approach with a more dynamic moving

meshmethod� the idea here being that using transformed pseudo�Lagrangian moving

mesh co�ordinates� mesh speeds can be chosen so as to minimise the movement of the

mesh in the transformed variables� so the solution in these co�ordinates is changing

as slowly as possible for an easier numerical solution�

White 	��� followed earlier grid generation work in one�dimension by using a

moving meshmethod based upon the transformation to arc�length type co�ordinates�

Applications of early moving mesh methods include the work by Larrouturou 	����

working on a �ame propagation problem� a single mesh speed being derived for the

entire grid� this velocity chosen to preserve thermal energy in the solution� the entire

��



grid is then moved as a rigid body� For the reader�s interest� a review of some of the

earlier moving mesh methods in one�dimension can be found in Hawken et al 	
���

We now turn our attention to the work of Huang� Ren and Russell �	

�� 	
�� and

	�
��� In contrast to the work by Dor� � Drury the moving mesh equation is derived

directly from the equidistribution principle� In 	

� several moving mesh partial dif�

ferential equations �MMPDE�s� are derived in this manner� with the aims of the

resulting algorithm being simple� easy to program and relatively insensitive to the

choice of user�de�ned parameters� In all seven of these MMPDE�s are constructed

using three di�erent approaches� the �rst two of which are motivated by equidistri�

bution� Using the one�dimensional computational and physical co�ordinate systems

as described in Section ���� two quasi�static equidistribution principles �QSEP�s��

are obtained by di�erentiating the integral form of the equidistribution principle

����� with respect to � once and twice respectively�

M�x��� t�� t�
�

��
x��� t� �

Z �

�
M��x� t�d�x ������

and

�

��

�
M�x��� t�� t�

�

��
x��� t�

�
� �� ������

To introduce node movement into the picture� time di�erentiation is undertaken�

Several mesh movement equations have been produced by� for example Anderson 	���

Hindman � Spencer 	
�� and Ren � Russell 	�
�� the former two papers being early

attempts with the transformation between physical and computational space� �rst

in one� 	
��� and later in two dimensions 	��� However some of these earlier forms

include time di�erentiation of the integral quantity

��t� �
Z �

�
M��x� t�d�x�

Huang� Ren � Russell state� without supporting argument� that the quantity ��t� or

its time derivatives are too complicated to include in actual computation� However�

by �rst di�erentiating the original equidistribution principle with time and then

with � twice we obtain

��



d

dt

�
�

��

�
M

�x

��

��
� �

which can be written as �MMPDE��

�

��

�
M

� �x

��

�
�

�

��

�
�M

��
�x

�
� � �

��

�
�M

�t

�x

��

�
������

so giving a moving mesh equation without reference to ��t�� In the same paper an

alternative set of moving mesh equations� MMPDE�s ��
� are derived by considering

������ and requiring that the mesh satisfy the condition at the later time t�
 �where

� � 
 � �� instead of at time t� i�e�

�

��

�
M�x��� t � 
 �� t� 
 �

�

��
x��� t� 
 �

�
� ��

This equation is thought to be a strong enough condition to regularize the mesh

movement by Huang et al� Substituting the expansions

�

��
x��� t� 
 � �

�

��
x��� t� � 


�

��
�x��� t� �O�
 ��

u�x��� t� 
 �� t� 
 � � u�x��� t�� t� � 
 �x
�

�x
u�x��� t�� t�

�

�

�t
u�x��� t�� t� �O�
 ��

into ����� and dropping higher order terms gives MMPDE � ������� which in fact is

MMPDE� with an additional �correction� term

�

��

�
M

� �x

��

�
�

�

��

�
�M

��
�x

�
� � �

��

�
�M

�t

�x

��

�
� �




�

��

�
M

�x

��

�
������

�

The extra term is a measure of how well the current grid is equidistributed and

hence MMPDE � moves the grid towards an equidistributed state even when M

is independent of t� For this reason� terms involving �M

�t
are less important for

MMPDE � than MMPDE �� and disregarding these terms leads to MMPDE�s � and


 respectively� i�e�

�




��

���
�M �x� �

�




�

��

�
M

�x

��

�
����
�

and

�

��

�
M

� �x

��

�
�
�




�

��

�
M

�x

��

�
� ������

The remaining MMPDE�s ����� are devised by considering attraction and repul�

sion pseudo�forces between nodes� Here the mesh movement is speci�cally motivated

by taking the monitor to be some error measure� so nodes are attracted together

when the error is larger than average and repelled when the measure is below av�

erage� The error is then expressed as an integral over each cell� Wi� usually taking

the form

Wi �
Z xi��

xi

M��x� t�d�x�

MMPDE�s ����� stem from this relation and all involve the correction term men�

tioned above� which seems to be a key term as it can determine the time�scale for the

mesh movement and hence can be adapted to suit the problem in hand� Moreover

since the correction term can be derived from the equidistribution idea� its inclusion

in the latter mesh equations suggests that the error is evenly distributed over the

mesh and the equidistribution and attraction�repulsion ideas are therefore thought

to be closely related� Huang� Ren � Russell also provide theoretical analysis sug�

gesting that the MMPDE�s cannot produce instances where nodes cross paths when

the MMPDE is solved exactly� indicating stability of the resulting meshes� The

stability analysis follows early work by Flaherty et al 	���� In particular it is noted

that for MMPDE �� the mesh would be stable if the measure

L�t� � max
�����

M�x��� ��� ��

M�x��� t� ��

were to remain bounded� However for most choices of M � L�t� is likely to increase�

Li et al 	�
� went on to discuss the stability of such moving mesh systems in greater

detail�

��



The resulting equations �MMPDE�s ���� have spawned a variety of work in var�

ious applications� sometimes with a common modi�cation� that being the spatial

smoothing of the monitor function M � Dor� � Drury 	��� and Furzeland et al 	�
�

came to the conclusions in their early moving mesh work that when using �nite�

di�erence schemes to approximate derivative terms� in order to obtain �reasonable�

accuracy the mesh should be� in some sense� smoothed� Verwer et al 	��� proved

that smoothing the mesh is equivalent to smoothing the monitor function over the

grid� Motivated by this work� Huang� Ren � Russell 	
�� use MMPDE�s ����� with

a smoothed monitor function �M de�ned at each node by

�Mi �

vuuuut
Pi�p

k�i�p�Mk��
�

�

���

�jk�ij
Pi�p

k�i�p

�
�

���

�jk�ij
where 	 is a smoothing parameter and p is a non�negative integer referred to as

the smoothing index which determines the range of the smoothing� These ideas

provide a valuable tool in higher dimensions� since using a locally smoothed monitor

function is considerably easier than smoothing the entire mesh separately� Moreover

it is noted in 	

� and 	
�� that MMPDE�s � and 
 permit a possible extension to

multi�dimensions�

Mackenzie 	��� and Stockie et al 	��� have both applied the smoothed moving

mesh equations to PDEs in one�dimension and later to systems of hyperbolic conser�

vation laws� where monitors were not only smoothed but combined to provide a mov�

ing grid on which to simulate the development of several time dependent variables�

Mackenzie � Robertson 	��� also used a mesh equation based upon equidistribution

applied to a problem involving a phase change� Here a monitor based upon the

asymptotic behaviour of the problem was used� clustering nodes around the moving

interface� whilst the inclusion of a constant term also allowed su�cient nodes to be

placed away from the region� Further applications of the MMPDE�s ����� include

work by Qiu � Sloan 	���� who applied MMPDE � with the outlined technique of

smoothing the monitor to Fisher�s Equation� Interestingly enough� a new monitor

was derived for speci�c use with reaction�di�usion problems ������ after arc�length

and curvature monitors proved to be unsuccessful� this was

��



M�x� t� �

�
	� � ����� u�� � ���a� u��

�
��u

�x�

��


�

�
�

������

where ��� and a are user de�ned parameters�

Huang and Russell 	
��� also investigated the addition of arti�cial di�usion terms

to the monitor as a means of smoothing� the resulting method satisfying a mesh

crossing condition and allowing for possible extension to higher spatial dimensions�

A so�called Moving Mesh Di�erential�Algebraic Equation �MMDAE� is devel�

oped by Mulholland� Qiu � Sloan 	���� Instead of using the an MMPDE� the mesh

movement is prescribed by a QSEP ����� and ����� written in terms of an algebraic

equation involving the stationary grid points and the monitor function M � In fact

the algebraic relation is the equidistribution relation written previously in Section

���� equation ������ This is coupled with the moving grid Lagrangian form of the

underlying PDE and integrated forward in time using a �rst�order backward Euler

method �used since these systems tend to be sti��� In 	���� this technique is used

in conjunction with a pseudo�spectral processing of the solution of hyperbolic prob�

lems� Qiu � Sloan 	��� continue the work� comparing the method and in particular

the stability with the established MMPDE � of Huang et al 	

�� Of particular

interest is the stability of the discrete solution of the steady�state solution to Burg�

ers� equation by examining possible steady solutions arising from the two adaptive

discretisations of the unsteady problem�

We now move on to moving mesh methods in higher dimensions� In the pre�

vious section we outlined a class of stationary grid adaption methods based upon

minimising a mesh generation functional� As with the moving�mesh techniques in

one dimension� we introduce mesh speeds into such a grid adaption method so as to

preserve the properties of the grid as it moves in time� A popular way to introduce

mesh speeds into the mesh functional approach is by use of the so�called gradient

�ow equations� Following the approach of Huang � Russell 	
��� a functional I	�� ��

is minimised over the computational domain �c� One way to minimise I is to fol�

low the steepest descent direction given by the �rst derivative of I� The following

�gradient �ow� equations de�ne a �ow which converge to the equilibrium state at

t���

��
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�t
� ��I

��
�

��

�t
� ��I

��
�

In practice a modi�ed version of these equations is used in 	
��� with the inclusion

of the familiar correction term 
 and the introduction of P � an operator on the

underlying function space�
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�t
� �P




�I

��
�

��

�t
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�I

��
�

The extra term P is used to choose more suitable directions than that of steepest

descent with the 
 terms allowing the user to choose a suitable time scale for the

problem� It has already been noted in Section ��� that the functional approach

in one�dimension can be shown to be equivalent to the equidistribution principle�

Moreover the approach here can be shown to be similar to using MMPDE � 	

��

being based on the attracting and repellent forces of the monitor function� Indeed

Beckett et al 	�� used a similar version of the monitor outlined previously ������ in

conjunction with a one�dimensional analogue of ������ for the solution of Burgers�

equation� More recently MMPDE � has been used in two dimensions as part of an

adaptive �nite element method by Cao et al 	��� for the solution of a combustion

problem consisting of coupled non�linear reaction�di�usion equations�

Huang � Russell give multi�dimensional generalisations using this methodology

for MMPDE�s 
 and �� Using this approach and the general grid generation func�

tional ������� a suitable P is given in terms of the determinants of the two monitor

matrices� i�e� �g� � det�G�� and �g� � det�G��� giving the resulting MMPDE

��
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As with solving for a stationary mesh� the actual computations are carried out

after interchanging dependent and independent variables� giving
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where J is the Jacobian of the co�ordinate transform�

Given this general framework� equivalent MMPDE�s can be constructed using the

various speci�c functionals described in Section ���� Dirichlet boundary conditions

are preferred for the solution of ������ as this yields a unique solution� but for

many problems this is not applicable since the boundary may not be stationary�

Indeed� in some cases it is useful to moves nodes around the �xed boundary� for

which many techniques are under investigation� the most popular being preserving

a one�dimensional arc�length equidistribution of nodes on the boundary �see Huang

� Russell 	���� 	
���Beckett et al 	����

Huang and Russell 	
�� outline a familiar interleaving approach for the solution

of the higher dimensional MMPDE combined with the underlying physical PDE as

follows�

� Calculate the monitor functions G� and G� on the current mesh�

� Update the mesh at time t� t by integrating the MMMPDE������� keeping
G� and G� constant�

� Integrate the physical PDE to get the solution at time t� t using the mesh

x�t� � xn �
�t� tn�

 tn
�xn�� � xn�

and mesh speed

�x�t� �
�xn�� � xn�

 t
�

� Choose a value of  tn�� for the next time step from the physical PDE�

��



As with their work in one�dimension� Huang� Ren � Russell suggest that the

time correction term 
 is preset by the user or determined by the development of

the solution� However the choice of this value in one�dimension is relatively insen�

sitive and it is thought to be so in higher dimensions also� Central �nite di�erence

discretisations are used by Huang � Russell along with a simple rectangular uniform

reference mesh for the computational space� Again� extending the work carried out

in one�dimension� the monitor is smoothed locally�

On re�ection� the functional framework for multi�dimensionalmoving meshmeth�

ods gathers together all of the work described� both in grid adaption and one�

dimensional moving grid techniques� since the strict equidistribution ideas in one�

dimension can be written in terms of a functional and the moving mesh methods in

higher dimensions are derived from a functional approach to grid adaption�

As an interesting aside� work by Demird!zi"c � Peri"c� 	��� and 	�
� considers

moving mesh methods from a more practical aspect� The authors suggest that many

of the movingmesh algorithms before them induce error by not satisfying exactly any

relevant conservation laws� Work is continued in 	�
� and mesh movement equations

are derived for the solution of the Navier Stokes equations from a general scalar

quantity conservation law� The fact that relevant physical quantities are conserved

almost #by construction� in the method is considered to be of utmost importance

and is the driving force behind the moving grid�

Whichever approach is undertaken� a good understanding of the numerical tech�

niques alone may not be good enough for the solution of some problems� We shall

continue in the next section by introducing recent work which combinesmoving mesh

methods and self�similar solution techniques� which suggests reasonable choices of

monitor functions for certain problems� In particular we shall consider application

to the solution of the PME� which we now describe in detail�

��� Self Similar Solutions and Mesh Movement

Recently there has been great interest in the connection between moving mesh meth�

ods and the numerical approximation of solutions to self�similar problems� The main

�




focus of attention has been on the PME in one�dimension ������ and the question

of using appropriate moving mesh methods to suit its properties� Most of this work

has been carried out by Budd et al �	���� 	���� 	�
��� In this section we shall outline

the main ideas behind the self�similar solutions of the PME and review the resulting

moving mesh methods speci�cally derived for its solution� We begin by formally

introducing the PME and highlighting some of its properties�

In one dimension� the PME is a non�linear di�usion equation of the form

ut � �u
mux�x ������

where m � ��

Equation ������ arises from the study of the di�usion of gas through a porous

medium under the action of Darcy�s law relating velocity to pressure gradient� An�

other application appears in the modelling of the swarming of various insect species

from which under certain conditions an analytic solution is available� as presented in

Murray 	�
�� There is now a fairly complete existence theory for the equation� given

initial conditions u��� x�� these solutions take the form of travelling waves forming

on a region of growing compact support 	s��t�� s��t��� with u � � for x � s��t�

and x�les��t�� The solution conserves two important quantities� namely mass and

centre of mass� Given a solution u exists� we have that

I�t� �
Z �

��
udx � �� ������

Then

dI

dt
�
Z �

��
utdx �

Z �

��
�umux�xdx � ��

Hence I� or mass is conserved� Similarly� if $x is the scaled centre of mass

$x �
Z �

��
xudx�

then

d$x

dt
�
Z �

��
xutdx �

Z �

��
x�umux�xdx � �

Z �

��
uuxdx � ��

�

Z �

��
�u��xdx � ��

��



Since both mass and centre of mass are conserved� The speed of the moving

boundaries can be derived from the conservation of mass property� For instance� in

the case of m � �� the interfaces propagate with �nite speed given by

ds�
dt
� �u�s�� t�x�

Hence given symmetric initial conditions� the solution will remain symmetric

throughout time�

Figure ��� illustrates the behaviour of this class of solutions� the dashed line rep�

resenting the progress of the Murray Solution for m � �� The value of m in�uences

both the speed of the moving boundary and steepness of the solution inside the

interface� The larger the value of m results in a steeper evolving front and a slower

rate of displacement�
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Figure ���� Evolution of solution to the PME ������� for m � ��

Moreover the PME has a scaling invariant property which is the basis of the

moving mesh ideas of Budd et al� We begin by providing a simple de�nition�

Given a system �u� x� t� satisfying a PDE� we introduce a mapping to a new

system �%u� %x� %t� under the transformation

%u � 
�u� %x � 
�x� %t � 
t ������

��



where 
 is an arbitrary constant� The original system� �u� x� t�� is said to be scal�

ing invariant if the PDE under consideration is identical in both the original and

transformed co�ordinates� Moreover� given a solution to the equation� if this too

is invariant under the mappings then the solution is said to be self�similar� The

bene�ts of such a transformation being available lies in the fact that sometimes the

PDE is easier to solve in the transformed co�ordinate system� We continue with the

derivation of such a transform for the PME�

Using the general form of the transforms ������� we can write the left hand side

of the PME as

ut � 
��%ut ������

� 
��%u	t �
�

� 
���%u	t�

Now considering the right hand side� substituting the transformations ������ gives

�umux�x � �
�m�%umux�x ����
�

� 
�m��
��%um%u	x%xx�x

� 
���m������%um%u	x�x

� 
���m�����%xx�%u
m%u	x�	x

� 
���m�������%um%u	x�	x�

Equating the two sides ����
� and ������ gives


���%u	t � 
���m�������%um%u	x�	x�

and so� comparing the powers of 
� the system is scaling invariant provided that

�� � � ���m� �� � ��

or

��



�m� �� � � � �� ������

Furthermore we shall require the behaviour of the solution in the transformed

coordinates to mirror the conservation properties of the solution in the original

space� Taking into consideration equation �������

I �
Z �

��

��%udx � 
������

Z �

��
%ud%x�

So for the mass conservation property to be independent of 
� we require that

� � � � ��

which in conjunction with ������ gives us that the transformation ������ must satisfy

� �
��

m� �
and � �

�

m� �
� ������

Using the above conditions� the equation may be rewritten in terms of the trans�

formed variables and solved to give a class of solutions to the PME� The resulting

self�similar solution is invariant and hence independent of time� choosing %t arbitrar�

ily to be �� we can write the transformed solution in terms of the original coordinates

as

%u � ut
�

m�� � %x � xt
��
m�� � ������

The resulting� steady� di�erential equation can be solved by techniques found in

Barenblatt 	�� and Dresner	�
�� which form the basis of the solution given in Murray�

As mentioned above� the Murray solution arises from a model of insect dispersal�

The PME comes from the model by assuming that the di�usion of the species pop�

ulation Q from a central origin is due to population pressure� The exact analytical

solution is of the form

u�x� t� �

���
��

�
	�t�
	�� f x

r�	�t�
g�� �m jxj � r�
�t�

� jxj � r�
�t�

���
�� ����
�

where

�





�t� �
�
t

t�

� �
���m�

�

r� �
Q&� �

m
� 


�
�

�
�
�&� �

m
� ��

and

t� �
r��m

��m� ��

with r�
�t� representing the position of the moving front� and &�x� denoting the

gamma function�

Upon consideration of the general higher�dimensional form of the PME�

ut � r��umru��

Murray also provides a radially symmetric solution in two dimensions� Hence after

transforming to radial coordinates� the PME becomes

ut �
�

r
�r�um�ur�r ������

and we have the solution

u�x� t� �

���
��

�
	��t�

h
�� f r

r�	�t�
g�
i �
m jrj � r�
�t�

� jrj � r�
�t�
���
��

where


�t� �
�
t

t�

� �
����m�

�

r�� �
Q

�

�
� �

�

m

�

and

t� �
r��m


�m� ��
�

��



Similarly there exists a self�similar transformation for this radial case� Using the

same forms for the transformation as used previously� we have

%u � 
�u� %r � 
�r� %t � 
t� ���
��

Upon substitution into the radial form of the PME ������� when comparing

powers of 
� the same relation found in the one�dimensional case is found �������

Upon considering the appropriate form for mass conservation� we have that if

I � ��
Z �

��
rudr

and

dI

dt
� ��

Z �

��
rutdr

� ��
Z �

��
�rumur�rdr

� ��

So� upon substitution of the relevant transforms we have that

I � ��
Z �

��

��%r
�alpha%udr

� ��
������
Z �

��
%r%u
��d%r

� ��
�������
Z �

��
%r%ud%r

which� upon comparison of powers of 
 gives

� � �� � �� ���
��

Equations ������ and ���
�� give us with the associated self�similar transformation

in the radial case� provided that

� �
��

m� �
� � �

�

�m� �
���
��

which� in turn� provides the invariant radial solution in terms of the original coor�

dinates

��



%u � ut
�

m�� � %r � rt
��

�m�� � ���

�

Although we shall not be directly making use of these transformations in the nu�

merical methods to be introduced in later chapters� the existence of the theory

allows us to validate approximate solutions for the PME in both the radial and

one�dimensional cases� Our aim is that the approximate solutions will� under the

appropriate transform� display the invariant properties of the exact solutions�

Having demonstrated that the true solution to the PME has a self�similar solution

under the prescribed transformation� Budd et al conclude that the numerical scheme

must inherit the self�similar properties of the analytic solution� speci�cally a moving

mesh should be used for which the monitor is scaling invariant too� In 	��� Budd et al

implement a moving meshmethod involving the simplest of monitors which preserves

the said properties� this being M � �� Using �nite di�erence approximations to the

pseudo�Lagrangian form of the PME with m � � and the speeds of the moving

boundary� the resultant mesh has an expanding uniform resolution� The method

is applied to the PME in both the original and scaled variables and it is found

that the scaling resulting from the discrete self�similar solution is identical to that

in the continuous case� Hence the discrete self�similar solution has the dynamics

of the underlying solution in the original variables� The scheme used permits the

conservation of mass �and the centre of mass� and it is shown that the resulting

discrete self�similar solution converges to the true self�similar solution as the number

of nodes in the mesh is increased� Later Budd � Piggott 	�
� suggest that when

using the moving mesh PDE to solve scale invariant problems� the monitor should

also in some sense be scaling invariant� Another obvious choice is the mass monitor�

M � u�

which we shall use later in this thesis� Budd � Piggots�s results show that� when

m � � and the evolution of the PME is fairly gentle� the mass monitor preserves all

the desired properties and is able to model the shallow front formation behaviour at

the moving boundaries� No higher values of m are considered in 	���� for which the

front at the moving boundary is considerably steeper and a more suitable monitor

��



would be needed to resolve the front� Budd et al suggest that� since the monitor is

chosen in such a way as to exhibit the properties of the true and self�similar solution�

both the discrete solution and the moving mesh method also permit this behaviour�

Moving away from the PME� similar ideas have been applied to the non�linear

Schr'odinger equation 	�
� and to problems with blow�up 	���� In the latter� similar

results are achieved� even when the smoothing process suggested by Huang� Ren �

Russell 	
�� is applied to the chosen invariant monitor�

It is hoped that this chapter has provided a brief� yet informative� insight into

existing techniques for grid adaption and in particular moving mesh methods� Al�

though we shall not be implementing any of these methods directly� some of the

ideas explored in this chapter will be of considerable relevance when we come to

derive our own techniques as the thesis continues�

��



Chapter �

Contour Zoning

In this chapter we outline the development of the Contour Zoning method ���� for

the e�cient approximate solution of PDEs� In two or higher dimensions� the most

attractive feature of the method is that it reduces the solution of the underlying

PDE to one dimension by grouping non	contiguous 
zones
 of mesh points together

and solving for a constant value over each zone� Moreover the method� in which

computational nodes are collected and equidistributed together imposes a higher	

dimensional equidistribution principle�

To begin with� we trace the development of the method from the initial use of a

stationary rectangular mesh to that of a moving triangular grid� whilst maintaining

the two attractive properties of the algorithm stated above� The resulting form of

the method� when translated into one dimension� represents that of a regridding

algorithm such as those described in Section ���� In Section ��� we introduce the

method in one	dimension version in which the equidistribution is exact with respect

to a gradient monitor� We also introduce an adaptive time step with a link to the

scaling invariance of the PME following as discussed by Budd et al and outlined

in Chapter ���� In Section ��� we explain in detail the full contour zoning solution

algorithm and the generation and movement of the triangular grids involved in two	

dimensional problems�

��



��� History and Development

The Contour Zoning method was �rst introduced into a prototype code developed

at AEA Winfrith approximately �fteen years ago and trial results were published

in nuclear engineering literature ��
� � ����� In another later reference written by

Inston ���� the Contour Zoning method was outlined in two spatial dimensions using

a �ne scale regular rectangular computational mesh�

At the start of each time step� a coarse mesh solution was interpolated onto

a �ne	scale mesh� The range of the �eld variable u was then split up into equal

intervals� Grid points with solution values lying in the same intervals were collected

together into a zone� Each zone was then assumed to have a constant value for u and

equations were derived for determining the constant value in each zone by summing

�ux terms out of each section of mesh relating to the boundary of the zone� In some

sense these zones were grouped together to form a large control volume in �nite

volume terms� After the solution for the constant values� new zones were formed

by updating the coarse mesh solution� and again equally dividing the interpolated

solution range onto the �ne mesh�

In subsequent work �Blake ��� and Thuburn �
��� it was noted that in its original

form the contour zoning equations were non	convergent� due to poor approximations

to the outward normal derivatives at the boundaries of the zones� More speci�cally�

the spatial step size used to approximate derivatives was dependent on the resolution

of the underlying �ne	scale mesh and not on the size of the zones in question� These

inaccuracies were corrected with the use of a more suitable step size and a connection

made between the equal interval choice of zones and a weak form of equidistribution

in higher dimension of a monitor function involving the �rst spatial derivative of u�

The method was then extended onto an unstructured contour	based triangular

grid in ����� This was originally intended to give the method more freedom� both

in a more accurate representation of the zones and in any possible future attempts

in moving or re	shaping of the zones� The latter reason became more important�

especially after the departure of the coarse mesh solution which did� albeit clumsily�

change the structure of the zones� In order to avoid the same poor approximations

found in ����� it became clear that distances between similarly valued nodes would

��



have to be traversed by a single set of triangles� the result being that similarly valued

nodes� i�e� the zones� now became the actual contours of the solution� Finally

it followed that by working on the resultant triangular grid the representation of

the solution would naturally become piecewise linear between the contours� The

modi�ed method was found to be �rst order accurate in space�

Mesh movement was introduced into the triangulated grid in ����� The equidis	

tribution principle mentioned above is used to shift nodes and hence contours to

more advantageous positions within the grid after each solution update� Despite

the equidistribution involving the simplest of monitor functions� the ease of imple	

menting this idea complements the reduction in the size of the system to solve for

the values of the contours involved� Technically the algorithm involves the location

and interpolation over edges connecting adjacent contours� but further savings are

achieved by retaining connectivity between grid points throughout� It is this �nal

state of the method which we shall outline in detail in Section ���� However to

start with we shall now explain a form of the algorithm in one dimension to give the

reader a easier introduction to the method and to more easily highlight its prominent

features�

As an aside� it is worth noting that a contour based algorithm had been devel	

oped previously �see Dritschel ���� for details� with the intended application being

in numerical weather prediction� However it di�ered from the Contour Zoning ap	

proach in that contours were moved around a grid by constructing a velocity �eld

with the intended application being in numerical weather prediction�

��� Regridding in One Dimension

We now outline the contour zoning method in one dimension� Obviously in one

dimension there will be no reduction as such� in the number of equations to solve

since the 
contours
 are now simply individual nodes� However the simple imple	

mentation and exact preservation of the equidistribution idea� which powers the

grid movement� is easily demonstrated in this simple case� As previously stated� in

one dimension this work is strongly reminiscent of work by� for example� Petzold

��



���� mentioned in Chapter �� We shall begin by covering the �nite volume solution

of the underlying PDE and then move on to the use of the �rst derivative monitor

function and the implementation of the grid movement� We shall �nally describe

a novel way of choosing an adaptive step size with reference to the time	scaling

invariance ideas of Budd et al as covered in a later section of the previous chapter�

����� Solution of the PME

We now derive the �nite volume scheme for an underlying PDE of non	linear di�u	

sion form� with di�usion coe�cient of the formD � D�u� and we begin by restricting

ourselves to only one spatial dimension� Hence we have

ut � �D�u�ux�x� �����

Since we are using a �nite volume construction on a mesh over a region �a� b� con	

sisting of N �� nodes� x�� � � � � xN � we �rst de�ne the control volume associated with

node xi� In the standard fashion� this is chosen to be de�ned as the region captured

between the midpoints of the two adjacent cells� as shown in Figure ���� We consider

the integral form of ����� over this region�

Z x
i��

�

x
i� �

�

utdx � �Dux�
x
i��

�
x
i� �

�

� �����

Discretising ����� semi	implicitly� using linearly interpolated expressions to rep	

resent the di�usion coe�cients at the midpoints of cell we have

�xi� �

�
� xi� �

�
�

�
un��i � uni

�t

�
� Dn

i� �

�

�
un��i�� � un��i

xi�� � xi

�
�Dn

i� �

�

�
un��i � un��i��

xi � xi��

�

which� when rearranged� yields the system of equations�

�
Dn

i� �

�

xi � xi��
un��i�� �

�� Dn
i� �

�

xi � xi��
�

Dn
i� �

�

xi�� � xi
� �

��un��i �
Dn

i� �

�

xi�� � xi
un��i�� � �iu

n
i �����

for i � �� � � � � N � to be solved at each time step� where
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Figure ���� Construction of Finite Volume Approximation

�i �
xi� �

�

� xi� �

�

�t
�

xi�� � xi��

��t
�

The system is completed by the appropriate discretisations of boundary condi	

tions� Due to the semi	implicit discretisation of the di�usion coe�cients the system

is linear� Moreover� the system will also be tridiagonal and hence can be solved

quickly with a suitable solver� A maximum principle which exists for this type of

semi	implicit style discretisation guarantees the avoidance of new extrema as the

solution steps forward in time �����

For the solution of the PME� due to the rapid change in the di�usion coe�cient

with time� it is advantageous to use an adaptive time step and we shall the discuss

the choice of the step size in Section ������

����� Moving the Grid in One Dimension

We now illustrate how grid points are moved in one dimension by the contour zon	

ing method� Initially� the gridpoints are still chosen by equally dividing the solution

range� We �rst show that when the solution is monotonically decreasing� this is

�




equivalent to enforcing an equidistribution property exactly with the monitor func	

tion chosen to be

M�u� � ux� �����

Starting with the equidistribution principle� as de�ned in Section ���� and working

on a grid spanning the domain x � �a� b� consisting of N � � nodes xi� i � �� � � � � N �

we have that

Z xi��

xi

uxdx �
�

N

Z b

a
uxdx i � �� � � � � N � �

which simpli�es to

ui � ui�� �
�

N
�u� � uN � i � �� � � � � N � ��

It follows that grid points chosen in this way will satisfy the equidistribution principle

for the chosen monitor� The simplicity of the resulting grid makes this distribution

easy to enforce and stems from the solution being monotonic� If it were not mono	

tonic� then some iterative solution would be needed to avoid multiple grids points

being de�ned for a single solution value�

Initially� given a suitable invertible function describing the initial state u�x� ���

points on the u axis are found by simply calculating the values of ui from

u�xi� �� � ui � u�a� ���
i

N
�u�a� ��� u�b� ��� i � �� � � � � N �����

where u�a� �� � u�x�� �� and u�b� �� � u�xN � �� are the maximum and minimum

values respectively of u�x� �� over the domain� Then� to obtain the initial state� the

grid points are found by inverting the function u�x� ��� i�e�

xi � u���ui� ���

As the solution progresses� we can still use the relation ����� by using inter	

polation on the piecewise linear approximation to u to �nd the positions of the

corresponding grid points� Figure ��� illustrates this procedure using only � grid

points� Given a newly updated solution �un at grid points xn� we can use these new

��



values de�ned on the existing mesh to calculate� from ������ the solution value of

the re	equidistributed grid point �uni � Using linear interpolation from the appropriate

section of the current solution� we �nd the corresponding new grid position �xi�

x

u

x� � a xN � b

un
i

�un
i

xi �xi

Figure ���� Moving nodes using linear interpolation

Figure ��� illustrates the steps above on a larger mesh to show the overall e�ect of

the grid movement� Starting with a freshly equidistributed set of nodes and solution

values in the top graph� the solution of the PDE is updated at the next time step in

the middle �gure� The new equidistributed solution values are computed from them�

via interpolation� and from the updated solution the positions of the new nodes are

found �shown in the bottom section�� Figure ��� also demonstrates where� in the

solution� the monitor function ����� positions nodes� It is obvious from the �gure

that grid points are clustered in regions only where the gradient is high� as expected�

In many existing regridding algorithms the time at which relocation of mesh

points is carried out is prescribed by some error indicator� to save on computational

cost by only regridding when it is needed� However� in keeping with the original

contour zoning approach and since when using this monitor the grid movement

process is simple� we can a�ord to reposition nodes after each update of the solution�
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Figure ���� The three stages of node movement
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We continue now by suggesting a choice for an adaptive time step�

����� Choosing a Time Step

The solution of the one	dimensional porous media problem develops with di�erent

speeds at di�erent stages of its evolution� Due to the non	linearity of the di�usion

co	e�cient the rate at which the solution di�uses at the early stages of the solution

is much quicker than at later times� By using a constant time step size �t in the

above algorithm� the �nite volume solution may not capture this early behaviour

very accurately and hence incur large truncation errors in the long	term solution�

Hence it becomes obvious that we need to choose an adaptive time step in tune with

the porous	media equations natural time scaling� Our choice of step length then�

should be small when di�usion is fast and then the step length can be increased

as activity dies down� For simplicity we choose to measure the rate of di�usion

at the local maximum� which� as our solutions are monotonically decreasing will

conveniently be at x� � a� It is possible to estimate the current rate of di�usion

by using a local explicit solution for u at the maximum� In summary� we choose

our step length so that the maximum value of u will decrease after each update by

roughly the same amount� chosen by the user and denoted as �u� We can write the

non	linear di�usion equation discretised explicitly as

jun��� � un� j

�t
�

�����D�un�
�

�
�un� � un��

�x� � x���

����� �
Substituting �u � jun��� � un� j� an averaged term for the di�usion coe�cient� and

re	arranging we have an expression for the step size� namely�

�t �

������ �u�x�� x���

D�un�
�

��un� � un��

������ � �����

We can use the self	similar theory from the previous chapter to support this

choice of time step in the case of the PME� Equation ����
� gives the invariant�

self	similar solution in the original coordinates� We can rewrite the original solution

u as
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u �
�u

t
�

m��

where �u is invariant� Figure ��� illustrates the behaviour of the solution taken at

an arbitrary point ��x� �u�� It is easy to see that by taking a constant decrease in

u over each time step� the resulting increments in time will be small where decay

is rapid and will become relaxed as the behaviour dies down� For the radially

symmetric problem the transformed solution has a similar form so the adaptive

time step approach is also valid� In practice a maximum and�or minimum time step

may be imposed�

To summarise� given a current solution at time t� the algorithm is implemented

as follows �

� Choose the appropriate step size �t using ������

� Integrate the underlying PDE forward to time t� �t by solving the system of

equations ������ with an appropriate choice of �t�

� Using ����� �nd the values of the re	equidistributed grid points �un�

� Find the new grid points �x� via linear interpolation� then return to the �rst

step and repeat until the time integration of the PDE is complete�

time

u

Figure ���� Decay of u with time at an arbitrary point
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��� Contour Zoning and Moving Grids

We now move onto describe the full Contour Zoning method to be used in higher

dimensions� As explained in Section ���� the method in two dimensions works on a

contour based triangular computational grid� Many of the ideas could be extended

to provide approximate solutions in even higher dimensions� but in this section we

stay with working in two spatial dimensions�

The reduction of the number of equations to be solved in the original basic

contour zoning idea now applies� having one equation to solve for the  height
 of

each contour� Each contour consists of a number of nodes� hence the saving in e�ort

is preserved� We shall continue this section by giving an insight into the grids used

for the computations and their construction�

����� Contour Based Triangular Meshes

All of the two	dimensional calculations presented take place on unstructured trian	

gular computational grids based on discretised contours of the function u� An initial

grid is generated from the contours of the initial conditions of the problem� since the

solution evolves from this state and no extra nodes are added or points taken from

it� We illustrate the features of the grid with the construction of the initial mesh�

First of all� the heights of the initial contours are to be decided� In keeping

with the original contour zoning ideology� this again is done by equally dividing the

solution range� so formally this is similar to ����� in Section ������ Although this no

longer corresponds to a strict equidistribution idea as in one	dimension� in choosing

the contours in this way� the contours� and hence nodes� will also be clustered in

regions of steep gradient�

Once the heights of the contours are chosen� the next step is to form the contours

and then to discretise them with grid points� This is easily done using a MATLAB

contour plotting routine that returns points lying on speci�ed contours� Given a

user speci�ed number of points to lie on each contour and using linear interpolation

along the co	ordinates given by MATLAB� nodes can be equally spaced along each

contour�

��



Finally a triangulation is constructed between each pair of adjacent discretised

contours� The type of triangulation used is thought to be of little signi�cance�

since the solution values of the connected nodes can only take one of two values of

the heights of the contours in question� and hence the spatial derivatives between

the contours are somewhat limited� The method of triangulation used here is by

Delaunay �see ������ although it may be necessary to remove any triangles connecting

nodes belonging to the same contour� These are not required� since spatial gradients

along contours always equal zero�

Figure ��� shows an example of such a grid� Here the grid is generated for

a radially symmetric piecewise continuous initial condition typical of the family

of solutions found in the insect dispersal problem ����� In this relatively simple

example� �� contours are discretised �including the maximum at ��� ���� and each

contour contains �� nodes� The radial cross	section on the left hand side of the

�gure illustrates how the heights of the contours are equally spaced on the solution

range�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

r − radius
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

Figure ���� Example of Contour Based Grid with associated radial cross	section

Of course� there is no strict way to construct these grids� Various parameters can

be altered� for instance equal numbers of nodes do not have to be placed on each

contour� Instead an incremental step length along the contours could be chosen�

and nodes spaced equally along each contour using this step length� This would

��



not alter the solution technique� as the connectivities are kept constant as the grid

develops�

In the next section we derive the two	dimensional contour zoning equations used

to update the values of the heights of the contours� as prescribed by the underlying

PDE�

����� Contour Zoning Solution Technique

The formulation of the Contour Zoning Equations over a triangular mesh is largely

an amalgamation of the ideas presented in the original Contour Zoning literature ����

and the solution techniques of Winslow �

�� As in the case of the one	dimensional

algorithm� and so as to cover all problems attempted later� we consider the non	

linear di�usion equation� In two dimensions we have

�u

�t
� r��Dru� ���
�

where D � D�u� is the non	linear di�usion coe�cient�

Now consider an interior node in the triangular mesh� We de�ne a secondary

mesh of irregular polygons whose vertices are alternately the centres and the mid	

points of the sides of the adjacent triangles to which those of the node in question

belongs� An example of this mesh structure is shown in Figure ���� the secondary

mesh element for the node i being denoted by the broken lines� For computational

ease it is useful to notice that when the de�nition of the secondary mesh is complete�

each of the primary mesh triangles will be divided into three quadrilaterals of equal

sizes�

Secondary elements of nodes that lie on the same contour are collected together

to form the control volume of the contour� It is this area� Viz � which is integrated

around when considering the integral form of ���
� for the izth contour� namely

Viz
�u

�t
�
Z Z

Viz

r��Dru�dxdy�

By Gauss
 theorem the right hand side of this equation is equal to the integral

around the boundary of Viz of the normal �ux of the di�using quantity u� Substitut	

��



i

Figure ���� Secondary mesh element associated with an interior node

ing a �nite di�erence expression into the time	derivative on the left	hand side and

denoting Biz as the boundary of Viz� we can write the semi	implicit equation

Viz
un��iz � uniz

�t
�
Z
Biz

Dnrun��iz ��ndBiz �����

where run��iz is the linear approximation to the gradient function of u over its control

volume� and �n is the outward normal vector out of the area Viz� Again we use an

explicit expression for the di�usion co	e�cient D�

We now consider a section of the boundary to Viz so as to derive an expression

for these normal components� Consider the two adjacent triangles� �ikj and �ijm

each containing the nodes i and j� which are connected by an edge de�ned by vector

j� To complete these triangles� we also de�ne their remaining nodes as k and m� and

the edges� ik and ij� connecting these to node i are de�ned by the vectors k and m

respectively� Each of these nodes also belongs a contour which has its own respective

current value uniz� The section of the boundary we consider can be split into two

edges� The �rst of these edges� connecting the centre of �ikj to the midpoint of

edge ij� is de�ned by the vector bikj � while the second joins the midpoint of edge ij

to the centre of �ijm and is de�ned by the vector bijm� These nodes� vectors and

the resulting triangles are shown in Figure ��
�
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Figure ��
� Nodes i�j and associated vectors�

We can now write

Dnrun��iz ��n � Dn
ikjru

n��
ikj ��nikj � Dn

ijmru
n��
ijm ��nijm �����

where �nikj is the outward normal of bikj and Dn
ikj is the value of Dn evaluated by

linear interpolation at the centre of �ikj� and similarly for subscript ijm�

First consider the component Dn
ijmru

n��
ikj ��nikj � From �

� u is de�ned linearly

over each triangle such that

un��kz � un��iz � k�run��ikj

and

un��jz � un��iz � j�run��ikj

and hence we may write

run��ikj �
�un��kz � un��iz �ej � �un��jz � un��iz �ek

k�ej ������

�




where j is vector j rotated clockwise by �

�
�

We now have

Dn
ikjru

n��
ikj ��nikj � Cku

n��
kz � Cj�u

n��
jz � �Cj� �Ck�u

n��
iz

where

Ck � Dn
ikj

ej��bikj
k�ej

and

Cj� � Dn
ikj

ek��bikj
k�ej

It can be shown from ������ that if nodes k and i belong to the same contour then

un��kz � un��iz and hence Ck � ��

Following the same ideas for run��ijm ��nijm� we have

Dn
ijmru

n��
ijm ��nijm � Cj�u

n��
jz �Cmu

n��
mz � �Cm � Cj�Cm�un��iz

where

Cm � Dn
ijm

ej��bijm
j�fm

and

Cj� � Dn
ijm

fm��bijm
j�fm �

Again if nodes m and i lie on the same contour then Cm � �� We now have a new

expression for ������

Dnrun��iz ��n � Cku
n��
kz � Cju

n��
jz � Cmu

n��
mz � �Cm � Cj � Ck�u

n��
iz

where Cj � Cj� � Cj�� Again if nodes i and j belong to the same contour then

Cj � ��

This gives an expression representing the contribution to the �ow of material out

of the izth contours control volume from node i to nodes k and m in their respective

��



contours kz and mz control volumes� The sum of these contributions from all

nodes belonging to contour iz will be equal to the integral on the right	hand side of

equation ������ So �nally we have

Viz
un��iz � uniz

�t
�

X
�i�iz

X
j

Cku
n��
kz �Cju

n��
jz �Cmu

n��
mz � �Cm �Cj �Ck�u

n��
iz � ������

The limits on the �rst summation denote all the nodes i belonging to contour

iz� while the second summation denotes all the neighbouring nodes j of i� It is

noted that this vector style formulation is notationally complicated� being taken

directly from Winslow �

�� Later on in Chapter 
 we shall work with a more

concise arrangement� When re	arranged� ������ leads to an N � N system� where

N is the number of contours� stationary points and extra nodes on the grid� to

be solved for the approximate value of u on the contour or node� In general this

will lead to a one	dimensional tridiagonal system� as the nodes n�k and m can only

belong to one of three contours� these being the izth contour itself or one of its two

adjacent contours� Due to the relatively small dimensions of the resulting system

and its structure� the equations can be solved easily and quickly� Again� since we

are using the semi	implicit form of the di�usion co	e�cient� non	linear problems can

be tackled with a simple linear solver�

In line with the procedure presented above in Section ���� we choose an adaptive

time step in exactly the same way� After choosing a time stepping parameter �u�

an explicit approximation value of the solution at the local maximum umax using

the equation ������ is used� This results in the following expression for the adaptive

time step length�

�t �
�uVmaxz

j!maxj

where !max �
P
�i�iz

P
j Cku

n
kz �Cju

n
jz�Cmu

n
mz ��Cm�Cj�Ck�unmaxz� Again� this

choice of �t can be supported by the invariance theory as in one dimension�

Having presented the equations for updating the contour heights� we now describe

a method of moving the discretised contours�

��



����� Moving Contours

In Section ������ nodes were moved such that an equidistribution property was pre	

served at each time� Grid points were re	equidistributed over the updated solution

via linear interpolation�

In two dimensions� the algorithm is unchanged� although a more complex inter	

polation process is now needed to �nd a set of nodes to represent a contour� rather

than to locate a single point� Figure ��� shows two contours i and j with newly com	

puted values� or 
heights
 uniz and unjz� Now let us suppose that �due to monotonicity�

a newly equidistributed contour level �un��m lies between these two heights�

Linear interpolation takes place along all edges of the grid connecting nodes

belonging to contours i and j� to �nd the points along these edges which have the

prescribed solution value �un��m � We now have a discretisation of the newly placed

contour denoted by the broken line� However it is noticed that the new contour is

de�ned on nearly twice as many edges as desired points� So that the new contour has

the correct number of nodes such that connectivities throughout the mesh remain

constant� we have to interpolate again� this time along un��m � which is done in such

a way that nodes are again equally spaced over the contour�

We have now described the moving grid method in two	dimensions� The algo	

rithm is implemented in exactly the same way as in one dimension �see Section

������� The following chapter shows results for two problems of non	linear di�usion

type in both one and two dimensions and analyses and assesses the approximate

solutions�
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Figure ���� De�ning a new contour in Two	Dimensions
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Chapter �

Numerical Results I

We now present numerical solutions using the methods described in Chapter �� We

test the algorithm using two problems of non�linear di�usion form as highlighted in

the derivations� The �rst application is closely linked to the PME� Hereafter referred

to as the semi�conductor problem� a modi�ed non�linear di�usion coe�cient is used

to simulate the di�usion of dopant within a crystalline silicon semi�conductor device

upon being heated� The �rst problem is the PME mentioned in Chapter 	��� In the

�rst section we use the regridded contour zoning solution to generate approximate

solutions to the two problems in one dimension� Technical details regarding the

implementation of the methods are also included along with full statement of the

two problems� Section 
�	 uses the full contour zoning method to solve the higher�

dimensional versions of the two problems�

��� One Dimension

The results presented in the two following sections were generated in MATLAB

using a Gaussian Elimination routine to solve the linear system of equations arising

from ������ We �rst consider the semi�conductor problem�

����� Semi�Conductor Problem in One�Dimension

As mentioned above� this problem arises in semi�conductor process modelling� where

a dopant is introduced and di�used within a silicon device� The distribution of the


	



dopant is needed to produce certain electrical properties of the semiconductor itself�

The dopant is di�used through the silicon when the device is heated� the di�usion

process itself is non�linear� and the evolution is modelled by the equation

ut � ��u� ��ux�x�

The doping material is introduced into the silicon by ion implantation through the

silicon surface and results in a high concentration of dopant in a shallow region� The

initial conditions take the form of a Gaussian function centred about the origin� This

initial doping is done en masse� with many such amounts of material equally spaced

over a large area of silicon �see Figure 
���� However� for ease of illustration we

choose to work with one such section� taking one half of the initial distribution

centred at x � �� over an arbitrary domain � � x � �� The Gaussian function takes

the form

u�x� �� � e��x
�

�

Neumann boundary conditions are imposed at both boundaries� representing the

conservation of mass and the symmetry of the initial conditions� Hence we have that

ux��� t� � ux��� t� � ��

x

y

Figure 
��� Initial distribution of dopant en masse over semiconductor

The distribution of dopant over time has previously been solved numerically�

both by following a suitable variable transformation by Please and Sweby ���� and
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by using moving �nite elements by Hobbs �
	�� King � Please �
�� also considered

the problem using an asymptotic approach�

Preliminary results are shown in Figure 
�	� The approximate solutions are

generated using 	
 nodes� each solution value being represented by the cross hairs

in the �gure� Intermediate results are output at the re�equidistributed stage� and

the equally spaced values over the solution range� characteristic of the monitor used�

are easy to spot� The parameter � is set at a value of ���� in line with the work

of Hobbs �
	� and the initial conditions are generated with � � 
�� Finally the

time�stepping parameters �u and �tmax are taken to be ����
 and ���� respectively�

The dopant di�uses as expected� Initially the di�usion is fast� the �nal two

graphs demonstrating how this motion slows down considerably as time progresses�

Figure 
�� supports this idea of change in motion and the e�ectiveness of the time�

step in adapting to the rate of change in activity� The left hand side of the �gure

shows how the time step behaves with time� with the numerical time integration

of the equation initially being very slow in order to cope with the rapid changes in

u at the start of the computation� Eventually the computation picks up pace as

the activity dies down and �nally the linear features of the graph indicate when the

maximum time step has started to take e�ect� The right hand side of the �gure

shows the trajectories of the nodes� Again the nodes move rapidly to adjust to the

initial pace of the di�usion� With time the nodes move with less vigour and even

move backwards as the solution settles� In the later stages of the computation� the

motion of the dopant settles down and the nodes become more or less evenly spaced

over the domain�

Despite the success of the adaptive time step used� a major �aw can be noticed

in the initial representation of the solution� Instead of the expected tail of such a

Gaussian function� the positioning of the nodes instead gives the Gaussian a shallow

ramp� This implies that the solution is working from a perturbed initial state� In

turn� this implies that the total mass of the dopant is incorrect� More importantly�

this will a�ect the di�usion of the dopant in regions of high concentration� Of

particular interest in this problem is the amount of dopant in areas away form

the main body of material� The di�usion coe�cients at the tail region will be
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Figure 
�	� Approximate solution to Semi Conductor Problem using 	
 nodes� with

� � �����







greater than required and hence the amount of material in the region near to x � �

approximated in the long term solution will be greatly over estimated� However

the following section outlines a modi�cation to the method to help us have a more

accurate representation of the initial distribution of the dopant�
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��� �Left� Development of adaptive time step� �Right� Trajectories of nodes

with time�

����� Grid Re�nement and Regridding

The aim of this section is to adapt the way in which we choose the heights of the

contours in the relocation of grid points� in order to give a greater resolution in the

tail region of the solution�

The ease of choosing the heights of contours gives us a reasonable amount of

freedom in redistributing grid points over the domain� There are any number of

ways of choosing these heights� We could� for instance� simply divide up the solution

range equally in the last cell to accommodate an extra M nodes within the last cell�

However we would like to distribute the grid points smoothly over the solution range�

Assuming an initial number of nodes N � � and a speci�ed number of �extra�

nodes� M � to be added to areas where the representation of the solution is poor�

By calculating an increment over the solution range� �� we distribute the extra

nodes in the tail region such that the �rst additional node away from the right
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hand boundary has the value umin � �� the second has value umin � 	� and so on�

until all the re�nement nodes have been assigned values� The initial nodes are then

separated by �M � ���� To further enhance the representation of the Gaussian�

an equal number of nodes are added in the �rst cell at the peak of the function�

This should further enhance the calculation of the adaptive step size since the grid

resolution will be guaranteed to be �ner near x � �� This ad hoc re�nement process�

although no longer satisfying any global equidistribution idea� is easy to implement

and the only change in the solution algorithm is the calculation of the new values

of the grid points to be redistributed�

We now put the procedure into practice using the same values for � and � as in

the previous computation� We choose the values N � �	 and M � � so that the

total number of nodes is the same as that used in Section �
������ The corresponding

results are shown in Figure 
�
�

It is easy to see that the ramp has been removed from the initial conditions�

Although the resulting solutions at �rst glance do not seem to di�er greatly from

those presented earlier� it is clear that a more accurate approximation to the total

mass of dopant is present� In the early development of the solution a much smoother

approximation is obtained� This has a subtle knock�on e�ect for the long�term

solution in that a lower percentage of the mass has di�used to the further reaches of

the domain� The �nal state at t � � shows the di�erence in total material present

in the solution�

We have not discussed the e�ect of the interpolation used in redistributing grid

points� The e�ect is clearly illustrated when looking at the total amount of dopant

present in the computation via linear quadrature� The scheme used in updating the

solution� as presented in the previous chapter� is conservative with the application of

the correct boundary conditions� However this property is lost when the solution is

interpolated between time steps� Figure 
�
 shows the total mass as approximated

via a composite trapezium rule with time� For reference� a �ne�scale numerical

approximation to the total mass involving the error function is plotted along with

the approximation to the integral with time for various values of N and M � The

approximations of total mass are plotted �rst when no re�nement is used with 	
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Figure 
�
� Approximate solution to Semi Conductor Problem with re�nement using

	
 nodes with M�� and � � �����
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�
� Linear approximations to mass with time� using no re�nement� M��

and M���� Exact Mass also shown

nodes� then with values of M � � and ��� keeping the total number of nodes as

	
� As seen when re�nement is used� the initial approximate quantity of dopant

is more accurate than with no re�nement� However in all cases the mass grows as

interpolation is used to transfer the solution between stages of regridding� Further

evidence that interpolation error is the cause for this increase is the fact that the

mass grows rapidly in early stage of the evolution of the solution� This is signi�cant

since in these stages the time step is smaller� so more time steps are taken and hence

more interpolation error is induced�

����� Porous Medium Equation in One�Dimension

We begin by re�iterating the PME in one�dimension�

ut � �umux�x�

where m � ��

We have already noted the existence of an analytic solution �	���� arising from

an insect dispersal model found in Murray ��
�� Since the initial conditions used in

the model �u � Q at x � �� u � � elsewhere� are not easily represented� we choose
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an arbitrary time �tstart � �� to begin our computations� the corresponding state

of u being given by the Murray solution �	�����

Since the equation conserves both mass and centre of mass� the symmetry of

the solution about x � � allows us to concentrate on only the positive half of the

problem�

We now must deal with the moving boundary involved in the solution of the

PME� We have a con�ict of interests since the contour zoning method is essentially

a static moving mesh method and hence does not strictly involve speeds of mesh

points� In order for the regridding procedure to allow the moving front to progress

we must have a node �xed outside the region of compact support and choose suitable

conditions such that minimal �ow will be allowed out of the moving region and in

some sense re�ect the properties of the solution�

Since conservation of mass powers the movement of the front� it is essential

our scheme preserves this property� Fixing a node xN � �� the natural choice

is to impose Neumann conditions at each boundary� This will also preserve the

symmetry of the solution about x � � �i�e� conservation of the centre of mass�� It

would be advantageous to impose a �xed value of u � � at xN � However the current

system of equations used for updating the solution will not conserve mass with this

additional condition� To try to prevent as little material as possible seeping out of

the moving region of compact support� we will need to use the re�nement algorithm

implemented in the semi�conductor problem� So our boundary conditions are

ux��� t� � ux��� t� � �

Moreover� this implies that the numerical solution will become invalid as the penul�

timate node moves towards x � �� So we shall only integrate as far as the time

suggested by the Murray solution as being when the front reaches the far boundary�

We consider the three integer values ofm � �� 	� �� As explained in Section 	��� as

the value of m increases so too does the steepness of the moving front� Furthermore�

variations inm a�ect the speed of the front� Asm is increased the variation in speed

initially is increased� i�e� the deceleration of the moving boundary is increased with

m� Figures 
�� and 
�� show the approximate and analytical solutions for the various

��



values of m for the times at which our solution is valid�

In all three cases� the regridding algorithm performs considerably well at the left

hand boundary� However it is at the moving boundary where di�erences between the

numerical and Murray solution appear� Since we cannot impose the Neumann con�

dition at the foot of the travelling front� a certain amount of di�usion has occurred

outside of the intended region of compact support� Initially the grid re�nement

does well to contain the di�usion� This works in two ways� Firstly� since the values

of u at these re�nement points are generally small and the di�usion coe�cient is

a power of u� then the rate of di�usion at these points is minimal� Secondly� for

the larger values of m� these nodes provide a more accurate resolution to the steep

developing front� However at later times the di�usion at these points builds up and

the analytical and approximate solutions become more and more distant from one

another�

The existence of theMurray solution gives use a useful tool with which to measure

the accuracy of the method� although many error measures may give confusing

results in this case due to the existence of the moving boundary in the problem� For

this reason we use a simple average error measure� i�e� sum of errors at all points

in the mesh divided by the number of nodes� Figure 
�� plots the log of this error

measure against the number of points used to check for an order of accuracy� In

order to control all parameters� for this experiment we dispensed with the adaptive

time step and used a constant one to capture the e�ect of additional points on the

solution� As with previous results in Blake ��� the graph suggests the regridding

procedure has �rst order accuracy�

��� Contour Zoning in Two�Dimensions

We now implement the full contour zoning solution algorithm in two dimensions� In

the previous section it was shown that using the grid re�nement procedure would

be bene�cial to both the semi�conductor and the porous medium problems� Hence

it is intuitive to use the same ideas in two dimensions� The only change to the

procedure outlined in Chapter � is the way in which the heights of the contours on

��
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the newly recon�gured grid are chosen� For continuity we choose these heights in

the same way as described and used in Section 
���	� The initial computational grids

were constructed using MATLAB� with the contour zoning solution carried out in a

FORTRAN�� code� as with the one�dimensional work� The equations for the values

of u on each contour were solved using a Gaussian elimination style tri�diagonal

solver�

����� Semi�Conductor Problem in Two�Dimensions

We begin by considering the two�dimensional analogue of the semi�conductor prob�

lem� It is assumed now that the Gaussian conditions for the initial distribution of

the dopant are non�radially symmetric� We take an arbitrary Gaussian hump such

that

u�x� y� �� � e���x
�����y���

We now need a �xed boundary for our domain� In two dimensions the solution

has origin ��� �� and has re�ective symmetry in both axes� For ease in constructing

the initial grid for these conditions� we choose our domain to be bounded by the

positive x and y axes and a particular contour corresponding to an arbitrarily chosen

�




�minimum� height� For our computations this height is chosen as �� �� and Neumann

conditions are imposed at all of the boundaries to conserve mass and maintain the

symmetric properties of the model�

Figure 
��� shows plots of the initial� an intermediate� and the �nal �t � ���� grid

and solution for the semi�conductor problem� Using similar parameters as in the

one�dimensional calculations� the grid was constructed with a total of 	� contours

including 
 re�nement contours at the upper and lower sections of the solution range�

Furthermore �
 nodes were used to discretise each contour giving a grid comprising

of ��� nodes and 

� triangles� With regard to the remaining solution parameters�

�u and � were set at ����
 and ���� respectively�

The solution di�uses in much the same way as in the one�dimensional case� with

an initial rapid burst and then a slower rate over the chosen domain� We expect the

same e�ects of interpolation error as encountered in one�dimension� indeed we could

expect more error to be introduced in this way since interpolation is now done over

two� rather than one� dimension� However� Figure 
��� con�rms that the use of the

extra contours improves the initial approximate mass conserved in the problem�
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Notice however that the contours seem to propagate outwards uniformly� Since

our initial conditions are non�radially symmetric� then gradients in directions normal

��



to the contours will not be equal over the contour� Thus we would expect faster

di�usion in certain parts of the contours than others� This would then mean that in

some regions contours would contract together and in other areas move away from

each other� The contour�zoning solution method has not been able to resolve these

features� Close inspection of the algorithm reveals that the actual contour acts as a

central point for the sum of associated control volumes of the nodes on the contour�

Hence in a way the process of collecting all �uxes out of and into this conglomerate

volume may actually average the e�ect of the individual �uxes� in return for having

only one equation to solve for the height of the contour� Hence we cannot expect the

contour zoning procedure in conjunction with this regridding procedure to provide

enough freedom for the possibility of contours moving with changing geometries�

We �nally mention the cost of implementing the method� The computations

presented in Figure 
��� were undertaken on a SUN ULTRA
 workstation� The

adaptive time stepping procedure used a total of 	

 time steps for the time inte�

gration� each step taking an average of �����

� seconds to complete�

��
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��� Porous Medium Equation in Two�Dimensions

We now implement the contour zoning solution in two dimensions� using the radial

symmetric version of the Murray solution �	�
�� in the same way as in the one�

dimensional case� We choose a maximum radius of r � � at which to impose the

Neumann conditions and choose an arbitrary value to start our computations� To

demonstrate how the contours are distributed along the steep front we choose m � ��

It is worth noting that the radial form of the solution is used for comparison only� our

actual computations being derived from the full higher dimensional PME� without

using the geometry of the radial case�

Figure 
��	 shows the grid and solution initially and at a �nal time of t �

��
� Notice how the contours have aligned themselves well on the moving front�

Moreover the cross sections of the solutions shown in Figure 
��� compare well to

the analytic solutions and illustrate a reasonable match allowing for the di�usion

occurring beyond the moving front� as expected from the one�dimensional results�

Figure 
��
 shows the error measure with time at the origin� As found in Section


����� the method seems to give a good level of accuracy at the maximum� With

most unsteady problems� you would expect a numerical scheme to accumulate er�

rors with time� but during our computations the error remains below ���� despite

the extra interpolation error introduced� The method may also su�er since the ap�

proximation to the expanding front region becomes less accurate in terms of spatial

resolution along the contours� since we keep the number of points on the contour

equal throughout time in order to keep the connectivity of the mesh constant�

��� Remarks

We have presented numerical results generated by the methods outlined in Chapter

�� The Contour Zoning approach in two dimensions becomes a strict regridding

method in one dimension with nodes being relocated around the computational

mesh via the use of the monitor M�u� � ux�

In one dimension the method performs reasonably well� despite several short�

comings� The semi�conductor problems highlights the problem of error induced via

��
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the interpolation step from the old to new states of the mesh� This has implica�

tions on the total mass contained within the solution� which should� by a property

of the problem� be conserved� Hence the problem is in a sense disturbed at each

time step to a marginally di�erent distribution� Although we have slightly improved

this problem by the use of grid re�nement� it would be bene�cial to use a method

which conserves mass� An obvious choice would be to use a mass�conserving in�

terpolation method� but these usually involve strict conditions on local maximum

and minimum� which do not agree with the problem in hand� Another idea would

be to only undertake the regridding step at certain intervals in the time integra�

tion� minimising the increase in mass caused by the interpolation� This approach

has been highlighted earlier in the work of Petzold ��
� and results have suggested

why this approach would be more bene�cial� When considering the solution of the

PME� we also had problems dealing with the moving boundary� In particular the

method did not permit strict implementation of the boundary conditions� which led

to poor approximations as the solution developed� These problems extended with

the method into two dimensions too�

Another problem in two dimensions� highlighted by the semi�conductor case�

is the apparent inability of the contour zoning method to be able to change the

geometric shape of the contours with time� However� the method is suited to simple

propagation of the contours and hence well suited to the radial case of the PME�

We conclude this section with some remarks regarding how to improve the solu�

tion of the two problems� In the semi�conductor problem� the �rst di�culty lies in

correctly approximating and conserving the mass in the solution� The integration of

u in time is done conservatively in both one and two dimensions� but perturbations

to the mass are induced via the interpolation process used when relocating nodes

and points� Secondly� in two dimensions the need for the contours to be able to

change shape is noted� Despite the savings gained by allocated a single value over

the contour� the way in which the contours are moved doesn�t easily permit geo�

metric changes� For a more accurate moving grid solution� nodes may have to be

allowed to move more independently�

In the case of the PME� mass conservation is also a concern since this is the

�	



primary source of the movement of the boundary� For a more accurate solution

and to preserve mass inside the region of compact support� we need a moving mesh

method that incorporates a moving or expanding domain� With this in mind� the

next chapter introduces a more dynamic moving mesh approach� which not only

accommodates the moving boundary� but also ensures mass conservation by con�

struction�

��



Chapter �

A Moving Mesh Method in

One�Dimension

The results presented in the previous chapter highlighted some shortcomings of

the contour zoning or regridding approach� The main disadvantages of the algo�

rithm were the inability to conserve mass and to deal appropriately with a moving

boundary problem� The former is of most importance especially since both our test

problems conserve mass� while a satisfactory approach to the latter would allow us

to start with a more solid foundation with which to compute e�ective numerical

solutions to the PME�

In this chapter we present a moving meshmethod to take care of these di�culties�

The method stems from observations on equidistribution and geometric conservation

laws from various papers from the literature covered in Chapter �� In the following

sections we shall follow the development of the method from its initial state equidis�

tributing integrals of mass through to the introduction of more complex monitor

functions� All stages of the development of the algorithm are supplemented and

illustrated with numerical results� The method is presented �rst in one�dimension

and with explicit reference to the PME� Later� in Chapter 	� we use our �ndings and

return to compute solutions to the semiconductor problem and a problem involving

blow�up using the new moving mesh routine� We begin by deriving a moving mesh

method� driven by the conservation and equidistribution of mass�


�



��� Mass Conservation and Equidistribution

As we have seen from the literature covered in Chapter �� the choice of monitor

function can be crucial in the solution of a speci�c problem� For instance� Qiu

� Sloan 
	
� developed a specialist monitor ����	� for the solution of a reaction

di�usion type problem where more traditional monitors failed� Of particular interest

when considering the PME is the work of Budd et al �
���� 
�	�� 
���� whose choice

of monitor was heavily in�uenced by the theoretical invariance properties of the

underlying PDE� In particular the mass monitor� M�u� � u� was singled out as

a sensible choice for the PME since it too was invariant under scaling and would

conserve mass�

Seizing upon this� it is noted that by choosing this monitor we can derive a

moving mesh method without the need for the use of a computational or reference

grid� The resulting mesh x and solution u can then be coupled in such a way

that only the mesh needs to be integrated forward in time� with the solution being

recovered from the current grid positions together with an integral quantity relating

to the chosen monitor�

����� A Moving Mesh Equation

We begin with a simple equidistribution principle� working on a grid comprising of

N � � nodes x�� � � � � xN � and� using notation in line with the existing literature� we

have that

Z xi���t�

xi�t�
udx � ��t� �

�

N

Z xN �t�

x��t�
udx i � �� � � � � N � �� �����

As previously noted� many moving mesh methods are derived from introducing

node speeds into existing grid adaption statements� When considering the PME

with its mass conservation property� direct time di�erentiation of the above equidis�

tribution rule ����� leaves us with the simple expression�

Z xi���t�

xi�t�
utdx� u�xi��� t� �xi�� � u�xi� t� �xi � �t� �����
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Substituting in the PME ������ and simplifying the integral term on the left�hand

side leaves us with the moving mesh equation�


umux�
xi���t�
xi�t�

� u�xi��� t� �xi�� � u�xi� t� �xi � �� �����

It is crucial to note� with this speci�c choice of monitor M�u� � u� that �

becomes independent of time since the PME is mass conserving� Hence� the zero

right hand side in ������ Moreover� due to the symmetry of our porous medium

solution� we have that �x� � x� � �� so the above equation� when rearranged� leads

to the sequence of ordinary di�erential systems �ODEs� for the grid co�ordinates�

�x� � ��

�xi �
�

ui

�
ui�� �xi�� � 
umux�

xi�t�
xi���t�

�
i � �� � � � � N� �����

To discretise the system we use an upwinding approximation for the space deriva�

tive terms� i�e�

umuxjxi �
�
ui � ui��

�

�m �ui � ui���

�xi � xi���
� um

i� �

�

�
ui � ui��

xi � xi��

�
� �����

We choose this style of discretisation� since upon expansion the PME can be

written in a hyperbolic form for which an upwind approximation is deemed suitable�

namely

ut � mum��u�x � umux�

Obviously our solution is not complete� since we have not yet stated how to

evaluate the values of u at the current grid positions� The next section shows how

the solution can be obtained from the current state of the mesh and a discrete

integral of u relating to the original equidistribution idea�

����� The Porous Medium Solution

The moving mesh equation presented above ���� with ���� has already coupled to�

gether the prescription for the motion of the grid and the dynamics of the PME�

Due to ����� the resulting system of ordinary di�erential equations should move the


	



grid in such a way that� as the material is di�used� computational cells hold an equal

quantity of mass� Restating the equidistribution principle above� our grid should

then� at all times� satisfy

Z xi���t�

xi�t�
udx �

�

N

Z xN�t�

x��t�
udx � � i � �� � � � � N � ��

Using a trapezium rule approximation for the equidistributed mass ��t� we have

that a piecewise linear approximation will satisfy

�

�
�ui�� � ui��xi�� � xi� � �� ���	�

Since u � � at the foot of the moving boundary we can rearrange equation ���	�

to give us a sequence of algebraic equations yielding the approximate solution u in

terms of the current grid co�ordinates and the constant mass ��

uN � ��

ui �
��

�xi�� � xi�
� ui�� i � N � �� � � � � �� ���
�

Alternatively these algebraic relations can be written explicitly for u in summa�

tion form as

uN � ��

ui � �
NX

k�i��

�
����k�i��

xk � xk��
i � N � �� � � � � ��

Some compensation has to be made between the exact conserved equidistributed

mass as used when deriving the system ����� and the discrete conserved mass � used

above� However if we start with a grid that has equidistributed discrete mass such

that ���	� hold over all cells� then appropriate discretisations of the ODE system

will move the grid in such a way that this discrete approximation to the mass will be

equidistributed and conserved� This is easily achieved by using a linearised form of

the monitor function when generating the initial grid to complement the trapezium







rule approximation used in ���	�� We now proceed to deal with the moving boundary

involved in the PME� in particular correctly approximating the speed of the moving

front�

����� Speed of the Moving Boundary

To derive an approximation to the speed of the moving boundary� we consider con�

servation of mass over the entire region 
�� xN �� From the properties of the PME we

have that

�

�t

Z xN �t�

�
udx � �

where xN���t� is the position of the front at time t� Di�erentiating� we have that

Z xN�t�

�
utdx � u�xN�t�� �xN � ��

since the velocity of the node at x � � is zero �this is the centre of mass� which

remains constant with time�� Now substituting the PME into the integral on the

left�hand side we have that

Z xN �t�

�
�umux�xdx� u�xN�t�� �xN � �

giving

umuxjx�xN � u�xN�t�� �xN � �

since ux is zero at x � � by symmetry� Rearrangement gives

�xN � ��um��ux�jx�xN � �����

This formula can also be derived from the system of ODE�s presented above in

������ Writing ����� as

ui �xi � ui�� �xi�� � 
umux�
xi���t�
xi�t�

and adding the equations for i � � to N yields


�



�xN �
�

uN

�
u� �x� � 
umux�

xN�t�
x��t�

�
�

which� after substituting in conditions regarding the stationary position and zero

�ux at x�� gives equation ������ The velocity of the moving boundary is a result of

total mass being preserved� this being a summation of the individual moving mesh

equations� It follows then that our moving mesh system can be written as

�x� � ��

�xi � ��um��ux�jx�xi i � �� � � � � N� �����

Finally� note that although u � � at x � xN��� the slope ux is unbounded at this

point� yielding a �nite� non�zero front speed� Hence for the �nal term in the system

������ we have the discretisation

�xN � um��
N� �

�

uN��

xN � xN��
� ������

����� Numerical Results II

The following section illustrates the capabilities of the moving mesh method when

tackling the PME�

The system of ODE�s ����� is solved using the NAG routine D��EJF 
�	�� which

uses a variable order� variable step size� backwards di�erentiation formula �BDF� to

integrate the system forward in time� The routine simply requires a subroutine to

be written in FORTRAN to provide the speeds of the nodes at any given time� the

procedure for which is as follows� Given the value of the conserved� equidistributed

mass ��t� and the current gird co�ordinates x

� Compute the current porous medium solution u using equation ���
��

� Calculate the speed of the nodes using equation ������

The routine provides its own internal adaptive time step and performs the inte�

gration to a user speci�ed error tolerance� Our initial grid is computed using the


�
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Figure ���� Error convergence and Node trajectories for m � �

equidistribution algorithm as outlined by Baines 
��� stated in Section ���� equation

���	� with the aforementioned discrete version of the mass monitor given as

Mi� �

�
�

u�xi� t� � u�xi��� t�

�

where the initial state is speci�ed using the Murray solution ������� We compare

our numerical solution against the analytical solution in a similar way as in Chapter

�� Using �� nodes and setting tstart � ����� we compute the solution shown in

Figure ��� for the gentle case when m � �� The approximate solution values are

denoted by the crossed curve whilst the Murray solution is represented by the solid

line� By observation� one can see that the moving mesh method performs well� Most

importantly the undesirable features from the regridding algorithm used previously

have been taken care of� The moving boundary allows direct implementation of the

Neumann conditions� and by construction the moving mesh points conserve mass�

On the left hand side of Figure ��� we can see the convergence of the solution at

x � � at t � � as N is increased� This measure of the error is thought to be of most

signi�cance� Since the solution u is recovered directly from the approximate value

of the moving boundary and the algorithm moves backward towards this point� it

follows that this point should carry the greatest truncation error� The graph is

plotted as the logarithms of N and the error� and from the gradient of the curve we

can see that the algorithm has second order accuracy� The right hand side of the

�gure shows the trajectories of the nodes�

Due to the simple power �m � �� of the di�usion coe�cient� the solution does not

��



form a steep front at the moving boundary� Hence nodes do not need to be placed

directly near the moving boundary to improve accuracy in this region� Figure ���

shows the results when the power of the di�usion coe�cient�m� is increased to �� In

this case the resolution of the grid near the boundary is too coarse� obviously having

ill e�ects on the approximation of the wave speed and hence the resulting solution�

Simply increasing the nodes will not deal e�ectively with the problem since due to

the nature of the monitor function� nodes will be attracted to areas of high u and

not to regions of great variation of u� The next section illustrates how this problem

can be overcome with a slight adjustment to the moving mesh method�

Before we continue� we can show how the mesh produced for m � � reproduces

the scaling invariance results covered in Section ���� Chapter �� Budd suggests that

by using the mass monitor the mesh will adhere to a scaling invariance property�

Hence transforming the mesh co�ordinates and porous medium solution should pro�

duce an invariant mesh and solution with respect to time� Figure ��� shows the

scaled mesh trajectories and the evolution of the scaled solution u� These �gures

are produced by transforming the numerical results displayed in Figure ��� to the

invariance solution variables using equation ����
� As can be seen from the graphs

the computed mesh and discrete solution also exhibits this scaling invariance as

expected�

��� Mass Conservation and Grid Re�nement

The numerical solutions presented in Figure ��� illustrate that the method in its

current state will not place nodes to accurately resolve the steep front formed at the

moving boundary� However looking at the derivation of the method from a slightly

di�erent perspective gives us a tool to place moving nodes in this region� Equation

����� does not have to arise from an equidistribution principle� In fact we could

choose any initial distribution of mass� i�e�

Z xi���t�

xi�t�
udx � �i� �

�
i � �� � � � � N � �

where the masses �i� �

�
could be any strategically chosen mass� The system of ODE�s

��
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remains exactly the same� the only di�erence in the algorithm being a subtle change

in the recovery of the u solution from the current mesh� We now have to store each

mass �i� �

�

and use the corresponding relations

uN � �

ui �
��i� �

�

�xi�� � xi�
� ui�� i � N � �� � � � � �� ������

which in turn can be written as

uN � �

ui � �
NX

k�i��

�i� �

�

����k�i��

xk � xk��
i � N � �� � � � � ��

In order to cluster nodes in the desired area� we simply choose to place smaller

quantities of mass in these regions� In this case� we need to improve grid resolution

near the moving boundary� Numerous techniques exist for choosing how to re�ne a

stationary grid in this way �see Knupp � Steinberg 
����� However� for simplicity we

choose to utilise parts of the FORTRAN code existing in the original procedure� We
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re�ne the grid in the last computational cell� simply subdividing the grid by halving

the mass contained in the cell repeatedly until the mass in the newly created �nal cell

is below a speci�c tolerance gridtol� This is done by using the equidistribution ideas

used in the previous section� We now present results using the re�ned quantities of

mass�

����� Numerical Results III

We present sets of results for larger values of m �m � � and m � 	�� Both demon�

strate that the method can accurately resolve a steep front near the moving bound�

ary� We begin where equidistributing the mass failed in section �������� with m � ��

Starting with an initial number of �� nodes and adding an extra �� by setting

gridtol � ����� we show in Figure ��� the numerical solution� again denoted by

crosses� against the Murray solution shown with the solid line� for various times�

Nodes are placed tightly in the intended region without a�ecting the existing qual�

ities of the method� We push the method further by increasing the value of m to

	� In this case the front appears vertical with an area of high curvature at the peak

of the wave� Again by using gridtol � ���� � this time starting with �� nodes� an

additional � points are added automatically� Again the method handles this more

stringent test�

We can again illustrate the scaling invariance of the mass monitor using the

appropriate transformations as before� despite equidistribution not being strictly

adhered to over the entire mesh� Equidistribution is still enforced in all the unre�ned

cells� so we would expect under the transformations that the re�nement nodes� mesh

trajectories and solution would be bounded between those corresponding to the last

and penultimate nodes on the unre�ned mesh� Indeed Figure ��� shows exactly what

we expect� the re�nement nodes staying invariant too and their spacing seeming to

re�ect the diminishing quantities of mass held in each cell as they get closer to the

boundary�

However� looking at the wider sphere of problems� it is not necessarily known

where nodes should be added� Moreover it is possible that as the solutions develop

in other problems� particular features of interest may move around the mesh� so

��
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Figure ���� The invariant transformed computed mesh �Left� and porous medium

solution �Right� for m � �� using a re�ned grid�

requiring more nodes to be added in other cells� This could be overcome by modify�

ing the method further by adding and removing nodes in di�erent areas in time as

required� This sort of adaptive routine has been well developed� especially in �nite

element methods� However this type of technique has repercussions in that contin�

ual changes needed to be made in the data structure of the computational code�

It would be more convenient and e�cient to be able to keep the number of nodes

constant through computations whilst e�ectively dispersing nodes over the mesh�

We now develop the ideas presented in this and the previous section by introducing

a more e�ective monitor function with these aims in mind�

�	
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��� Using the Gradient Monitor

We now extend the method to incorporate what we hope will be a more e�ective

monitor function� The aim is to be able to accurately resolve features of high

gradient without the need for grid re�nement� In the previous sections the moving

mesh method was �rst initiated� whilst noting that when a mass monitor function

was used the potentially troublesome term �t becomes equal to zero� For other

choices of monitor this is not necessarily the case� However� we are able to derive a

method in much the same way as before� whilst maintaining the desired properties of

the method� by taking advantage of geometric characteristics of the monitor function

and the porous medium solution�

We propose a change in monitor to that used in the regridding process described

in Chapter �� namely�

M�u� � juxj�

Starting in the same manner as before� we state the new equidistribution prin�

ciple�

Z xi���t�

xi�t�
uxdx �

�

N

Z xN �t�

x��t�
uxdx � ��t� i � �� � � � � N � �� ������

Since our porous medium solution will be monotonic we can drop the modulus signs

from the monitor function� and upon di�erentiation with respect to time� we have�

Z xi���t�

xi�t�
uxtdx � �xi���t�uxjxi���t� � �xi�t�uxjxi�t� � �t ������

The right hand term can be dealt with by noticing the distributive properties

of the gradient monitor� As described in previous chapters� nodes will be placed

equally over the solution range of u� Since our solution will be monotonic� we can

write from ������

��t� �
�

N
�u�x��� u�xN��

giving� via substitution of the PME and using uxN � ��

��



�t �
�

N

�u

�t
jx�

�
�

N
�umux�xjx�� ������

Returning to equation ������� we derive a moving mesh equation in a similar

fashion as used for the previous monitor function� giving


�umux�x�
xi���t�
xi�t�

� �xi���t�uxjxi���t� � �xi�t�uxjxi�t� �
�

�N � ��
�umux�xjx���

This leads to a corresponding ODE system to solve�

�x� � �

�xiuxjxi �
�

N
�umux�xjx��

� �xi��uxjxi�� � 
�umux�x�
xi��
xi

i � �� � � � � N ������

In a similar way as presented in the section ������ the expression for the speed of

the moving boundary will be valid when using the above expression� It could also

be derived by considering the time di�erentiation of ������ over the entire domain�

However for a more simpler expression we elect to continue using the expression

derived for use with the mass monitor ������� The next section illustrates why this

expression is valid by the using the mass conservation property to relate the current

solution u to the grid x and the quantity ��t��

����� The Equidistributed Quantity

When using the mass monitor �without re�nement�� the quantity ��t� was simply the

equidistributed conserved quantity of mass in each cell� With the change of monitor

comes a change in this measure ��t�� We have already derived an expression for the

time derivative of this integral term� We now develop an understanding of its role

in coupling the current grid and the porous medium solution�

From the known geometric properties of an equidistributed grid with respect to

the gradient monitor and taking into consideration the porous medium solution� we

can write

��



Z xi���t�

xi�t�
uxdx � ��t�

�
�

N
�u� � uN�

�
u�

N
i � �� � � � N � ��

Written another way� we have that

ui�t� � �N � i���t� for i � �� � � � N� ����	�

We now consider the composite trapezium rule expression for the total conserved

mass� TM say� i�e�

TM �
�

�

N��X
j��

�uj���t� � uj�t���xj�� � xj�� ����
�

Substituting in equation ����	� gives

TM �
��t�

�

N��X
j��

���N � j�� ���xj�� � xj�

which when rearranged provides us with an expression for the value of ��t�

��t� �
TM

�
������

where

� �

�
	N��X

j��

�xj�� � xj��N � j�



A�

�

�
�xN � x���

Given the grid x at any time� we can compute ��t� using ������ and then recover

the appropriate solution values u using ����	�� This procedure is used in the NAG

routine for solving the system of ODE�s ������ along with the following discretisa�

tions

uxjxi �
�

�

��
ui�� � ui

xi�� � xi

�
�

�
ui � ui��

xi � xi��

��
� ������

�umux�xjxi �
�

�xi�� � xi���

�
um
i� �

�

�
ui�� � ui

xi�� � xi

�
� um

i� �

�

�
ui � ui��

xi � xi��

��
� ������

��



����� Numerical Results IV

We can use the gradient monitor to resolve the steep moving boundary without

the need for grid re�nement� Figure ��� presents the results in the same manner

as before� From these results we can clearly see how the nodes arrange themselves

equally over the solution of range of u as expected� The left hand side of Figure ���

illustrates how the nodes are moved towards the developing front as desired� How�

ever when compared to results using the mass monitor with or without re�nement�

there are clearly inaccuracies between the generated and analytic solution�
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itor� m � ��

The right hand side of Figure ��� shows two error measures from the results

shown in Figure ���� The development over time of the absolute error in both the

position of moving boundary and the solution at x � � are shown� Both show

a steep rise in the early stages of the computation� We can investigate how the

approximations to these quantities may be linked via the monitor� We used the

simplest estimate to the velocity of xN � i�e�

�xN � um��
N� �

�

uN��

xN � xN��

which� using expression ����	� can be written as

��



�xN �

�
��t�

�

��m��� �
��t�

�xN � xN���

�
�

�
��t�m

��m����xN � xN���
�

In this way� the position of the boundary is directly connected to the value of

the quantity ��t�� Further study of Figures ��� and ��� show how the moving mesh

method attracts nodes onto the vertical section of the front� leaving areas of coarse

resolution near the boundary� Moreover� our approximation to the time derivative

of ��t� will involve a spatial discretisation in this region� It becomes apparent then

that poor local approximations to this term have had severe repercussions on the

global solution� These apparent poor approximations near the origin have the worst

e�ect early in the computations where the di�usion is fast� which would explain

the rapid growth in error illustrated in Figure ���� As the solution progresses and

changes� the variation of u at x � � becomes gentle and� the error at this point

decreases� although the error in the front position increases�

It is clear then that� for a truly accurate solution to the PME for values of m � ��

the grid needs to maintain a reasonable resolution globally whilst forcing �xj�xj���

to be small locally at the steep front� This is exactly what the grid re�nement

process achieved when used in conjunction with the mass monitor�

In the �nal section of this chapter we introduce a composite of the two previous

monitors in an attempt to dampen the e�ects of the gradient monitor and provide

a more suitable moving mesh for these more demanding problems�

��
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Figure ���� Approximate and reference PME solutions using gradient monitor� m �
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��� A Combination Monitor

Findings from the previous section suggest that in order for our moving meshmethod

to provide good approximations to the PME over the whole domain� we must be

able to accurately resolve the moving steep front whilst retaining a reasonable spatial

resolution globally for the equidistributed quantity ��t�� We now attempt to combine

the mass and gradient monitors to achieve this aim�

It seems sensible to suggest this methodology� We have seen that the gradient

monitor will cluster points in region of large variations in u� whilst the mass monitor

will attract points to section of the grid where the discrete integral of u is large�

namely the origin� Hence we propose the combination monitor function�

M�u� � u� juxj�

Since the magnitude of the derivative become very large near the boundary and is

negative everywhere� we rewrite the monitor� with the aid of a weighting parameter

�� in the more e�ective form

M�u� � u� �ux� ������

The derivation of the moving mesh equations follows in the same way as before� In

fact� as we shall see later� the equations will be linear combinations of those presented

in ����� and ������� First we turn our attention to the �t term� Once again� starting

with the equidistribution rule� again using the properties of the porous medium

solution� we have

��t� �
Z xi���t�

xi�t�
�u� �ux� dx i � �� � � �N � �

�
�

N

Z xN�t�

�
�u� �ux� dx

�
�

N


Z xN

�
udx� �

Z xN

�
uxdx

�

�
�

N


Z xN

�
udx� �u�

�
�

��



Hence upon di�erentiation with respect to time� owing to mass conservation� the

integral of the right hand side disappears� leaving us with

�t �
�

N

�u

�t
jx���

�
�

N
�umux�x jx���

We can now construct our moving mesh equation� di�erentiating the equidistri�

bution principle to obtain

�

�t

Z xi��

xi

�u� �ux�dx � �t�

Di�erentiating the integral and substituting in ������ yields

Z xi���t�

xi�t�
�ut � �uxt� dx� 
 �x �u� �ux��

xi���t�
xi�t�

�
�

N
�umux�x jx���

Hence� substituting the PME gives

�

N
�umux�xjx�� � 
�umux�� ��umux�x�

xi���t�
xi�t�

� �xi��
�
ui�� � �uxjxi��

�
� �xi �ui � �uxjxi� �

Our ODE system now becomes

�x� � ��

�xi �ui � �uxjxi� �
�

N
�umux�xjx��

� 
�umux�� ��umux�x�
xi
xi��

������

� �xi��
�
ui�� � �uxjxi��

�
�

To complete the method we need to construct a relation between the grid x

and ��t�� By comparison with the method outlined in Section ���� we now have the

modi�ed discrete form of the equidistribution principle over each cell i � �� � � � � N���

��t� �
Z xi��

xi

�u� �ux�dx �
�

�
�ui�� � ui��xi�� � xi�� ��ui�� � ui�� ������

�	



which when rearranged gives

ui �
��t�

�i��
� ui��

	i��

�i��
������

where we introduce notation

�i�� � � �
�

�
�xi�� � xi�� ������

	i�� � � �
�

�
�xi�� � xi�� ����	�

Back�substituting ui�� and then ui�� into ������ gives

ui �
��t�

�i��
�

	i��

�i��

�
��t�

�i��
� ui��

	i��

�i��

�
�

�
��t�

�i��
�

	i����t�

�i���i��
�

	i��	i��

�i���i��
ui���

�
��t�

�i��
�

	i����t�

�i���i��
�

	i��	i��

�i���i��

�
��t�

�i�	
� ui�	

	i�	

�i�	

�
�

�
��t�

�i��
�

	i����t�

�i���i��
�

	i��	i����t�

�i���i���i�	
�

	i��	i��	i�	

�i���i���i�	
ui���

Further back substitution then gives us

ui �
��t�

�i��

�
�� � i��Y

k�i��

	k

�k��
�

i��Y
k�i��

	k

�k��
� � � ��

N��Y
k�i��

	k

�k��

�
�� uN��

N��Y
k�i��

	k

�k
� ����
�

Since uN � �� so that uN�� �
��t�
�N

� substituting this �nal relation into the equation

above we have a general expressions for ui�

uN � �

uN�� �
��t�

�N

ui �
��t�

�i��

�
�� � i��Y

k�i��

	k

�k��
�

i��Y
k�i��

	k

�k��
� � � ��

N��Y
k�i��

	k

�k��

�
�

�
��t�

�i��

�
�� � N��X

j�i��

jY
k�i��

	k

�k��

�
� � ������

�




In a similar way as when formulating the method for the gradient monitor� we

again consider the discrete total mass TM and substitute the expressions for ui�

Since ��t� is a common factor in the expression for the general ui� we can obtain the

following expression giving a relation between ��t� and the grid x�

��t� �
�TM

�
������

where

� �
N�	X
i��

�xi�� � xi�

�
� �

�i��
�

�

�i��
�

�

�i��

N��X
j�i��

jY
k�i��

	k

�k��
�

�

�i��

N��X
j�i��

jY
k�i��

	k

�k��

�
�

� �xN�� � xN���

�
�

�N
�

�

�N��

�
� �

	N��

�N

��

�
�

�N
�xN � xN����

As previously� when using the mass monitor� in order for our formulation to be

valid initially� we need to have an initial grid which will initially satisfy the discrete

relation ������� Our monitor will therefore take the form

Mi� �

�
�

ui � ui��

�
� �

ui�� � ui

xi�� � xi
�

����� Numerical Results V

We are now in a position to review the e�ectiveness of combining the two previous

forms of monitor� It is hoped that by utilising the properties of both monitors we

shall be able to overcome the shortcomings of the gradient monitor whilst being able

to resolve the steep fronts without the need for grid re�nement� Figure ���� shows

that at �rst glance this has been achieved� Generating the approximate solution

in the usual manner� we present a solution for the PME when m � �� choosing

the parameter � � ���� Since the monitor and hence the resulting moving mesh

equations are linear combinations of the two previous systems� it makes sense to use

a linear combination of the discretisations used to solve the two systems respectively�

Hence the solutions are discretised using the previous expressions ������������ and

������� We can see clearly that the combination monitor has performed well for this

��



value of m� Both the position of the front and the global solution are seemingly well

approximated� This success carries on further when considering the more challenging

problem when m � �� Here � is chosen to have a value of ���� The resulting

numerical solutions are presented in Figure �����

In Section ���� we speculated that the gradient monitor� whilst clustering nodes

directly at the moving steep front� did not provide adequate mesh resolution near the

origin� In that case� the method permitted the velocity of the moving boundary to be

written in terms of ��t�� the time derivative of which is approximated at x � �� Hence

the resolution of the mesh in this region could have a global e�ect on the position

of the moving boundary and the resulting solution� This relationship will also exist

to some extent in the method for the combination monitor� It was hoped that by

combining the two monitors a reasonable mesh spacing near the origin could be

retained� Since consistent discretisations are used in both methods� we can compare

the accuracy in the two methods in approximating �t� Figure ���� shows the relative

error in approximating this termwhen generating the solutions shown in Figures ����

and ���� We use the relative error to give a better comparison since the parameter �

will reduce the magnitude of �t when applying the combination monitor� The graph

shows that the amalgamated monitor function provides a better approximation to

this term� the right�hand side of the �gure suggesting that the �ner resolution from

the resulting combination mesh plays a major role in this improvement� Furthermore

Figure ���� shows the node trajectories and the same error measures as illustrated

in the Section ����� for the gradient monitor� The trajectories con�rms that globally

the mesh retains a sensible resolution� whilst the partial involvement of the gradient

monitor provides an adequate grid spacing near the moving boundary in order to

resolve the steep front� The second graph� when compared with the corresponding

plot in Figure ���� shows that this combination results in signi�cantly more accurate

results in terms of the position of the propagating boundary and the solution of u

at x � ��

The left hand side of Figure ���� shows the variations of the absolute error in u

at x � � as the value of � is increased for three values of m in the porous media

di�usion co�e�cient� We are interested in which value of � is in some sense �best��

��
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Figure ����� Node trajectories �left� and error measures �right� for the combination

monitor� m � � and � � ����

Looking at the minimum values of the three curves plotted� the graph suggests that

as m increases from one to three� the �optimum� � increases and then soon decreases

as m is raised further� The apparent initial increase in the most appropriate value

of the parameter seems sensible since between these values the severity of the steep

front increases dramatically� However the pro�le of the front continues to steepen

with m past this point and yet our results suggest a smaller value of � should

be chosen� One possible explanation is the numerical error when approximating

the integrand terms in our system ������� As the front steepens to become almost

vertical �typical of large m�� then these terms become very large indeed and are

therefore extremely di�cult to approximate� Hence choosing a smaller � is likely to

dampen any numerical errors incurred here� The right�hand graph in Figure ����

shows a polynomial best �t curve for this �optimal� choice of � depending on the

���



value of m� Fifty separate values of � were choice in equal increment for over ��

equally spaced values of m between ��� and ���� The best �t curve has order �� and

was generated using MATLAB�
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��� Summary

We now summarise the work presented in this chapter� in particular highlighting the

development of the moving mesh method with regard to the solution of the PME�

In the previous chapter� we were concerned with the solution of both the PME

and the semiconductor problem� Also included in this chapter were numerical so�

lutions to these applications generated via the contour zoning approach� It was

concluded that in these problems which conserve mass� this method was quite un�

suitable since errors introduced through interpolation when moving nodes resulted

in the numerical mass varying with time� Moreover� when considering the PME� the

algorithm did not easily let us deal with the moving boundary involved� Hence we

sought a procedure which would move the mesh whilst exactly conserving mass and

allow for a moving boundary�

Initially a moving mesh approach was used by equidistributing the mass monitor

M�u� � u� This monitor has been used in the literature since it accords with the

���



inherent scaling properties of the PME� However� it was also noticed that by using

this function� the moving mesh equations could be derived without the need for

a traditional underlying computational mesh� The resulting method involves the

forward integration in time of a system of ODE�s governing the speeds of the current

mesh coordinates� From the resulting grid� the solution u could be recovered using

the conserved equidistributed mass �� By equidistributing mass� good solutions

were produced for the gentle porous media problem when m � �� However� for

larger values of m the mesh would not provide a �ne enough grid resolution near

the moving boundary to resolve the formation of the steep front� Hence we modi�ed

the method by dropping the equidistribution constraint on the mesh and moving

the grid by conserving mass in each cell� By initially generating a grid with �ne

scale resolution in the appropriate regions the front was resolved with great success

whilst retaining the global accuracy of previous methods�

In Section ��� we introduced the gradient monitor M�u� � ux� It was hoped

that using this monitor function would eliminate the need for grid re�nement in the

method� The moving mesh method in this case was derived in a similar manner as

for M�u� � u� taking advantage of the properties of the porous medium solution

and� more importantly� keeping the mass conserved� The method now involved

the evaluation of the now time dependent equidistributed quantity ��t�� a discrete

approximation to the �measure� of the monitor contained in each cell� Despite the

attractive features of this monitor� it was found that the gradient monitor clustered

nodes too tightly near the front� leaving regions near the origin sparse� Due to the

way in which the solution u was related to the grid and �t� this had repercussions

on the approximation of the velocity of the moving boundary and the resulting

approximate solution�

Finally we managed to combine the two monitors and obtained a happy bal�

ance between the two properties of each function� Using a parameter � to scale

the in�uence of the gradient monitor� the resulting algorithm produced accurate

approximation for both small and large values of m� Numerical results and accu�

racy measures were presented and indeed drove all stages of the development� In

particular� in Section ����� we attempted to explain the �optimum� choice of ��

���



It is apparent that at present the method is highly speci�c to the solution of

the PME� However the method does manage to tackle all the de�ciencies of the

previous regridding solution� In the following chapter we apply the method to the

semiconductor problem and introduce an application involving a source term with

the aim of replicating previous numerical and theoretical approximations to the time

of solution blow up�

���



Chapter �

The Moving Mesh Method for

Further Applications

In the previous chapter we followed the development of a moving grid method specif�

ically for the solution of the PME� Whilst the principles of the mesh movement are

viable when tackling other problems� the existence of a known solution value� e�g�

u � �� at the moving boundary in the PME allowed us to recover the global solu�

tion directly from the calculated grid via an algebraic equation� The method also

took advantage heavily of the mass conservation properties of the equation� For

these reasons the method could be seen to be too problem speci�c and lacking in

robustness�

The present chapter illustrates how the method can be extended to solve prob�

lems without these inherent properties� The �rst problem considered is the semi�

conductor model problem we are already familiar with from Chapter �� In this case�

the equation does conserve mass but has a Neumann boundary condition imposed

at the �xed boundaries� hence we do not know a value of u at any of these points

from which to construct our resulting solution� We shall nevertheless construct the

moving grid method as before� later further modifying the monitor function in or�

der to more accurately replicate the initial conditions and including a local solution

process for the boundary value of u from which we can build the dopant pro�le�

In the second half of this chapter we introduce a problem with a non�linear source

term which involves a solution 	blowing up	 at some �nite time T � This behaviour


��



is caused by the source term and hence mass is no longer conserved� Here we shall

adapt the original method which equidistributed mass �see Section 
�
�� but couple

a derivative term for the total mass with the system of ODE	s prescribing the mesh

movement� We shall evaluate the performance of the method by comparing blow�up

times with previous numerical estimates from the literature�

��� The Semi�Conductor Problem Revisited

It was concluded in Chapter � that for a numerical method to adequately solve the

semiconductor problem the method itself must conserve mass exactly� With this

in mind the dynamic grid method introduced in the previous chapter seems to suit

this application perfectly� However� the solution will now have a time dependent

solution value at both boundaries� When considering the PME the zero value of

u at the moving boundary permitted an obvious computational saving since the

solution could be derived directly from the grid and the quantity ��t� via an algebraic

relation �see Sections 
�
��� 
���
 and 
���� without a separate time integration for

the solution u� Ideally we would like to retain this characteristic of the existing

algorithm�

To begin the derivation of the moving grid method for this problem we will �rst

state our solution strategy with particular reference to the solution in regions of low

concentrations of dopant� We then move on to the derivation of the moving mesh

equation� introducing a further adaption to the monitor presented in Section 
�� of

the previous chapter� Finally we present our numerical results with reference to a

�ne scale stationary mesh solution�

����� Solution Technique

We begin by recalling the model semiconductor problem� De�ned on the �xed region

x � ��� 
�� the di�usion of a dopant through silicon is modelled by the equation

ut � ��u� ��ux�x� ���
�
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� being a constant of the order 
� �� Neumann conditions are imposed at each

boundary� x � � and x � 
� and the dopant has initial Gaussian distribution

u�x� �� � e��x
�

�

Previously we have chosen � to have a value of 
� and we continue to do so�

The combination of a �xed domain and Neumann boundary conditions force u

to �uctuate away from a value of zero at x � 
� In order for our method to allow us

to trace back from this point and form the solution from the grid� we need to have

a handle on this value u at this point� Due to the low concentration and gradient at

this region of interest� we propose to make use of the resulting low temporal changes

in u at this boundary and implement a local explicit �nite�di�erence solution� We

begin by deriving an expression for the time derivative of u at this point

We shall again be using a grid consisting of N � 
 nodes numbered x�� � � � � xN

where x� � � and xN � 
� With reference to Section ����
� Chapter �� we consider

the integral form of equation ���
� in the localised region of the control volume of

node xN � As before this region is formally de�ned as the length between xN and

the cell midpoint xN� �

�

�

Given the Neumann conditions imposed at the right hand boundary we have

that

Z xN

x
N� �

�

utdx �
Z xN

x
N� �

�

��u� ��ux�x dx

� ��u� ��uxjx
N�

�
�

Discretising in an upwind manner as before� we derive an approximate expression

for ut via

�xN � xN� �

�

�ut � ��un
N� �

�

� ��

�
uN � uN��

xN � xN��

�
�

ut � ���un
N� �

�

� ��

�
uN � uN��

�xN � xN����

�
� �����
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Despite the low gradient of the solution at x � 
 a reasonable mesh spacing will

always be required near that point during the solution to ensure accuracy of the

value uN and hence the global solution� Taking this into consideration� we propose

a further modi�cation to the combination monitor used in the previous chapter�

We now need to ensure that the mesh is adequately represented over the regions of

low concentration that initially lies away from the Gaussian maximum value� If we

consider the combination monitor used previously

M�u� � u� �ux

it is obvious that the value of the monitor will diminish quickly in regions of low

concentration� Moreover� due to the nature of the initial conditions� nodes will be

clustered directly inside the Gaussian� If we were to use such a monitor� the initial

distribution would not cover the areas of interest involved in the solution of uN

and furthermore the foot of the Gaussian is unlikely to be well represented� The

second issue raised here is crucial in the evolution of the numerical approximation

since� as mentioned before� of particular interest in this problem is the amount of

material di�used in regions well away from the main body of dopant� An accurate

solution must be able to simulate the correct amount of material �leaking	 from the

bottom section of the Gaussian �the parameter � in the model equation ���
� controls

this leakage�� Hence it is vital that the solution be well represented in this region

too� preferably without the step�like ramp representations found in the regridding

solution in Chapter �� Moreover good representation in these areas will also improve

the accuracy of the conserved mass� With these reasons in mind� we propose to add

an extra constant term � to the monitor function which will help to control the

equal spread of the nodes�

M�u� � u� �ux � �� �����

The inclusion of this extra term will ensure that nodes will be located away from

the Gaussian centre� as is required for a good solution of uN � Moreover it will help

to place nodes nearer the foot of the initial pro�le� Figure ��
 illustrates the e�ect

of introducing the quantity � into the monitor function� Irrespective of the choice


��



of �� the inclusion of � puts points in regions where the other terms in the previous

monitor would have a negligible value� Although these distributions are simple

examples using only 

 nodes and setting � � 
�� they e�ectively demonstrate the

intended purpose of the additional term� As a result the conserved discrete mass

should be a more accurate estimate� We continue by deriving the new algebraic

relations between the moving grid x� the solution u and the quantity ��t� associated

with the modi�ed combination monitor�
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Figure ��
� Initial distributions with varying choices of � and � for the modi�ed

monitor ������

As before we express ��t� as a discrete approximation to the integral of the

monitor over all cells i � �� � � � � N � 
� i�e�

��t� �
Z xi��

xi

�u� �ux � ��dx

�



�
�ui�� � ui��xi�� � xi�� ��ui�� � ui� � ��xi�� � xi�� �����

Reiterating the notation used in Chapter �
��� and introducing the extra term� we

have



�



	i�� � � �



�
�xi�� � xi��


i�� � � �



�
�xi�� � xi��

�i�� � ��xi�� � xi��

and� upon rearrangement equation ����� gives us

ui �
��t�

	i��
� ui��


i��

	i��
�

�i��

	i��
� ���
�

Using forward substitution into this system we have

ui �
��t�

	i��
�

�i��

	i��
�


i��

	i��

�
��t�

	i��
�

�i��

	i��
� ui��


i��

	i��

�
�

�
��t�

	i��

�

 �


i��

	i��

�
�




	i��

�
�i�� � �i��


i��

	i��

�
�


i��
i��

	i��	i��
ui���

It is obvious that upon further substitution we will have a similar expression to

that derived for the original combination monitor� So assuming we have given the

newly calculated value for uN given via integrating equation ������ we have a general

expression for the solution� i�e�

ui �
��t�

	i��

�
�
 � i��Y

k�i��


k

	k��
�

i��Y
k�i��


k

	k��
� � � ��

N��Y
k�i��


k

	k��

�
��




	i��

�
��i�� � �i��

i��Y
k�i��


k

	k��
� �i��

i��Y
k�i��


k

	k��
� � � �� �N

N��Y
k�i��


k

	k��

�
�

� uN

NY
k�i��


k

	k
�

�
��t�

	i��

�
�
 � N��X

j�i��

jY
k�i��


k

	k��

�
�

�



	i��

�
��i�� � NX

j�i��

�j

jY
k�i��


k

	k��

�
�� uN

NY
k�i��


k

	k
�

Hence upon substituting this into the trapezium rule for the total conserved mass

TM �
�
��� we have that the required expression for ��t� is








��t� �
�TM � uN�� �

�
�����

where

� �
N��X
i��

�xi�� � xi�

�
� 


	i��

�
	
 � N��X

j�i��

jY
k�i��


k

	k��



A� 


	i��

�
	
 � N��X

j�i��

jY
k�i��


k

	k��



A
�
�

�
�xN � xN���

	N
�

� �
N��X
i��

�xi�� � xi�

�
� 


	i��

�
	�i�� � N��X

j�i��

�j

jY
k�i��


k

	k��



A
�
�

�
N��X
i��

�xi�� � xi�

�
� 


	i��

�
	�i�� � N��X

j�i��

�j

jY
k�i��


k

	k��



A
�
�

��xN � xN���
�N

	N
�

and

� �
N��X
i��

�xi�� � xi�

�
� NY
k�i��


k

	k
�

NY
k�i��


k

	k

�
�� �xN � xN���

�

 �


N

	N

�
�

We now have the required relation between the grid� the equidistributed quantity

��t� and the solution u� Although the expressions above seem rather complicated to

compute� they are still mere algebraic relations which are easier to compute com�

pared to the full integration in time of the underlying PDE coupled with the moving

mesh system� We now continue further with the derivation of the moving mesh sys�

tem for the semi�conductor equation with the modi�ed combination monitor�

����� The Moving Mesh

Since the semi�conductor problem is de�ned on a �xed domain� we will have di�erent

boundary constraints on our resulting ODE system�



�



�x� � �xN � ��

In the same manner as before� we start with the equidistribution principle over

all cells�

��t� �
Z xi���t�

xi�t�
�u� �ux � �� dx i � �� � � � � N � 
�

Di�erentiating with respect to t and expanding the right hand side gives

d�

dt
�
Z xi���t�

xi�t�
�u� �ux�t dx� ��u� �ux � �� �x�xi��

xi

Upon using the PDE ���
� terms and re�arranging� we obtain

�u� �ux � ��jxi�� �xi�� �
d�

dt
� �xi�u� �ux � ��jxi �����

� ��u� ��ux � ���u� ��ux�x�
xi��
xi

i � �� � � � � N � 
�

Considering the time derivative of ��t�� we look at the integral of the monitor

over the entire domain�

�N � 
�
d�

dt
�

Z �

�
�u� �ux � ��dx

�
d

dt

Z �

�
udx� �

d

dt

Z �

�
uxdx� �

d

dt

Z �

�
dx�

Since the boundaries are �xed� the time di�erentiation carries through to inside

the integrals without extra terms� Furthermore� removing the �rst and last integrals

�relating to conservation of mass� and the �xed domain respectively�� we are left to

evaluate the remaining term

�N � 
�
d�

dt
� ��

d

dt
�uN � u���

Finally we �nd that upon substituting in the original PDE ��
� we have

d�

dt
� �

�

�N � 
�
���u� ��ux�x�

x��
x�� � �����



�



noting that due to the conditions imposed at the boundary x � 
� this formula now

involves a term from the right hand side� However this contribution is strongly linked

to the evaluation of the new solution value uN at this point ������ We now have

all the necessary components with which to complete the construction of the ODE

system for the motion of the mesh� So putting everything together and substituting

����� into ����� we have�

�x� � ��

�u� �ux � ��jxi�� �xi�� � �
�

�N � 
�
���u� ��ux�x�

x��
x�� � �xi�u� �ux � ��jxi

� ��u� ��ux � ���u� ��ux�x�
xi��
xi

i � 
� � � � � N � �� �����

�xN � ��

As with the previous systems� we start with an equidistributed mesh relating

to a discrete version of the monitor function� In this case the appropriate grid is

de�ned using the approximate monitor

Mi� �

�
�

ui � ui��

�
� �

ui�� � ui

xi�� � xi
� ��xi�� � xi��

using the equidistribution algorithm by outlined in equation ����� in Chapter ��
�

Since the same terms are involved as in the equations for the combination monitor

we shall use the same discretisations stated in the previous chapter� �
�
�� �
�
��

and �
�����

Our solution however is not complete without the integration of equation ������

In order to maintain a level of consistency in our time integration of this value in

conjunction with the mesh movement� we simply add the equation ����� as an extra

component in the ODE system� This leaves us with the system of variables

� �x�� �x�� �x�� � � � � �xN��� �xN � ut��

The procedure works in exactly the same way as that for �nding the node po�

sitions� So in providing the NAG routine with the correct derivative values we

undertake the following at each time step�



�



� Start with the current grid �x�� � � � � xN�� a discrete approximation to the mass

TM � and the solution value uN �

� Using ������ compute ��t� and then in turn calculate the current global solution

u�� � � � � uN from ���
��

� Compute the speeds of the nodes using ������

� Find the time derivative of the solution at x � 
 using ������

����� Numerical Results VI

We shall analyse the performance of the moving mesh method in this application

by computing an approximate solution on a stationary regular mesh consisting of


����
 nodes� The solution is generated using a semi�implicit scheme with an adap�

tive time�stepping approach� as outlined for the solution of this problem in Chapter

�� We have computed these stationary mesh solutions for three di�erent values�

� � ��
� ���
� ����
� for comparison with the moving mesh solutions� Before we

look at the resulting solutions and the e�ect of adjusting the leakage of material in

the concentration pro�le� we turn our attention to the error in the semiconductor

solution with reference to our �ne scale computation�

The top graphs in Figure ��� show the absolute error measures at both bound�

aries� We would expect� given a certain level of accuracy in the solution at x � 
�

that a further truncation error would be incurred� since the global solution was re�

constructed from the computed points using the algebraic relation ���
�� However

from these plots the magnitude of error incurred at both boundaries looks to be of

the same order� Both convergence charts suggest that the method is again of second

order accuracy� The value of � does seem to have an e�ect� with large errors incurred

for the faster rate of leakage� even though all cases were integrated forward in time

using a tolerance of 
���	 in the NAG routine�

Figure ��� shows the generated solutions for � � ���
� The initial mesh is gener�

ated and then moved by setting the other parameter in the monitor function to be

� � � � 
� In the full semiconductor problem several initial pro�les of dopant are

created� Although the solutions were generated over the domain ��� 
�� we plot the
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Figure ���� Absolute error at x � 
 and x � � �Top�� Logarithmic plots of the error

to show convergence �Bottom�

pro�le with its re�ection in x � 
 to illustrate the node movement when two signif�

icant quantities of material reach the far boundary� as happens in the real problem�

In Figure ��� we plot the trajectories for the three values of �� As expected the

larger the value of � the quicker the di�usion acts� since material leaks from the

main body of the Gaussian at a faster rate� The top plot shows how for � � ��


the nodes move very fast initially and the pro�le develops into what appears to be

a steady state solution� The modi�ed combination monitor drives the mesh to be

equally spaced as this state of the solution develops� As the value of � is decreased�

the rate of this development slows down� The bottom plot for � � ����
 shows how

the nodes move towards the centre as a signi�cant amount of dopant reaches x � 
�

As the value of uN gets larger and the state approaches� these nodes spring back as

the mesh springs back to becoming equally spaced� i�e� M�u�� 
�
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Figure ���� Approximate solution for the semiconductor problem with � � ���
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��� Di�usion with Blow�Up

We now turn our attention to the solution of a PDE with blow�up� Such problems

occur in physical models which develop singularities at some �nite time T � Ex�

amples of such behaviour exist in the solution of equations describing combustion

in chemicals or chemotaxis� with the blow�up possibly representing the ignition of

a heated gas mixture� Budd� Huang and Russell �
�� consider the following such

problem of Fisher type�

ut � uxx � up ���
��

where p � 
�

A moving mesh method for this equation is suggested by Budd et al for two

main reasons� Fixed mesh computations used to reproduce blow�up behaviour su�er

from diminishing accuracy as the length scale of the singularity approaches the

mesh spacing� For this reason such methods can often o�er approximations which

di�er greatly from the underlying analytic solution� and it is reported in Budd that

sometimes the stationary grid can miss the blow up in the solution entirely�

Equation ���
��� like the PME� is scaling invariant� in this case under the trans�

formations

�T � �t� � 
�T � t�

�u � 
��u ���

�

�x � 

�

�x

for any positive constant 
 with � � �
p�� � Since the singularity develops according

to the same underlying structure� it is suggested that a moving mesh should be

employed which also displays these properties� As with the PME� the moving mesh

PDE can be made scaling invariant with a careful choice of monitor function� For

equation ���
�� Budd et al� and more recently� Williams ���� suggest the monitor

function

M�u� � up���



�



In this section will shall attempt to adapt the moving mesh method presented in

Chapter 
 to generate solutions to equation ���
��� In particular we will be looking

for the method to accurately reproduce the blow�up time T given in the literature

to be approximately � �������
� with the blow�up taking place at the origin in the

form of an isolated spike of increasingly narrow width� developing from the initial

and boundary conditions

u�x� �� � ��sin���



�
� x��

with

u��� t�x � u�
� t� � ��

Considering the problem with p � �� the monitor suggested by Budd et al corre�

sponds to our earlier moving grid method using equidistributed mass� i�e� M�u� � u�

However due to the inclusion of the source term the mass will be increasing with

time and hence we must reconsider the time derivative of ��t� term� By de�nition

we have that

�t �



N � 


Z xN

x�

utdx

�



N � 


Z xN

x�

�uxx � u��dx�

�



N � 


�
�ux�

xN
x�
�
Z xN

x�

u�dx

�
� ���
��

Moreover following the now familiar derivation of the moving mesh equations�

beginning with

d

dt

Z xi���t�

xi�t�
udx � �t 
� � � � � N � 
�

leads us to

�u �x�jxi�� � �t � �u �x�jxi �
Z xi��

xi

u�dx� �ux�
xi��
xi

�

We now have approximations to both the speeds of the nodes and the growth

of the mass held in each cell� Our solution will be recovered using the fact that


��



u�
� t� � �� using the trapezium relation from equation �
��� in Chapter 
� However

since our mass � is now time dependent� we propose to add equation ���
�� to

our ODE system and integrate forward in time� So we will then have the system

variables

� �x�� �x�� � � � � �xN��� �xN � �t�

using the discretisations

ux �
ui � ui��

xi � xi��Z xi��

xi

u�dx �



�
�u�i�� � u�i ��xi�� � xi�

�t �



N � 



�
�uN � uN��

xN � xN��
�

N��X
j��

�u�j�� � u�j ��xj�� � xj�

��
� �

Figure ��
 shows the resulting mesh when integrating forward implementing the

suggested monitor M�u� � u� It is easy to see that the nodes do move towards the

origin as the singularity develops� However� when plotting the solution for times near

the end of the computations we see that the solution pro�le develops instabilities

as the time of blow up approaches �Figure ����� The NAG routine was only able to

integrate in time as far as t � �����
�� as a result of the increasing instabilities in

both the solution pro�le and the impending activity near the origin�

Although the monitor M�u� � u preserves the inherent scaling properties in

both the mesh and solution when we perform the resulting transformation ���

� on

the mesh� it appears that our moving mesh method has not� in this case� given us an

invariant mesh in the transformed variables �Figure ��
�� Reasons for the developing

instabilities are unclear� although it is obvious that their presence has an e�ect on

the resulting mesh and the time at which the solution blows up�

In order to obtain a more satisfactory result� we propose a change to a di�erent

monitor function�

M�u� � �� �ux� ���
��


�
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in transformed variables �Right��

It is anticipated that the presence of the �rst derivative will help to preserve monotonoc�

ity in the reconstructed solution� and moreover to provide �ne mesh spacings as the

solution approaches blow up and steep gradients develop� The additional constant

term will allow us� as previously in Chapter 
� to preserve a reasonable mesh size

in the solution near to the right�hand boundary in the time before blow up� This

region seems quite important in determining the rate of growth in the mass �see

equation ���
����

In deriving the appropriate equation� we still keep the same structure in our

ODE system� replacing the �t term by an approximation to the time derivative of

total mass �TM�t which will have a similar form to the replaced variable �

�TM�t �
Z xN

x�

utdx

�
Z xN

x�

�uxx � u��dx

� �ux�
xN
x�
�
Z xN

x�

u�dx

� uxj �
�
�
Z xN

x�

u�dx

�
�uN � uN���

�xN � xN���
�



�

N��X
j��

�u�j � u�j����xj�� � xj� ���
��


��



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

x

u

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

x

u

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

x

u

Figure ���� Approximate solution for times approaching blow�up�

The static equidistribution principle for the new monitor will provide approxi�

mations to the term ��t� and hence the solution u from the current grid x by using

a discrete approximation in the following manner�

��t� �
Z xi��

xi

��� �ux�dx � ��xi�� � xi�� �
�ui�� � ui�

�xi�� � xi�
�

Rearrangement and further manipulation of this approximate relation over the do�

main gives us that

ui �
��t�� ��xi�� � xi�

�
� ui���

� �
��t�

�
�

�

�
�xi�� � xi� � ui���

�
��t�

�
�N � i��

�

�
�xN � xi��

Substituting this expression into the trapezium expression �
�
�� for the total

mass TM gives

TM �



�

N��X
j��

�xi���xi�

�
��t�

�
�N � i� �

��t�

�
�N � i� 
� �

�

�
�xN � xi��

�

�
�xN � xi���

�

which� when rearranged� gives an expression for ��t��


��



��t� �
�TM � 

�
���

�

where

� �
�

�

N��X
j��

�xj�� � xj� ��xN � xi�� �xN � xi����

and

 �



�

N��X
j��

�xj�� � xj� ���N � i�� 
� �

All that needs to be done now is to derive the moving mesh equations for the

monitor ���
��� Di�erentiating the stationary equidistribution rule�

d

dt

Z xi��

xi

�� � �ux�dx � �t� ���
��

and �rst considering the right�hand side term we have that

�t �



N � 


Z �

�

�
�� �uxdx�

�
��

N � 


Z �

�

�
uxtdx�

�
��

N � 


Z �

�

�
uxxx � �u

��xdx�

�
��

N � 


h
uxx � u�

ixN
x�

� ���
��

Returning to equation ���
�� and di�erentiating the left hand side gives us that

Z xi��

xi

uxtdx� �xi���� � �ux�jxi�� � �xi�� � �ux�jxi � �t�

��
h
uxx � u�

ixi��
xi

� �xi���� � �ux�jxi�� � �xi�� � �ux�jxi � �t�

Rearranging and substituting into equation ���
�� we have the prescription for

the mesh movement�

�xi������ux�jxi�� �
��

N � 


h
uxx � u�

ixN
x�
� �xi����ux�jxi��

h
uxx � u�

ixi��
xi

� ���
��


��



This is gives a set of equations to solve in conjunction with boundary conditions

�x� � �xN � �� along with the expression for the rate of growth of total discrete mass

���
���

Applying the mesh algorithm with the new monitor function� we appear to gen�

erate a more satisfactory result� Our integration reaches a time of T � ����



��

which is much more reasonable compared to the time calculated approximately by

Budd et al for blow�up� Moreover the value of u at x � � compares reasonably with

a value of 
���� The left hand side of Figure ��� shows that the mesh trajectories do

not di�er greatly from those using the mass monitor but the di�erence now is that

our solution values stay monotonic� The change of monitor and the expression with

which we recover the solution imposes that the solution always decreases away from

the origin� Figure ��� shows the development of the solution as blow�up approaches�

plotted with the solution divided by the maximum to provide a better understand�

ing of what is happening� As can be seen� the nodes are moving towards the centre

as the solution develops rapidly� To give an idea of the scale of the solution and the

rapid growth� the right hand side of Figure ��� shows the maximum value of u with

time�
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Figure ���� Approximate solution as blow up approaches� plotted as u
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��� Summary

In this chapter we have attempted to illustrate that the moving meshmethod derived

in the previous chapter may be implemented on problems other than the PME� In

the previous chapter� the derivation of the method relied heavily on taking advantage

of the properties of the porous media solution and the aim was to produce similar

moving meshes for problems without such inherent features� namely having a known

solution value �u � �� at a point and having a solution with constant mass� We

have successfully adapted the method to include two applications without such useful

characteristics�

The �rst of the problems was the now familiar semiconductor model problem�

Here the di!culty was to be able to adapt to having a problem with an unknown

solution over the entire mesh� This was overcome by including a local solution

procedure at one boundary and deriving an approximation to the rate at which the

solution develops at that point� The resulting term was then added to the ODE

system and the global solution recovered using the current grid and the relevant

quantity ��t�� Moreover� a combination type monitor was used to ensure a reasonable

grid resolution around the point of the local solution update�

The remaining application was a di�usion problem with a singularity developing

at the origin� After limited success with the invariant monitor suggested by Budd

�
��� we switched to a gradient type monitor� In this application mass is no longer

conserved� so a term was derived to approximate the speed at which total mass was

produced� added to the ODE system and integrated forward in time� Numerical

results produced a time for blow�up in reasonable agreement with results produced

by Budd�

Having extended the method to problems other than the PME whilst retaining

the general theme of the method� i�e� solving for the mesh and then producing a

reconstruction of the solution from the chosen monitor function� the next natural

extension is to attempt a similar solution technique in higher dimensions�


��



Chapter �

Two Dimensions

In the previous two chapters we have established an e�ective means of moving nodes

for the solution of several PDE applications in one dimension� The underlying theme

of the method is that correct evolution of the mesh is the priority with the solution

being constructed� or even reconstructed� from the grid and a quantity ��t� relating

to the chosen monitor function specifying the grid movement�

Having achieved success in one dimension� the next natural step is to extend the

method into higher dimensions� This chapter attempts to perform this transition to

two�dimensional problems�

In one dimension we were able to adapt the method for several monitor functions

and combination monitors� For simplicity we choose to use the simplest such monitor

in this chapter� moving nodes via mass conservation� As with the work in one

dimension� we develop this idea using the PME� and we shall make use of the Murray

solution to the radially symmetric form of the PME� Although we are primarily

interested in working with more general problems� this analytic solution allows us

to evaluate our progress quantitively� As a precursor� we begin by extending the

work in one dimension to solve the radially symmetric problem� We then move on�

and attempt the generalized solution�

�	




��� Solving the Porous Medium Equation Radi�

ally

An obvious approach to the radially symmetric porous medium solution is that

of applying the one�dimensional techniques presented in Chapters � and � to the

transformed problem in terms of the radial coordinate r� In doing so the transformed

PME becomes

�u

�t



�

r

�

�r

�
rum

�u

�r

�
� �����

Once again a Neumann boundary condition is applied at the origin �r 
 ���

However� in the one�dimensional case� we took full advantage of the mass conser�

vation properties of the equation� This conservation law� in radial coordinates is

written as

d

dt

Z rN�t�

�
rudr 


Z rN �t�

�
r
�u

�t
dr�



Z rN �t�

�

�

�r

�
rum

�u

�r

�
dr�




�
rum

�u

�r

�rN�t�
�

�


 ��

It becomes apparent that we can use this conserved quantity as we did in the

previous one�dimensional work� We now need to decide on a strategy for moving

the mesh through the choice of monitor function� For simplicity we choose to move

grid points in order to conserve discrete integrals of ru in each cell� From our

experiences in one dimension it is obvious that for problems with higher powers of

m in the di�usion coe�cient that an initial equidistributed grid will not provide

adequate grid resolution near the moving boundary� Hence we choose to generate

an initial distribution using an ulterior monitor function and then to preserve the

generated mass distribution of � 
 ru with the evolution of the grid�

A simple e�ective form of monitor for the initial distribution in such a problem

is likely to be that of

�	�



M�u� 
 � � �ur� ���	�

With a careful choice of �� an e�ective resolution at the steep front should be

achieved whilst providing adequate resolution near to the origin�

Particular consideration needs to be paid to the discrete expressions represent�

ing the monitor functions involved in both the initial grid generation and the grid

movement� Previously� all of the monitor functions have been represented by linear

relationships between u and x� or in this case u and r� In this case� the mesh move�

ment monitor ru is now a quadratic expression� Hence a more suitable numerical

quadrature to take for the integral of ru over the cells is to use Simpson�s Rule

�which is exact for quadratics�� In that case conserved integral �i� �
�

over each cell

�ri� ri��� will have the form

Z ri��

ri

rudr 
 �i �
�ri�� � ri�

�

h
riui � �ri� �

�
ui� �

�
� ri��ui��

i

where ri� �
�


 �
��ri � ri����

Imposing a linear relationship between u and r allows us to express the central

term in the above approximation in terms of the values at the endpoints on the cell�

giving us that

�i 

�ri�� � ri�

�
�riui � �ri�� � ri��ui � ui��� � ri��ui��� �����

which when rearranged leads to

��i
	ri � ri��

�
	ri�� � ri

	ri � ri��
ui�� 
 ui� �����

We now have an algebraic relation between the current grid and the solution u�

Equation ����� provides the quantities of �i� �
�

to be conserved from the initial mesh�

whilst its rearranged form gives the relationship between the current solution� u�

�i� �
�

and the grid r� given the boundary condition of the PME� uN 
 ��

We now turn our attention to the moving mesh equations� As a variation� we

derive these expressions in a slightly di�erent way from before� such that the speed

of the moving boundary will be included within the general framework� Working on

���



a similar one�dimensional grid but in radial coordinates� we have the mesh consisting

of N nodes� r�� � � � � rN � Since the quantity ru is conserved over each cell� we have

that

d

dt

Z ri�t�

�
rudr 
 � �����

which� when expanded gives

Z ri

�
rutdr � �riuiri 
 �� �����

Substituting the radial form of the PME ����� into the integral on the left�hand side

gives

�riuiri 
 �
Z ri

�

�

�r

�
rum

�u

�r

�
dr�


 � �rumur�
ri
� �


 �riu
m
i �ur�i �

We therefore obtain an expression for the speeds of all the nodes in the mesh� Upon

further simpli�cation� we have that

�ri 
 �
�

m

�

�r
�umi � � �����

As before� we use upwinding spatial discretisations for the derivative ur� giving

us the approximations

�r� 
 ��

�ri 
 �
�

m

�
umi � umi��
ri � ri��

�
i 
 � � � � N�

to apply in the BDF NAG routine�

Figure ��	 shows the results of this approach� taking m 
 � and � 
 ���� showing

good agreement with the analytical solution presented in Murray ����� To show the

e�ect of the parameter � in the initial distribution of ru over the mesh� Figure ���

���



shows two graphs� On the left hand side we see how the conserved discrete quantity

of ru� as outlined in equation ������ changes with increasing values of � in the

monitor function���	�� The right�hand side of the �gure illustrates how the changes

in the initial re�nement in�uence the error of the resulting time integration� The

result as we would hope to see� is greater grid re�nement near the front for larger

values of �� providing us with a more accurate answer in terms of estimating the

position of the moving boundary�

As with the results for the mass monitor in one dimension� we can verify our

results by transforming the approximate mesh coordinates and solution values to the

invariant solution variables using equation �	���� in Chapter 	� Figure ��� clearly

shows this invariant behaviour under the appropriate transformation in both the

spatial and solution coordinates� This would suggest that our numerical method is

indeed approximating the correct solution by using the mass conservation monitor

in both the one�dimensional and radially symmetric problems�
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Figure ���� The quantity ru conserved in the last cell with the value of � in monitor

�Left�� Absolute error in front position for various values of � �Right��

This section has successfully computed the solution to this special case of the

PME in twodimensions using a radial coordinate system� Although ultimately we

wish to compute a solution within a more general higher�dimensional framework� by

using the radial form of mass monitor i�e� M�u� 
 ru we have further extended the

range of monitor functions which can be implemented using this moving mesh idea�

The next section will provide the basis of the higher�dimensional ideas that we seek�

��	
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��� A Two Dimensional Solution Approach

We have previously presented a solution for a radially symmetric problem above�

However in most cases a problem in two or more spatial dimensions will not incor�

porate such a manageable geometry� We now present a solution strategy for more

general problems�

We shall attempt to follow the methodology from the previous work undertaken

in one dimension� It is sensible to consider the simplest approach to start with�

in this case moving the nodes by conserving mass� In theory it seems possible to

follow this approach directly into higher spatial dimensions� We shall attempt then

to derive equations to continuously redistribute computational nodes by conserving

discrete approximations to the volumes of di�using material contained within each

cell�

Hence we begin by deriving an equation to numerically account for the speeds of

nodes contained in the resulting moving mesh� As before in Chapter �� this is done

with speci�c reference to the PME� here in its full two�dimensional form�

�u

�t

 r��umru� ���
�

���



with boundary conditions ru 
 � at the origin and u 
 � at the moving boundary�

To represent the geometry of the grid we propose to work on a triangular mesh�

In particular we can make use of the grids used in Chapter �� modifying them so

that the moving boundary is followed exactly� For many problems� the technique

of slicing the solution range equally should provide adequate mesh resolution near

the steep moving boundary for greater values of m� To be precise� we propose to

follow the methodology presented in Section ��	� It makes sense to do this since to

conserve equal measures of volume over the mesh would involve a highly accurate

initial equidistribution process� requiring perhaps a functional minimising approach

as in Baines ���� in view of the lack of a strict equidistribution principle in more than

one dimension� Then� given an arbitrary domain � with boundary denoted ��� by

conservation of mass we have that

d

dt

Z
�
ud� 
 ��

Expanding this integral gives a similar expression as in one dimension� with an

integral for the rate of growth of mass inside the boundary in the �xed time frame

and an integral compensating for the �ux of mass out of the boundary�

Z
�
utd� �

I
��

�u �x���ndS 
 �

where �n represents the outward unit vector normal to the boundary d�� Substituting

���
� into the integral on the left�hand side� followed by the application of Gauss�

divergence theorem� provides an equation for the prescribed velocities of grid points�

I
��

�u �x���ndS 
 �
I
��

�umru���ndS� �����

We shall be referring to equation ����� in the following sections where we shall

derive a suitable discretisation and solution strategy for the moving mesh equation

and also provide an expression for the speed of the moving boundary� In addition to

having an equation prescribing mesh movement� we need a higher dimensional ap�

proach with which to extract a solution from the current mesh coordinates� through

the conserved quantities of mass� The next section outlined three possible such

approaches�

���



����� Recovering u from the Mesh

For continuity we would ideally like the update procedure to in some sense follow

the work in one dimension� When considering the PME we have two boundary

conditions� a Neumann condition at the origin and a Dirichlet property at the moving

boundary� namely that u 
 �� In one dimension our strategy was to enforce mass

conservation in each cell via a numerical quadrature rule� imposing the Dirichlet

condition to complete the resulting bi�diagonal system� In higher dimensions the

completeness of the system is no longer achieved as easily� This section outlines

three possible methods for constructing a solution over the mesh�

A Minimal Least Squares Solution

All approaches stem from imposing a discrete form of the mass conservation idea�

namely that at all times a simple approximation to the quantity of mass held in

each cell is unchanged as the mesh evolves� Hence we have that� over each triangle

�i

Z
�i

ud� 
 �i

where �i is the conserved mass� We approximate linearly giving

�i 

Ai

�

�X
j	�

uij ������

where uij is the value of u at one of the three vertex�s of triangle i�

In general the number of triangles in the mesh is greater than the number of

nodes� It follows then that the resultant set of equations over the entire mesh will

yield a non�square� overdetermined system� since we have more equations to satisfy

than we have unknowns� i�e�

Au 
 b ������

where A � �p�q and b � �p and p � q�

The equation ������ cannot be expected to have an unique solution� We can

however consider the use of a least�squares approach� which seeks a solution to

���



������� u� such that

kb�A�uk� ����	�

is minimized� It is noted that for problems with full rank� the least squares solution

is unique� However because of the connectivity�s of the grids we work on and the

impositions of u 
 � over the moving boundary� we have that

rank�A� 
 NC � �

where NC is the number of cells in the grid �and hence number of equations in

�������� in which case there exist many possible �u which satisfy the least squares

constraint�

As our system is over�determined� the singular value decomposition �SVD� method

will �nd the solution �u which is in some sense minimal� To be precise� of all the

solutions for which ����	� holds� the method picks the particular �u for which k�uk�

is as small as possible ����� It is this solution that we choose to represent u over the

mesh� We use the NAG routine F��JGF ���� to compute our SVD solution� which

computes the SVD solution irrespective of the rank of A� Moreover� when Dirichlet

conditions are applied� the size of the system is reduced� although it only becomes

less overdetermined�

A �Patchwise� Approach

Our second attempt to construct an appropriate solution from the conserved masses

and the current mesh collects together the masses in triangles around a single node�

and requires them to remain constant� Doing so results in a square set of linear

equations and avoids the need for a least�squares approach�

We now introduce a �patch� of triangles associated with a single node i� The

patch i is the collection of grid cells which contain node i as a vertex� Figure

��� illustrates the patch associated with the annotated node i� the outlined edges

marking the boundary of the patch�

Obviously there is one patch for each node� so the idea is to form an equation

relating the conserved mass and solution values over each patch� This is easily

���
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Figure ���� The patch of triangles associated with node i

achieved via summation� simply summing the equations ������ for each triangle

contained within the patch giving us

X
�j�patchi

�j 

�

�

X
�j�patchi

Aj

�X
k	�

ujk � ������

This leaves us with a square system to solve for which any suitable matrix solver

can be used� We choose to compute a solution via LU factorisation� which is un�

dertaken via the NAG routine F��ARF �����

An Advancing Front Approach

Our second approach is much more in keeping with the philosophy of the one di�

mensional ideas� that being one of �tracing� back the solution from the Dirichlet

condition imposed on the boundary nodes� In one dimension� the numerical trapez�

ium rule �or Simpson�s rule used in the radial case� used to conserve mass over a cell

is written in terms of two known current grid points� one known solution value and

one unknown uk� hence giving a unique solution for u over the grid� This allowed

��




us to work �backwards� from the boundary and construct a solution over the mesh�

In two dimensions the extra degree of freedom in spatial coordinates means that

our higher�dimensional mass conservation equation ������ cannot be imposed in such

an ordered way� However� consider a triangle i and assume that the value of u is

known at two of the cell vertices j and k� hence giving from ������ an equation for

the solution at the remaining node l�

ul 

��i
Ai

� uj � uk� ������

The imposing of the designated boundary condition on the moving boundary

means that a su�cient number of cells which border the moving boundary will have

the necessary conditions� upon which equation ������ may be called upon� Hence we

can create a growing region of cells on which we can use this relation until all solution

values are known� This �advancing front� approach may then be implemented in the

following way�

� Sweep through the mesh� until a cell is found with suitable criterion� i�e� two

vertices with known solution values� one unknown�

� Using equation ������� calculate the value of u at the remaining vertex�

� Return to step � until u is known at all points in the mesh�

This approach may seem to be a more primitive approach when compared to

the more robust methods stated previously� However� it does closely mirror the

technique used in one dimension� and for this reason is deemed worth consideration�

Given a choice of these three strategies for satisfying the numerical quadrature

relation over all cells� we can now return to the moving mesh equation ����� and

derive a suitable discretisation and accompanying solution method�

����� A Moving Triangular Mesh

To begin� we reiterate the moving mesh equation derived ����� earlier� In order for

cells to move such that mass is conserved within each cell� given an approximation

to u over the current mesh� the velocities of the nodes �x should satisfy

���
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In deriving an approximation to this relation� we consider a general triangular

mesh cell with vertex coordinates x�� x�� x� numbered anticlockwise� Figure ���

shows such a cell with labelled edge lengths �i and unit normal vectors �ni�

Taking our approximation u to be linear� ru is constant over each cell and u

is linear along the edges of each triangle� Hence in equation ����� the left hand

expression is quadratic and a Simpson�s approach is used �as previously in section

���� whilst we retain a trapezium rule approximation for the left hand term� Hence

we have

�X
j	�

�j

�

�
uj �xj � �uj� �

�
�xj� �

�
� uj�� �xj��

�
�ni 
 �

�X
j	�

�j

	
�umj � umj���ru��nj� ������

as an approximation to the moving mesh equation ������ where the summation is

carried out in a cyclic manner anticlockwise around the triangle in consideration�

The solution values ui are the current approximation values given at the vertex�s xi�

whilst the constant gradient function ru is calculated over the ith triangle via the

formula

���
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ru 

�

	Ai

�X
j	�

ujvj ������

where vj is the inward normal of the opposite edge to the vertex j as illustrated in

Figure ��� and Ai is the area of the triangle i calculated by

Ai 

q
s�s� ����s� ����s� ���

where s 
 �
���� � �� � ��� ����� � ������

Since we are trying to follow the previous work in one dimension� we also at�

tempt to introduce some sense of upwinding in the approximation of ru� If we are

considering integration over the edge j of the ith triangle� we denote triangle k as

�outward� cell adjacent to edge j� �see Figure ����� Hence within equation ������ we

choose ru according to

ru 


��	
�

rui if ruk��nj � rui��nj�

ruk otherwise�

���
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We now have in place a moving mesh equation ������ with a suitable method

of discretisation� However� by inspection of the resulting discretisation there is a

similar discrepancy in the number of equations generated by each equation and in

the total number of unknowns as for the u problem� The next section identi�es a

suitable transformation to improve the solution of the resulting non�square system�

����� Transforming to normal velocities

The set of equations resulting from equation ������ will however be underdeter�

mined� This simply arises from the fact that node velocities now have two direc�

tional components� We are presented with NC equations �number of triangles� in

	NN unknowns �two velocity components for each node�� Our grids are generated

such that in general

NN � NC � 	NN� ������

Such a system has either no solution or an in�nite number of solutions �����

Since we need a unique solution to pass through to our ODE package for the grid�

we require to treat the system in a way which can guarantee such a solution�

We shall de�ne the normal velocity as the magnitude of the node speed in the

direction normal to the contours of u� In the current system variables� if the normal

velocity is �n� then the Cartesian form at node i� may be written as

��	



�xi 

�ni

jruj
ru� ����
�

This suggests a suitable transformation� since by using �n instead of �xi� we then

have only one unknown for each node i� hence from ������ we will have moved

from an underdetermined to an overdetermined system� which can be guaranteed a

solution via an SVD matrix computation�

Equation ����
� requires information regarding the gradient of u at the grid

points� However since our representation of the solution is piecewise linear� this

cannot be done exactly� We therefore propose the approximation to ru at node i�

denoted ru� using an averaging of ru calculated over the triangles belonging to the

patch associated with node i� i�e�

rui � rui 

�

N

NX
�j� patch i

ruj ������

where N is the number of triangles in patch i�

Hence combining equations ������ and ����
� we have at each node transforma�

tions to the normal velocity �ni from the x and y components of �xi�

�xix 

rux���ru��� �ni and �xiy 


ruy���ru��� �ni ���	��

where rux and ruy are the x and y components of ru respectively� As explained

above� this transformation applied to the moving mesh equations ������ changes the

shape of the matrix system to be solved for the node speeds� giving

�A �n 
 �b� ���	��

Figure ��
 illustrates the e�ect of the transformation on the dimensions of the matrix

A and vector b� In this form the system is guaranteed a least squares minimal

solution via the SVD method� irrespective of the rank of A�

Moreover due to the relation between the number of triangles and nodes given

in our grid ������� the matrix system will actual be smaller in terms of the total

number of elements� hopefully making computations more e�cient�

���



A �x � b A �n � b

Figure ��
� E�ect of velocity transformation on the shape of matrix system

Following the solution of the resulting matrix equation� our speeds are trans�

formed back to the original Cartesian form� using ����
�� and fed into the NAG

backwards di�erentiation formula routine� as used in one dimension and integrated

forward in time�

Finally� the resulting matrix system for the normal velocities requires a boundary

condition specifying the speed of the moving boundary� When we considered the

problem in the radial coordinate in Section ���� the speed of the moving front was

included in this radial framework� However� since we wish to provide a more general

solution� we need to provide an approximation to this speed� as previously in one

dimension� It is obvious from ������ that since u 
 � on this section of the grid� the

coe�cients of these velocities in the matrix system ���	�� will be zero and may never

appear in the resulting solution� The following section derives an approximation to

the moving boundary in the transformed normal velocity coordinates�

��� The moving boundary

To complete the ODE system� as in one dimension� we provide a Dirichlet condition

in the form of an approximation to the speed of the moving boundary� This section

brie�y covers the derivation of this approximation in two dimensions�

Figure ��� illustrates the domain � for the PME� We consider the mass conser�

vation law over this quarter section of the entire circular domain

���
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 ��

Expanding the integral and using Gauss� theorem leaves us with a line integral

around the domain boundary ��� As illustrated in Figure ���� we divide the bound�

ary into three separate component� ���� ��� and ���� Thus

I
���

��umru� � u �x� ��ndS�
I
���

��umru� � u �x� ��ndS�
I
���

��umru� � u �x� ��ndS 
 ��

The line integrals over the �rst and last components of the boundary disappear�

due to the symmetry boundary conditions on u and resulting node velocities over

these section of the boundary� For the remaining integral we use the radial symmetry

of the problem� that the solution and hence the magnitude of the velocity of the

moving boundary in the normal direction� �nf � will also be constant over this integral�

Hence we have that

u �nf � umru 
 �� ���		�

By direct analogy with this procedure in one dimension in Section �������� u

tends to zero and ru tends to in�nity as the radial coordinate of x tends to the

position of the moving front� However in a similar style as before we avoid this

technicality by writing ���		� as

���



�nf 
 �
�

m
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We compute this speed in an arbitrarily chosen cell which has an edge aligned with

the boundary ���� with u measured at the centre of the chosen cell�

Our method is now complete all sections are put together� again utilizing the

NAG BDF routine� We now present �ndings from the numerical computations�

��� Numerical Results VI

Initially we shall only be concerned with solving the PME in two dimensions for

the simple case of m 
 �� For now we shall be concerned with the evolution

of the mesh and the resulting construction of the current solution� To provide a

thorough treatment of the methodology presented above� we test the algorithm� in

turn incorporating all three strategies of recovering u from the updated mesh� The

grid is moved by the solution of the overdetermined system ���	��� which is solved

for the normal velocities� which are in turn transformed back to mesh speeds in

regular Cartesian form� The resulting ODE system is then integrated forward in

time using the backwards di�erentiation formula NAG routine D�	EJF as used

with all the work in one dimension�

To test the method further we run the three di�erent routines on three meshes

of increasing resolution in both the radial direction and along the contours on the

meshes� The �rst grid is a very basic grid containing only 	� nodes and 	
 triangles�

the second has 
	 nodes making up ��� elements� whilst the last grid incorporating

�	� nodes and ��	 cells� Following the work in Chapter ���� we take initial conditions

arising from the Murray solution �	���� at an arbitrarily small time tstart 
 �����

Figure ���	 shows all three meshes and the associated initial conditions�

The BDF routine was set to stop the calculations at time t 
 ���� Unfortunately�

few of the calculations reached their intended destinations� The BDF routine re�

quires a user�de�ned error tolerance included in a choice of an adaptive time step�

Upon using three di�erent choices of this tolerance� it seems that the algorithm

only integrates successfully to time t 
 ��� for simple� low resolution meshes in

���
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conjunction with a low tolerance level� For example� all three styles of u solution

only manage to complete the integration with a tolerance of ���� on mesh �� Tables

��� to ��� show the times at which the routines stopped� For the higher chosen

tolerances the BDF struggles to integrate far past the initial time� the number of

iterations tabulated illustrating the e�ort put into the computations�

Luckily we can study the two results successfully produced on mesh 	 to try and

understand why the time integration is proving troublesome� Both the SVD and

patchwise approaches for recovering u managed to integrate fully to time t 
 ���

and are able to plot the resulting grids and solutions at intermediate times� The two

methods of constructing a solution from the mesh 	 do not give the same solution�

They do however both exhibit an oscillatory nature in u� Figures ���� and ����

show the development of the approximate solution in these cases for the SVD and

patchwise solutions respectively� It is easy to see at early times signs of instability

or non�monotonic behaviour of the solution� most notably in the radial direction�

In both cases the low tolerance seems to play a part in allowing the mesh to evolve

forward in time� and it is worth noting in Tables ��������� that when the routines

stopped prematurely with the higher tolerances they generally failed to integrate

past the initial times� when the outward motion of the mesh is at its fastest�
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Figure ����� Absolute error in radial coordinate of moving boundary associated with

Figures ������ and �������

Despite the evidence of oscillatory behaviour appearing in the solution� the re�

sulting approximations appear to have a level of accuracy in accordance with the

��




chosen tolerance� Figure ���� shows the error in radius of the moving boundary

with time for both the SVD and patchwise solutions and despite the oscillations

both remain below the speci�ed tolerance�

Of the three solution approaches� the advancing front solution proved to be least

successful� Although the equations involved in all computations are the same� this

approach failed in all but one attempt to do the full time integration required� The

source of apparent inaccuracy lies in the less rigorous manner in which the grid is

swept for suitable cells and hence information is sometimes not used� information

which the SVD and patchwise approaches do not ignore� Put simply� when the

advancing front solution is complete� the number of triangles visited will be equal

to only the subset of points with unknown solution values� From the relation stated

earlier ������� it is obvious that the advancing front approach only considers a subset

of the total triangular elements in the mesh� Since there is an equation relating

conserved mass� cell area and u for each cell� the advancing front solution cannot

be guaranteed to satisfy all of these equations� From this point on then� we shall

disregard the advancing front approach�

The results for the chosen low tolerance are reasonably good and in some senses

the method as it stands could be seen to be successful� in the sense of the direct

translation of the approach from one to two dimensions� However� the failure of

the BDF routine to be able to integrate forward in time for more reasonable toler�

ances and for higher resolution grids gives some cause for concern and needs further

investigation �it should be pointed out that in one dimension signi�cantly higher

tolerances were used in the BDF NAG routine�� Small time approximate solutions

exhibit signs of instability somewhere in the system solved for �x� With this in mind�

the next section attempts to identify which part� or parts� of the algorithm admit

these e�ects�

����� The Porous Medium Equation as a Special Case

In the previous section� we found limited success in applying the moving mesh idea

to the PME in two dimensions� It was concluded that instabilities or oscillations

were being produced in certain aspects of the method� these e�ects thought to have

���
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���� tol
���
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�����

mesh� ����� ��� ����� ������
� ���� ��������

mesh	 ���� ��� ����� ������	� ��	�� �����
�


mesh� �
	�� ��	����
 	����� ���	��	�� �	���� ���	����

Table ���� Success of BDF integration using the SVD solution for u� Shows time

at which integration stopped and number of iterations taken for di�erent tolerance

and meshes�

tol
���� tol
���
 tol
�����

mesh� 	���	 ��� �
�� �������� �	��� �������


mesh	 ����	 ��� 	���
 ����	��� ����� �������


mesh� ��	�� ����
	��� ���	
 �������	 ��
��	 ���	��	�

Table ��	� Success of BDF integration using the patchwise solution for u� Shows time

at which integration stopped and number of iterations taken for di�erent tolerance

and meshes�

tol
���� tol
���
 tol
�����

mesh� 	
�� ��� ���� ������	� ���	 ��������

mesh	 ������ �������	 �		�� �������� 	���	 ������
�

mesh� ���
�� �����	�� ���
	� ����	��� �����	 ����	���

Table ���� Success of BDF integration using the advancing front approach for u�

Shows time at which integration stopped and number of iterations taken for di�erent

tolerance and meshes�
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been produced early in the integration� when the velocities of the grid were at their

peak� Only the use of relatively low error tolerances and low resolution allowed the

approximate solution to overcome these di�culties to produce a reasonably accurate

solution�

The aim of this section is to investigate the cause of these problems� We are

mainly concerned with the two overdetermined systems used to deduce the correct

node velocities from the current grid and solution� It was noted previously that�

due to the connectivity style incorporated in the grid generation� these two systems

cannot be guaranteed to have a unique solution� and the SVD routine chooses the

least squares minimal solution� Hence we cannot be certain� as we were in one di�

mension� that all the equations regarding the conservation of mass are being exactly

satis�ed�

Fortunately the geometry of the radial PME and our current grids allow us to

eliminate one of these systems� Since the grids in use are based upon contours of the

solution u� we would expect� and have found in the previous section� that the grid

would retain this characteristic with the nodes moving radially outwards� Indeed it

could be a measure of success of the method as to how well the nodes along a con�

tour propagate uniformly together� Section ����� identi�es an approximation to the

normal velocity of the moving boundary� and in the same way we can think of each

�contour� in the same way� moving by conserving the mass contained between the

contour itself and the vertical and horizontal boundaries� Following this thinking�

the approximation to the normal velocity of the moving boundary ���	�� is valid

for all nodes inside the expanding domain too� However we do not wish to impose

too many radial restrictions on the movement of the nodes inside of the boundaries�

since we would be in e�ect solving the problem in radial coordinates� Hence we work

in Cartesian components of velocity� with

�x 
 �
�

m
r�um� ���	��

regarded as an exact solution of the moving mesh equation�

I
��

�u �x���ndS 
 �
I
��

�umru���ndS�
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Taking advantage of this special case allows us to derive the mesh speeds directly

from the current solution u� temporarily bypassing the least squares solution of the

system ���	��� Hopefully this process of elimination will shed some light on the

issue of the source of instabilities currently present in the method� Equation ���	��

is approximated easily� by simply constructing the constant gradient of um over each

cell and then taking a patchwise approximation to the speeds at each node using

methods outlined earlier �see equations ������ and ��������

Having disregarded the advancing front approach for the u solution� we apply the

remaining two strategies in conjunction with equation ���	�� in approximating the

correct mesh speeds� The correct form of the method allows us to enforce a much

tighter error tolerance in the BDF routine� Once again both method successfully

integrate forward in time till t 
 ��� on mesh �� More interestingly� when calcula�

tions are undertaken on mesh 	 with the lower tolerance �
 ������� the methods are

both successful in completing the integration forward in time� Moreover the signs

of instability at early times found previously� and featured in Figures ���� and �����

have been eliminated� Figure ���� illustrates the now smooth evolution of the solu�

tion generated using the patchwise solution approach� The SVD solution produced

a similar result� interestingly enough requiring more iterations ������ in the NAG

routine than solving patchwise �	

���
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Figure ���� shows two error measures associated with the plots in Figure �����
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The error in radius of the moving boundary shows a similar behaviour and reasonable

accuracy as before� although there is clear room for improvement in the error in u at

the boundary� Table ��� shows the approximate solution of both methods at various

times as a comparison� Both the radial coordinate of the moving boundary and the

solution at the maximum are tabulated� In both cases the solutions are generally

within � decimal places of one another� These results suggest that the exact form of

the node velocities considerably a�ects the method in the way that the BDF routine

is now allowed to complete the time integration with a lower error tolerance� We can

probably say then that this form has improved the solutions which were previously

generated when solving the overdetermined system for �n� We now present two cases

that illustrate that the instabilities found previously still exist�

U at Max� Radius of Bdry�

Time SVD Patchwise SVD Patchwise

���	 ��
�	���
� ��
�	��	�
 ��

	�
��� ��

		����

���� �����		��� �����	���� �����	���� ����	��
��

���� �����
�
	� �����
��	� ��	��		��� ��	��	����

���
 ������	��� �������
�� ����
����� ����
�����

���� ���������� ���������� ����
����� ����
��

�

Table ���� Comparison of SVD and Patchwise solutions at the maximum and in

radial coordinate of moving boundary

Previously� in Section ���� Tables ��������� showed that when the least squares

solution for the normal velocities was used in the BDF routine the integration failed

for mesh � irrespective of which solution method for u was used� We can assume

that this was caused by instabilities in one or both of the solution stages� Figure

���
 shows the evolution of solution when working on a grid with a slightly higher

resolution than mesh 	� containing ��� nodes� using the same parameters with the

SVD routine and the exact form of the mesh speeds� In this case the BDF routine

fails to integrate past t � ���	��	
�� but we can plot the solution up until this point�

Initially the solution evolves smoothly as expected� but at the point of the failure

���
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of the BDF routine you can clearly see the solution becoming wildly unstable� the

probable cause of the halting of the NAG routine� Figure ���� shows the patchwise

solution process being used on a mesh with the same construction as the mesh used

in the previous example� only with m� the power in the di�usion coe�cient equal to

	� Again the NAG routine fails� this time at t � ����	���� the plots demonstrating

the same behaviour� Both these example suggest that the instabilities suspected in

the method lie primarily in the solution of u from the mesh� These undesirable e�ects

are present when using the exact form of the node speeds� which is signi�cant since

in this form the velocities are derived entirely from the current solution with no least

squares solution for the node speeds involved� This does not prove however that such

e�ects are not entirely present in the calculations of the node speeds in the general

case� The next section attempts to illustrate why the methodology seems to be

successful in one dimension and does not translate as easily to a higher�dimensional

problem�
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��� A Brief Analysis

The previous section concluded that instabilities� primarily in the solution of u

from the correct mesh� made the resulting moving mesh method in two dimensions

extremely di�cult to solve� However� we have seen that in one dimension the method

provided accurate and� most notably� reliable results for varying mesh resolutions

and strict error tolerances when integrating forward in time� We now provide a brief

analysis as to why these di�culties have been encountered in two dimensions�

We are considering movement via mass conservation� so over an arbitrary com�

putational element or cell � with boundary �� we have that

d

dt

Z
�
ud� 


Z
�
ut �

I
��

u �x��ndS 
 ��

Given a PDE of the form

ut 
 r�F

where F is some �ux function� our conservation law becomes

I
��

�u �x � F ���ndS 
 �� ���	��

We aim to couple the resulting moving mesh relation to a discrete quadrature rule�

prescribing� � the mass conserved in the cell� i�e�

Z
�
ud� 
 �� ���	��

Using piecewise linear approximations to u and �x� equations ���	�� and ���	���

when applied over the complete computational domain� generate two systems re�

spectively of the form

A�u� �x 
 f �u� x� ���	��

and

B�x�u 
 �� ���	
�

���



In one dimension� this pairing works well� since both systems are square and

invertible� Moreover� it can be shown that B�x� is diagonally dominant and well�

conditioned� Hence

u 
 B�x����

giving

�x 
 A�u���f�u�� x��


 A�B�x�������f �B�x������ x�� ���	��

which gives a well�de�ned ODE system for �x�

However in two dimensions� both systems ���	�� and ���	
� are� in general� non�

square� Employing some suitable matrix solver yields a least squares solution �u�

but it is at this step that errors are introduced� since �u does not satisfy ���	
�

exactly� This in turn has widespread implications for the solution of ���	��� since

the conservation law is violated by the least squares solution �u�

In one dimension the structure of the computational mesh allows the discrete

masses � to be conserved exactly� allowing the moving mesh equations to remain

valid� Hence� by ensuring the discrete conservation of mass� we preserve the validity

of the moving mesh equations� It is worth noting that in two dimensions when using

the patchwise solution approach to recover the solution u from the mesh� the matrix

system to solve is actually square� and yet instabilities still appear in the solution

process� However� further analysis of these matrices reveal a general trend for them

to be badly conditioned� The left hand side of Figure ��	� shows the condition of the

patchwise system matrix generated for initial conditions on meshes of successively

greater resolution with m 
 �� The remaining plot illustrates the e�ect of increasing

the power m of the di�usion coe�cient in these initial conditions on meshes with a

set number of nodes� Both clearly show that as the mesh contains more points� or

for increasing m� the matrix becomes more ill�conditioned� more signi�cantly in the

latter case� The coe�cients of the matrix in the patchwise approach consist of areas

of cells� hence in the case of increasing m� the gradient of u grows and as a result of

���



our meshing strategy� the increased resolution creates smaller and smaller triangles�

Hence the ratios of the coe�cients of the matrix A increase dramatically� Since the

coe�cients of the non�square SVD matrix are all equal to � the conditioning does

not seem to increase as dramatically� and remains unchanged irrespective of m since

it is determined primarily by the connectivity of the grid� However� as noted before

this approach cannot guarantee a unique solution�
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Figure ��	�� Conditioning of Patchwise Solution Matrix with increasing number of

nodes �Left� and increasing m �Right��

����� Improving Conditioning

Having ascertained that both the SVD and Patchwise approaches to u solution

are both badly conditioned� we �nally attempt to improve the conditioning of the

patchwise solution method� We stated above that a primary factor behind the

limited success in implementing the ideas which performed well in one dimension

into two dimensions� was the ill�conditioned non�square systems involved in the

higher dimensional algorithm� Noting that the patchwise system is such a square

system� we attempt to improve the conditioning� but relaxing the constraints of

conserved mass over an entire patch�

The structure of our grids means that by considering only a �half�patch� in the

��	



upwind radial direction we form a better conditioned matrix� to be precise a collec�

tion of tridiagonal relations between contours� Figure ��	� shows a section of grid

with a patch associated with node i lying on contour c� and between two contours

c� and c� with associated u values such that u� � u� � u�� Our aim is to sum the

equations representing the conserved discrete mass ������ over the shaded region

only�

i

c�

c�

c�

Figure ��	�� The half patch associated with node i

In a sense this very much falls in line with the approach in one dimension� this

time tracing backwards in the radial direction� constructing the solution over a

contour instead of a single point�

Figure ��		 shows the conditioning for both the half�patch and full patch ap�

proaches on mesh of increasing resolution� It is clear to see the improvement in

���
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the conditioning of this half�patch approach� However� despite this improvement�

the method still exhibits instabilities� These are illustrated using the exact same

strategy of using consistent grid and solution parameters as for the results produced

in Figure ���
� Figure ��	� shows the intermediate plots as the solution reaches the

time of failure reached by the BDF routine�t � ������	���� Interestingly enough�

the instabilities in this case seem to centre around the maximum� whereas the full

patch solution gave such behaviour throughout the mesh �see Figure ���
�� In hind�

sight this is logical� since at the origin there is no distinction as between a full and

half�patch� due to our use of symmetry� Oscillations exist in the outer regions of the

solution� but they manifest themselves more prominently at this point�

��	 Summary

This chapter has been focused on the aim of translating the moving mesh method

developed in one dimension in Chapter � to higher dimensions� Following the de�

velopment of the method in one dimension� we began by attempting the radially

symmetric PME �rst using a radial form of the mass monitor in one�dimension and

then using the mass monitor in two dimensions on a suitably re�ned triangular mesh�
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Figure ��	�� Half�Patch solution until BDF failure in integration on modi�ed mesh
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Initial results proved satisfactory for simple meshes using low error tolerance in

our ODE package� However� we would ideally require a more robust performance

allowing us to then continue to solve problems for greater powers of m�

Our method involves the solution of two overdetermined systems� Using SVD

techniques we can guarantee the existence of a solution� but this will almost certainly

not ensure all equations concerned will be satis�ed� By taking advantage of the

geometry of the radial case of the PME� we eliminated the system relating to the

nodal velocities� This highlights the problems involved in constructing a stable

solution from the discrete static conservation law over each cell ������� In all� four

such approaches were attempted� all of which exhibited unstable behaviour in u as

the grid evolved�

Due to the nature of the overdetermined system relating conserved discrete mass�

the solution u and the grid x� none of the methods can guarantee that all equations

are satis�ed� This fact� in conjunction with the strict boundary conditions imposed

on u at the moving boundary� may be the source of unstable behaviour exhibited�

Other contributory factors may include the lack of a sustained grid resolution along

contours as the boundary expands and the distance between nodes in the direction

tangential to the contours increases� Moreover the linear quadrature technique used

for approximating the quantities of mass conserved in each cell may be too weak and

extra degrees of freedom may be needed to allow the grid to move� Whatever� the

cause� we have outlined a brief and basic analysis as to how the lack of square and

invertible systems relating grid speeds and solution to the current state of the mesh

prohibits the direct implementation of our previous work to higher dimensions�

���



Chapter �

Conclusions and Further Work

Grid adaption and the use of moving meshes has evolved dramatically over recent

years� becoming an essential tool in the successful numerical solution to a wide

variety of applications� The ability of a mesh to automatically adjust its distribution

in order to resolve steep or sharp solution variations can aid the numerical analyst

in gaining e�ective control over computational resources�

This thesis has illustrated two contrasting moving mesh methods for the solution

of parabolic PDEs� To be more precise� de�ciencies found when computing numerical

solutions using an initial static method have motivated the development of a dynamic

approach which was able to resolve di�culties found in the application of the former

algorithm� This �nal chapter serves as a summary of the work presented and suggests

possible future avenues of study�

We began by recalling the di�erent approaches used in the construction of a

moving mesh� Chapter � introduced the three styles of grid adaption methods and

the motivation for the choice of employing a moving mesh algorithm� We then

described how some methods are considered to be static� with a redistribution of

nodes undertaken at intermittent times throughout the solution� and how some were

in e�ect dynamic� with a separate equation or relation prescribing a continuous

strategic movement of mesh points�

In Chapter � we gave an overview of existing grid generation and moving mesh

techniques� Of main concern were those which constitute an r	re�nement approach�

These methods relocate nodes to areas of interest without increasing the arithmetic

�
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overheads caused by adding extra points into the grid� We began by introducing

grid generation techniques and in particular the equidistribution and functional

approaches� Our review then proceeded to explain how these existing ideas were

adapted to include velocities of mesh points such that� for time dependent problems�

the mesh adapts with the evolution of the solution to provide suitable resolutions

around troublesome regions� Also introduced was the idea of self	similar solutions

and recent work which suggests that speci�c mesh methods should be employed such

that the numerical approximations inherit theoretical properties of the underlying

p�d�e� This was illustrated with particular reference to the PME� which admits

an analytical solution� used later for qualitative assessment of the mesh methods

covered�

Chapters � and 
 introduced a static regridding technique called Contour Zoning�

In one dimension this is a standard �nite	volume method� the grid movement being

driven by the preservation of an easily enforceable equidistribution rule using the

gradient monitor� Moreover� in two dimensions this form of monitor function is well

suited to solving for heights of contours comprising a number of individual mesh

points� This solution technique obviously reduces the computational overheads� The

method was used to generate solutions to the PME� but encountered di�culties in

a semiconductor modelling problem� In one dimension the problem was found to

be unable to conserve mass� as required of the solution� This problem results from

the regridding procedure when solutions are interpolated between changing states

of the grid� This situation could be improved by using a more re�ned redistribution

process but not completely eradicated�

In the case of the porous media problem� which involves a moving boundary� the

Contour Zoning method was found to be unsuitable since for an accurate represen	

tation of this feature the speed of the moving front was required� which was judged

to be inconsistent with the regridding strategy� Upon moving to two dimensions the

same problems persisted� Moreover� when using the Contour Zoning technique it

was found that the method would prohibit changes in geometry of the contours since

the solution approach crudely averages �ux approximations around the contour and

in some sense generalises the resulting e�ects� It became obvious that� with the

�
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PME in particular� a more dynamic approach would be needed in order to preserve

mass� accurately deal with the moving boundary and later� in two dimensions� allow

the freedom of movement for individual nodes�

In response to the problems experienced with the Contour Zoning technique� we

developed in Chapter � a moving mesh algorithm with direct reference to the PME�

The technique begins with an equidistribution principle concerned with equally dis	

tributing mass within computational cells� Taking advantage of some of the prop	

erties of the PME� the problem is solved entirely in terms of the grid positions�

The resulting solution can then be reconstructed over the mesh using an algebraic

trapezium rule approximation to the mass contained within each cell� Moreover

the method can be thought of purely as mesh movement through mass conserva	

tion rather than through equally distributing mass� and hence the method could be

modi�ed slightly such that steep moving boundaries were automatically resolved by

placing smaller quantities of mass in regions of high solution variation� In addition�

the moving boundary is incorporated neatly into the framework of the method�

In Chapter � we extended the method further to the use of equidistribution via

more complex monitor functions� First a gradient monitor� as used for the Contour

Zoning method� was used� following the same solution ideas as previously using in

conjunction with the mass monitor� After limited success� a combination of the

two functions was devised which moves the mesh automatically into an e�cient

distribution without the need for the prior arrangement of scaled quantities of mass�

In Chapter 
 we applied this new approach to problems which do not possess

those properties naturally advantageous to the method� as in the PME� The PME

has a known solution value throughout time� namely u � � at the moving bound	

ary� and satis�es conservation of mass� In the previous chapter the known solution

value allowed us to easily impose the algebraic relation to reconstruct our solution

from the current states of the mesh� For the semi	conductor problem we do not

have this luxury� Neumann conditions imposed at both boundaries denying us such

a condition� However we were able to couple the ODE system resulting from the

mesh movement to a local solution procedure at the relevant boundary� We were

then able to proceed as before using another style of combination monitor� The

�
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second property of the PME� which proved critical in the derivation of the original

form of the method� was mass conservation� For an inhomogeneous problem� in	

volving the blow	up of the solution around a single point� we had to allow for the

rapid accumulation of mass over the whole domain due to a non	linear source term

powering the combustion of the solution around the origin� In a similar way as when

tackling the semi	conductor problem� an expression for the rate of gain of total mass

was coupled to the grid movement system� The resulting solution was veri�ed when

it produced a favourable approximation of the time of blow	up when compared to

previous numerical solutions existing in the literature�

Finally� in Chapter � we attempted to interpret the existing mass conservation

grid movement idea directly into two dimensions� In terms of derivation a direct

analogy can be found from the work in one	dimension� However� problems were

encountered since for the grids considered both the ODE system for the node veloc	

ities and the algebraic mass conservation equations produced non	square systems�

which led to the necessity for averaging and generated instabilities in the solution�

Again� using the PME as a focus of our attention� it was found that the construc	

tion of a least squares solution for the solution u in terms of conserved mass was

ill	conditioned� In all� four approaches were constructed for the solution of the sys	

tem� all exhibiting unstable solution behaviour when solved on a mesh with any

kind of adequate resolution or with a reasonable error tolerance for the integra	

tion in time� It was concluded that the one	dimensional approach which allows for

square well	conditioned sets of equations to be solved does not readily generalise to

higher dimensions without a new idea� In theory the methodology extends to higher

dimensions but in practice an adequate solution to these problems has yet to be

found�

��� Further Work

To conclude� we now suggest possible areas of further research as a result of our

�ndings�

The most immediate area of interest is the search for a reliable solution technique

���



for the moving mesh algorithm in two dimensions� The main objective would be

to either construct the mesh to allow for a square system of equations for both the

nodal velocities �x and the solution u� or to deduce a reliable and more importantly

stable method for �nding a solution which will approximately satisfy all equations

without creating escalating oscillations�

Despite the limited success of the moving mesh method to generate solutions

in two dimensions� this thesis has presented an interesting solution technique for

problems in one dimension� It is obvious� though� that the method still needs further

work and application to other types of problem to test its robustness and suitability

for widespread application� For example� could we apply the technique to hyperbolic

problems� The success of the mass monitor in both one	dimensional and radial

coordinate cases suggest that a similar approach could possibly be implemented for

the solution of hyperbolic conservation laws�

It has also become apparent that the one	dimensional work could be implemented

using the arc	length monitor�

M�u� �
q
� � u�x

A discrete approximation to the equidistribution quantity ��t� would in this case

take the form

� � u�x � ��t�� � � �

�
ui�� � ui

xi�� � xi

��

�

which could be rewritten as

�xi�� � xi�
q
���t�� � �� � ui�� � ui�

In the case of the PME� this would present the required square� invertible system

for the construction of u over the current grid� Although our combination monitor

������ does in some sense mimic the arc	length monitor with a suitable choice of ��

it would be nice to eliminate the need for a user	de�ned parameter�

The �nal extension we wish to comment on is motivated by the use of a re�ned

grid in conjunction with the mass monitor in Section ���� Here we strategically

���



placed smaller amounts of mass in the region behind the evolving steep moving

front to resolve the large variations in u� Budd has suggested that this could be

considered as a �skew� distribution of mesh points and could be formalised as a

variation of the equidistribution principle� Taking the form ���
� from Chapter ��

this could be written as

Z x��i���

x��i�
Md�x � ����

Z �

�
Md�x

where ���� is some weighting function which will in�uence the distribution of M

over the mesh automatically� The style in which we re�ned our mesh in Section

��� would imply that ���� would be a decreasing exponential function� Obviously

for a practical application� some prior knowledge would be needed of the solution

behaviour� but it does provide an interesting abstraction of the equidistribution

principle�
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