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Abstract

This is a report of work in progress on numerical experiments using finite differ-
ence schemes designed to solve nonlinear diffusion equations on a dynamic mesh.
A semi-implicit and an implicit finite difference scheme are defined for the porous
medium equation in 1D. The moving mesh is constructed by imposing a conserva-
tive distribution principle. The resulting equations are solved in terms of the grid
coordinates, and the underlying PDE solution is computed algebraically a posteriori
from the conserved mass on this mesh.

Key words: Dynamic meshes, moving boundaries, porous medium

1 Introduction

We consider solutions of the porous medium equation in 1D with compact
support and symmetric initial values.

1.1 Porous medium equation in 1D

Definition 1 The porous medium equation (PME) in 1D is the non-linear
diffusion equation:

ut = (umux)x, where m > 0. (1)

It arises for example in models of gas diffusion through porous media under
Darcy’s law which relates velocity to pressure gradients.

We choose initial conditions at time t = t0 to be u(x, t0) ≡ u0(x), positive
on the interval (x−(t0), x+(t0)), and u(x, t0) = 0 on the boundaries. It can be
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proved that under these conditions a solution u(x, t) exists for all t ≥ t0 with
free boundaries at x−(t) and x+(t). The boundaries propagate with a finite
speed given by

v(x±) = − 1

m
{u(x±, t)

m}x

The solution of the porous medium equation has some interesting features, in
particular the integral of u (mass) and the centre of mass are constant in time:

Lemma 2 Invariance of mass and centre of mass in time.

The integral of u (or mass) is conserved in time. If I =
∫ x+
x−

u(x, t)dx is the
total mass, then

dI

dt
=
∫ x+(t)

x−(t)
utdx =

∫ x+

x−
(umux)xdx = umu|x+(t)

x−(t) = 0. (2)

Also, if x is the centre of mass scaled by the (constant) total mass,

dx

dt
=

d

dt

∫ x+

x−
xudx =

∫ x+(t)

x−(t)
x(umux)xdx

= [xumux]
x+(t)
x−(t) −

∫ x+(t)

x−(t)
(umux)dx = − 1

m+ 1
um|x+(t)

x−(t) = 0.

• Note that for symmetric initial values, the solution remains symmetric, so
that ux(0, t) = 0, ∀t.
• The value of m influences the speed and the character of the solution close

to the moving boundary. If m = 1 the local solution is quadratic, while if
m > 1 it is a steep front with a consequently slower displacement.
• The waiting time, i.e. the delay before the boundary points start moving

outwards, depends on 1/m, the cut being 1/m = 1, for which there is no
delay.

1.2 Self-similar solutions

When concentrating on the qualitative aspects of partial differential equa-
tions (PDE) the concepts of scaling invariance and the associated self-similar
solutions become important (see e.g. [5]).

Definition 3 Scaling invariance property: Given a system (u, x, t) sat-
isfying a PDE and a mapping to a new system (û, x̂, t̂) under the power-law
transformation

u = λγû , x = λβ x̂, t = λαt̂ (3)
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where λ is an arbitrary positive scale parameter, the original (u, x, t) system
is said to be scaling invariant if the PDE under consideration is identical in
both the original and the transformed co-ordinates. For simplicity, α is often
chosen to be α = 1.

In other words, the form of the equation does not change if the variables are
scaled.

Self-similar solutions, i.e. solutions of the PDE which are themselves in-
variant under the same scaling are obtained by choosing λ = t. They reveal
an important property of the phenomenon described by the PDE: the phe-
nomenon reproduces itself on different time/space scales, or in other words,
the spatial distributions of the characteristics of the phenomenon u(x, t), al-
though varying in time, remain geometrically similar. Formalizing this:

Definition 4 ([3]) A solution u = u(x, t) of a non-linear evolution partial
differential equation is called self-similar if the knowledge of u at the instant
of time t0 is sufficient to obtain u for all t > t0 by a suitable re-scaling, i.e.,
there exist time-dependent scales tγ and tβ such that, measured in these scales,
the phenomenon becomes time independent:

u(x, t) = tγ f
(
x

tβ

)
. (4)

An important by-product of self-similarity is that an independent variable,
t, is ”lost” and instead of a time-dependent PDE one only has to solve an
ordinary differential equation (ODE).

Introducing the transformations (3) into the differential equation (1) and the
mass conservation integral (2), one obtains that the scaling invariance condi-
tions for the PME, the parameters β, γ being

β =
1

2 +m
, γ = − 1

2 +m
. (5)

To obtain a self-similar solution for the PME we substitute the expression

u

tγ
= f

(
x

tβ

)

into the PME using the known values of β and γ. To simplify the notation
introduce w ≡ u/tγ, y ≡ x/tβ. After the necessary differentiations, one obtains
the differential equation (ODE)

γtγ−1f − βtγ−1yf ′ = tγ−1(fmf ′)′
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which reduces to
−βyf = fmf ′

using the boundary condition u(0) = f(0) = 0. The solution is:

f(y) = c(1− y2)
1
m , with c =

(
m

2(2 +m)

) 1
m

.

Hence, the self-similar solution of the PME is:

u(x, t) = ctγ
[
1−

(
x

tβ

)2
] 1

m

(6)

with |x|/tβ < 1 defining the compact support.

1.3 Mesh movement for the PME

We shall use an r-refinement approach, i.e. maintain the number of nodes
globally but relocate them according to the behaviour of the solution. For
that purpose the PDE is coupled to a mesh evolution control which defines a
velocity and the resulting equations, when solved, define simultaneously the
mesh and the physical solution.

We will assume symmetric initial values, hence consider now the PME only
on the right half-interval of its compact support, the centre point (and from
now on the left-hand boundary) remaining fixed at x = 0, i.e., ẋ = 0, ∀t.

The adaptive mesh is defined by means of an invertible transformation between
the physical and the computational coordinates at a given time t. Let x and
ξ denote the physical and computational coordinates respectively, with x ∈
[0, x+(t)], and ξ ∈ [0, N ], N a positive integer. A one-to-one coordinate
transformation between these domains is denoted at time t by

x = x̂(ξ, t), ξ ∈ [0, N ] with x̂(0, t) = 0, x̂(x+(t), t) = N. (7)

The Jacobian of the mapping is x̂ξ.

To control the mesh evolution the basic idea is a conservative distribution
principle (CDP) using a monitor function M(u) depending on the solution
u of the PDE. If, as we do in this report, we choose M(u) = u, the CDP
implies that the area under the solution u in any subinterval (x̂1(t), x̂2(t)) of
the compact support (x̂−(t), x̂+(t)) will be independent of time, as in

∫ x̂2(t)

x̂1(t)
u(x′, t)dx′ = c(x̂1, x̂2) (8)
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This conservation principle allows us to recast the PME as a mesh velocity
equation. The Eulerian form of the conservation law (8) is

ut + (uv)x = 0

from which it follows that the PME (1) can be restated as the purely spatial
equation

−(uv)x = (umux)x

which after integration gives

uv = −umux

(recalling that ux(0, t) = 0 when v(0, t) = 0). Hence, provided that u 6= 0,

v = −um−1ux = − 1

m
(um)x (9)

Now, under the inverse of the mapping (7) the left hand side of equation (8)
can be expressed as ∫ ξ2

ξ1
û(ξ′, t)x′ξdξ

′, (10)

independent of t, where û(ξ, t) = u(x̂(ξ, t), t). Since ξ1, ξ2 are arbitrary it
follows that there exists a function ĉ(ξ) such that

û(ξ)x̂ξ = u(x̂(ξ, t), t)x̂ξ = ĉ(ξ). (11)

From (9) the velocity v̂(ξ, t) = v(x̂(ξ, t), t) under the transformation can be
written in terms of ξ and ĉ(ξ) only as

v̂(ξ, t) = −(ĉ(ξ))m−1

(x̂ξ)m
∂

∂ξ

(
ĉ(ξ)

x̂ξ

)
= − 1

m

ĉ(ξ)

x̂ξ

∂

∂ξ

(
ĉ(ξ)

x̂ξ

)m
. (12)

or with explicit derivatives:

v̂(ξ, t) =

(
ĉ(ξ)

x̂ξ

)m−1 (
ĉ(ξ)

x̂3
ξ

x̂ξξ −
1

x̂2
ξ

∂ĉ(ξ)

∂ξ

)
. (13)

1.4 Discretization

It is convenient to drop the hat notation at this point. Suppose that a uniform
mesh, with ∆ξ = 1, is defined on the computational domain by

ξi = i, i = 0, 1, ...N,
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and denote the corresponding mesh points in the x space by {x0, x1, ...xN},
where x0 is fixed but the xi, ( i = 1, ...N), vary with t. Introducing local masses
ci+1/2(t) for each of the subintervals defined by the mesh points {x0, x1, ..., xN},
the CDP (8) then implies local mass conservation in the form

∫ xi+1(t)

xi(t)
u(x′, t)dx′ = ci+1/2, (i = 0, ..., N − 1), (14)

independent of t (see [4,2,6]). The constants ci+1/2 can be obtained a priori
from the initial data.

Equation (12) may be discretized as

vi = − 1

m

ci
∆xi

[(
ci+1/2

xi+1 − xi

)m
−
(

ci−1/2

xi − xi−1

)m]
. (15)

where ∆xi approximates xξ at the point i.

Equation (15) is particularly simple in the case of the so-called local mass
equidistribution principle (EP), see [7], which assumes that

ci+1/2(t) =
∫ xi+1(t)

xi(t)
udx =

1

N

∫ xN

x0

udx, i = 0, ...N − 1,

i.e. the mass in each cell is uniform in ”space” as well as independent of time:
ci+1/2(t) ≡ c. Since these uniform masses are maintained in time, the velocity
(15) at any time t becomes

vi = − 1

m

cm+1

(xi+1 − xi−1/2)

[(
1

xi+1 − xi

)m
−
(

1

∆xi

)m]
. (16)

These velocities relocate the meshpoints in such a way that, as the material
diffuses, the cells retain their original masses ci+1/2.

Note that due to the fact that, by construction ∆ξ = 1, conveniently only the
nodal values xi appear in the discretization of these equations.

Having solved the mesh equations for the xi, the PDE solution ui can be
obtained from the conservation equation (14).
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2 Numerical algorithms

2.1 General moving mesh algorithm

The basic steps of a moving mesh algorithm based on the CDP are as follows:

Algorithm 1 General moving mesh algorithm

(0) At time t0, define an initial mesh with N nodes, X(t0) = {x0, x1, ..., xN},
where x0 = 0, xN = x+(t0). Compute the solution u(t0, xi), i = 0, ...N, from
the initial conditions, select a numerical integration method and calculate the
local masses ci.

Step foward in time in steps ∆t:

(i) Using a finite difference scheme calculate the new mesh values X(t + ∆t)
using a mesh movement equation. Note that x0 does not change in time.

(ii) Based on the local mass conservation principle, recover the values of u(t+
∆t, x) from the numerical integration formula chosen at stage (0), except for
the interface point xN where the boundary condition applies: u(xN , t) = 0, ∀t.

The advantage that the simpler, moving mesh equations, for EP meshes have
over the equations for the more general CDP meshes, is balanced by the need
to generate an initial mesh with equidistributed local mass. In addition, given
the form of the PME similarity solution, equidistribution produces a higher
meshpoint density close to x0 than for the rest of the interval, in particular
there are relatively few nodes close to the moving boundary.

At different stages of the algorithm we need numerical methods for the ap-
proximation of the integrals and the differential equations and for the solution
of nonlinear system of equations. These will now be discussed.

2.2 Mass integral approximations

Numerical approximations of the local mass integrals in each cell [xi, xi+1],
i = 0, ...N − 1, are needed twice, first in the initial step of the algorithm to
define the cell masses ci, and subsequently, at each time step, to recover the
values of the PME solution u(t+ ∆t, x) from the CDP.

There are several possible approximation techniques:
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(1) The one-interval trapezium rule:
∫ xi+1
xi

u(t, x)dx ≈ 1
2
(ui+1 +ui)(xi+1−xi).

(2) The trapezium-type rule over two intervals:

∫ xi+1

xi−1

u(t, x)dx ≈ 1

2
(ui+1 + ui)(xi+1 − xi) +

1

2
(ui + ui−1)(xi − xi−1).

(3) The lower order form 1
2
ui (xi+1 − xi) ≈

∫ xi+1(t)
xi

u(t, x)dx

As mentioned before, once the mesh movement differential equation has been
integrated to give the new nodal positions xi(t + ∆t), the ui(t + ∆t) on the
new mesh are recovered using the corresponding local mass integral formula.
The trapezium rule (1) and the upwind difference (3) approximations use the
fact that the solution uN is zero at xN in order that the values of ui at the
other mesh points can be computed explicitly. In the trapezium formula case
the ui(t+∆t) are linked together, in fact the vector ui(t+∆t), i = 0...N can
be written as the solution of a bidiagonal system of equations with condition
number O(N): it is therefore subject to possible larger errors than if using the
formula (3).

When applying the general CDP mesh (not the EP one), in addition to the

approximation for the local mass ci ∼
∫ xi+1(t)
xi(t)

u(t, x)dx, the derivative c′i ≡
∂c
∂ξ
|xi

must be computed. A central difference is used to approximate this
derivative:

c′i ∼
ci+1 − ci−1

2
(i = 1, ...N − 1) (17)

At i = 0, based on the symmetry of the solution u in [x−, x+] we use c′0 = 0.

In order to define the mesh at a new time step, three finite difference schemes
involving different mesh movement equations were tested, first a simple explicit
scheme, then a semi-implicit, and finally an implicit method.

2.3 The explicit scheme

The basic explicit Euler scheme, implemented for comparison reasons, uses
the equation (9) in the form: vi = −um−1

i ux|xi
. Here, ux|xi

is approximated in
the interior by a forward finite difference, while for ui the mean value at two
consecutive nodes is used 1

2
(ui + ui+1), and for vi also a mean 1

2
(vi−1 + vi), so

that in computing vi all of ui, ui−1, ui+1, are involved. At xN the ux is obtained
from a simple one-sided backward difference.

For both the semi-implicit and the implicit scheme it is more convenient to
use equation (12) or (13) as they involve the nodes directly and not through
the physical solution u.
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2.4 A semi-implicit scheme

A semi-implicit node-order-preserving scheme satisfying a maximum/minimum
principle for non-contracting regions 1 based on equation (12) is defined, start-
ing with a semi-implicit backward Euler scheme,

xn+1
i − xni

∆t
= − 1

m

ci
(∆x)ni

[(
ci+1/2

xn+1
i+1 − xn+1

i

)m
−
(

ci−1/2

xn+1
i − xn+1

i−1

)m]
(18)

where ci±1/2 denotes a lagged cell mass in a cell between two gridpoints xni
and xni±1. Here, xni is the coordinate of the i’th gridpoint at the n’th timestep,
and (∆x)ni is the forward finite difference in x at the same timestep.

For the boundary nodes, since x0 = 0 is fixed, no equation is needed. The
right boundary values xn+1

N are estimated from an explicit one-sided difference
scheme applied to the second form of equation (9),

xn+1
N − xnN

∆t
= − 1

m

(
−(unN−1)

m

xnN − xnN−1

)
(19)

The scheme (18) can be rewritten as,

xn+1
i − xni = −di−1/2(x

n+1
i − xn+1

i−1 ) + di+1/2(x
n+1
i+1 − xn+1

i ) (20)

where the di±1/2 are the coefficients,

di+1/2 =
1

m

∆t

(ci+1/2∆x)n+1
i

(ci−1/2)
m

(xn+1
i+1 − xn+1

i )(xn+1
i − xn+1

i−1 )m
,

and

di−1/2 =
1

m

ci+1/2∆t

(∆x)n+1
i

(ci+1/2)
m

(xn+1
i+1 − xn+1

i )m(xn+1
i − xn+1

i−1 )
.

To solve for the xn+1
i , i = 1, ...N − 1, a functional iteration can be defined

based on equation (20). Starting with the initial iterate x(0) = (xn1 , ...x
n
N−1), a

linear tridiagonal system is solved:

−d(k)
i−1/2x

(k+1)
i−1 + (1 + d

(k)
i−1/2 + d

(k)
i+1/2)x

(k+1)
i − d(k)

i+1/2x
(k+1)
i+1 = x

(k)
i ,

where d
(k)
i±1/2 are the di±1/2 now evaluated at the x(k) obtained at the last

functional iteration. The value of the right boundary node xN is also updated
at each iteration.

1 The proof is by reductio ab absurdum
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Note that if the original mesh is ordered, the fact that the mesh is a node-
order-preserving mesh insures that no tangling of the mesh occurs, provided
of course that the updating of the right boundary node is consistent with the
ordering.

In order to smooth the solution values at the interfaces, after the grid points at
level n+1, (time t+∆t) have been computed the value of xn+1

N−1 is recomputed
as a weighted mean of its neighbours: xn+1

N−1 = 1
4
xn+1
N−2 + 1

4
xn+1
N−1 + 1

4
xn+1
N . This

smoothing still preserves the order of the nodes.

Another smoothing was also tested, whereby the values of the solution un+1
N−1

are recomputed as a weighted mean, un+1
N−1 = 1

4
un+1
N−2 + 1

4
un+1
N−1 + 1

4
un+1
N .

2.5 An implicit scheme

An implicit Euler applied to equation (13) has also been used for x1, ..., xN−1,
resulting in the N − 1 nonlinear equations,

xn+1
i − xni

∆t
=

cmi
(D0x

n+1
i )m+2

D+D−x
n+1
i − c′i.c

m−1
i

(D0x
n+1
i )m+1

. (21)

where D−, D0, D+ are respectively backward, central and forward difference
operators.

Again, an equation for the boundary node xn+1
N is needed. Three possibilities

were explored, the tests showing that the last one is the most effective choice:

• Defining xN by an explicit one-sided finite difference for equation (9). This
restricts the ratio ∆t/∆x2 for which the mesh remains ”untangled”.
• Using a one-sided implicit approximation of equation (9) at xN . This is not

a feasible option due to the difficulty in assigning a value to cN .
• Defining xN by a one-sided implicit scheme but for the equation (??), ex-

pressing u as a function of the mass c and x:

xn+1
N − xnN

∆t
= − 1

2m

[
D−(u

(n+1)
N )m +D−(u

(n)
N )m

]
. (22)

One can avoid the use of u completely because, using the PME boundary
conditions, u

(n+1)
N is set to 0 and u

(n+1)
N−1 is substituted using the expression for

the mass approximation, namely:

u
(n+1)
N−1 =

2.cN−1

xn+1
N − xn+1

N−2

,

so that the whole system of equations is expressed only in terms of x’s and
c’s.
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2.6 Nonlinear systems of equations

The resulting nonlinear systems in X(t+ ∆t) = { xn+1
i } i = 0...N are solved

using an iterative algorithm implemented in the user-friendly public domain
subroutine HYBRID1 ([8]). The program is based on the Powell hybrid algo-
rithm, a global method for solving a nonlinear system F(x) = 0, that con-
verges to a solution from almost any starting point. It combines Newton steps
on F(x) with a back-tracking strategy (dogleg) for the associated minimization
problem if the new approximate does not reduce the value of ‖F‖.

The user must provide a subroutine which calculates the functions only, the
Jacobian being approximated by forward differences at the starting point. Two
of the main characteristics of HYBRD1 involve the choice of the correction as
a convex combination of the Newton and scaled gradient directions, and the
updating of the Jacobian by the rank-1 method of Broyden.

The accuracy of HYBRD1 is controlled by the convergence parameter tol.
Unless high precision solutions are required, the recommended value for tol
is the square root of the machine precision. The test assumes that the func-
tions are reasonably well behaved. If the stopping condition is satisfied with
tol = 10−k, then the larger components of the approximately zero x have k
significant decimal digits and INFO is set to 1. There is a danger that the
smaller components of x may have large relative errors, but the fast rate of
convergence of HYBRD1 usually avoids this possibility.

Possible difficulties when using the subroutine are:

HYBRID1 calls the more general routine HYBRD. The choice of step length in
the forward-difference approximation to the Jacobian assumes that the relative
errors in the functions are of the order of the machine precision. If this is not
the case, HYBRD1 may fail (usually with INFO = 4). One should then use
HYBRD directly, or one of the programs which require the analytic Jacobian
(HYBRJ1 and HYBRJ).

In addition, sometimes it is necessary to start from a different point in the
domain. Therefore, our starting iterates are chosen from a set of convex com-
binations of an explicit Euler step for the equation (13) and the mesh at the
last time step, X(t). The choice is made based on estimates of the condition
number of the jacobians at the possible initial iterates.
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3 Numerical examples

3.1 General PME equation of power m

Consider first the general PME equation ut = (umux)x for m = 3 :

ut = (u3ux)x, (23)

As initial data, the self-similar solution is used at time t0 = 0.01. Its compact
support is defined by |x| ≤ 0.010.2 ≈ 0.4. We integrate up to t = 1. This
problem was also considered in [4,2].

The program Porousmedium 1 implements the ”implicit” algorithm for a
moving mesh based on a general CDP, i.e., the local masses are conserved in
time but are not equal in space. Some details are:

• The initial mesh {0 = x0, x1, ..., x+ = xN} is uniform. After computing the
solution ui at the nodes (with uN = 0, local mass approximations ci are
computed, this time for i = 1, ...N. Formula #3 is used for i = 1, ...N − 1,
and formula #1 for i = N. Then the approximations to ci(ξ), i = 0, ...N − 1
are obtained from equation (17).
• For the iteration over time in steps ∆t to obtain u(t+∆t) HYBRID1 is used

to solve the nonlinear system in xi(t + ∆t), i = 1, ...N − 1. The ”special”
nodes x0 and xN(t) are computed as x0 = 0 with xN given by the one-sided
implicit scheme (22). As mentioned earlier, the initial iterate is defined using
a convex combination of an explicit Euler step and the computed grid at
the previous step x(t). The condition number of the jacobian at the initial
values is computed with the intention eventually to start the iteration at
the best conditioned point. For the time being, initial values are tried until
the algorithm converges. The tolerance parameter tol is set to tol = 10−6, so
that the computed solution should have approximately 6 significant digits.

The tables below compare the errors, at a time tfinal as close as possible
to t = 1, of the computed solution u, using the semi-implicit scheme with
and without smoothing and the implicit method. The results correspond to
increasing sizes of ∆t and increasing number of nodes, 80 and 120.

In the semi-implicit method the fixed-point iterations stop if the ‖residual‖2 <
10−2 or the number of iterations > 20. Changing these values to 10−3 and 40
iterations gives essentially the same results.

For N=80
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Semi-implicit

∆t error in u0 max error in ui

5.10−3 0.28.10−2 7.03.10−2

10−2 0.36.10−2 7.75.10−2

2.10−2 0.53.10−2 9.59.10−2

5.10−2 1.15.10−2 0.25

Semi-implicit with x−smoothing

∆t error in u0 max error in ui

5.10−3 0.23.10−2 1.25.10−1

10−2 0.35.10−2 6.56.10−2

2.10−2 0.55.10−2 8.6.10−2

5.10−2 1.15.10−2 0.18

Semi-implicit with u−smoothing

∆t error in u0 max error in ui

5.10−3 0.28.10−2 1.33.10−2

10−2 0.36.10−2 2.06.10−2

2.10−2 0.54.10−2 4.0.10−2

5.10−2 1.15.10−2 0.19

Implicit

∆t error in u0 max error in ui

5.10−3 0.3293.10−3 7.004.10−3

10−2 0.1465.10−2 3.64.10−2

2.10−2 2.097.10−2 0.2554

5.10−2 overtaking

For N=120

Semi-implicit
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∆t error in u0 max error in ui

10−4 0.13.10−2 5.97.10−2

10−3 0.14.10−2 6.1.10−2

10−2 0.27.10−2 7.86.10−2

Semi-implicit with x−smoothing

∆t error in u0 max error in ui

10−4 0.17.10−2 2.23.10−1

10−3 4.0.10−4 1.75.10−1

10−2 0.28.10−2 6.86.10−2

Semi-implicit with u-smoothing

∆t error in u0 max error in ui

10−4 0.13.10−2 1.08.10−2

10−3 0.14.10−2 1.13.10−2

10−2 0.27.10−2 2.9.10−2

Implicit

∆t error in u0 max error in ui

10−4 0.4838.10−3 1.168.10−2

10−3 0.2665.10−3 1.021.10−2

10−2 large condition number

The next table shows the behaviour of the methods for a fixed value of the
time step but different number of nodes.

For ∆t = 10−4 at tfinal ≈ 1,

Semi-implicit
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N error in u0 max error in ui

20 1.28.10−2 7.74.10−2

40 0.52.10−2 7.21.10−2

80 0.21.10−2 6.46.10−2

120 0.13.10−2 5.97.10−2

Semi-implicit with x-smoothing

N error in u0 max error in ui

20 2.79.10−2 3.75.10−1

40 1.04.10−2 3.13.10−1

80 0.35.10−2 2.55.10−1

Semi-implicit with u-smoothing

N error in u0 max error in ui

20 1.28.10−2 3.21.10−2

40 0.52.10−2 2.11.10−2

80 0.21.10−2 1.38.10−2

Implicit

N error in u0 max error in ui

20 0.4473.10−2 1.554.10−2

40 0.1981.10−2 1.407.10−2

80 0.8261.10−3 1.26.10−2

120 0.4838.10−3 1.168.10−2

We also run tests for m = 5, starting the calculations with the self-similar
solution at the same t = 0.01 and extending until tfinal ≈ 1. The compact
support here is defined by x± ≈ ±0.5.

For N = 20 with different ∆t values:
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Semi-implicit

∆t error in u0 max error in ui

10−4 0.18.10−1 9.58.10−2

10−3 0.19.10−1 9.6.10−2

10−2 2.17.10−2 1.0.10−1

Semi-implicit with x-smoothing

∆t error in u0 max error in ui

10−4 7.37.10−2 6.19.10−1

10−3 3.48.10−2 5.79.10−1

10−2 1.07.10−2 4.58.10−1

Semi-implicit with u-smoothing

∆t error in u0 max error in ui

10−4 0.18.10−1 6.96.10−2

10−3 0.19.10−1 6.96.10−2

10−2 2.17.10−2 6.96.10−2

Implicit:

∆t error in u0 max error in ui

10−4 1.00.10−2 2.64.10−2

10−3 0.98.10−2 2.62.10−2

10−2 0.8.10−2 2.44.10−2

Comparing for ∆t = 10−3 with several number of nodes:

Semi-implicit
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N error in u0 max error in ui

20 0.19.10−1 9.6.10−2

40 0.8.10−2 1.0.10−1

80 0.38.10−2 1.033.10−1

Semi-implicit with x-smoothing

N error in u0 max error in ui

20 3.48.10−2 5.79.10−1

40 0.64.10−2 5.0.10−1

80 3.44.10−4 4.41.10−1

Semi-implicit with u-smoothing

N error in u0 max error in ui

20 1.91.10−2 6.96.10−2

40 0.84.10−2 5.52.10−2

80 0.38.10−2 4.37.10−2

Implicit

N error in u0 max error in ui

20 0.9832.10−2 2.624.10−2

40 0.439.10−2 2.723.10−2

80 0.1846.10−2 2.727.10−2

For all methods and for m = 3, 5, increasing the number of nodes while keeping
a common time step ∆t results in an, expected, decrease of the errors, or at
least very similar errors. For most these runs the computed interface xN is
smaller than the exact at tfinal ≈ 1.

The results when keeping instead the number of nodes and varying the time
step are more ambiguous. The error for the semi-implicit method with x-
smoothing oscilates in several of the tests whereas when using the semi-implicit
with u−smoothing the errors increase as expected with increasing time step.
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The implicit method works very well in some cases, but when the number of
nodes is large (120 nodes if one considers the whole compact support), the
results are not good.

For comparison, the purely explicit finite difference scheme implemented in the
program FD MBainesMarch09 was used to test the problem with m = 3.
As in the Porousmedium 1 program, it starts with an uniform mesh and uses
Formula #3 for the mass approximations. The preliminary results already
indicated that the method was not competitive. The following table shows
results for 11 number of nodes.

Running up to a tfinal ≈ 1, for N = 11,

∆t error in xN

10−5 2.17.10−2

10−4 2.17.10−2

10−3 2.13.10−2

2.10−3 2.13.10−2

5.10−3 No results

For N = 21, the breaking point is already 10−4 and for N = 41, 10−5.

Accepting that the stability condition is roughly ∆t/∆x2 < 1, there is no
sense in continuing with more nodes as the time step has to be too small.

4 Conclusions up to this point

Two types of methods were designed, a semi-implicit and an implicit scheme
that both discretize a mesh movement equation expressed in terms of the nodes
x and the local masses c. The semi-implicit scheme uses an explicit method
for the boundaries, whereas the implicit uses an implicit one-sided method.
In order to improve the values computed at the boundaries, two smoothing
methods are tried with the semi-implicit scheme: smoothing of the end nodes
and smoothing of the solution at the end nodes. It can be proved that for a
non-contracting domain the semi-implicit method with x−smoothing produces
an untangled mesh.

The preliminary testing indicates that although the implicit scheme often
produces smaller errors, its behaviour is not so robust as the semi-implicit
scheme with u-smoothing.
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On the other hand, the expense in using an implicit scheme versus any of the
others is much higher. The following table lists the CPU times in seconds of
two methods compared for different number of nodes, using a small enough
time step so that any of the methods still remains stable. The time relation
between the implicit and the semi implicit scheme (without any smoothing)
starts from 150 for N = 41 going down to 16 for N = 11.

N,∆t Semi implicit Implicit

11, 5.10−4 0.0156 0.2496

21, 5.10−5 0.156 9.05

41, 5.10−5 0.31 47

But this is not a fair comparison because the accuracy of the results obtained
are not the same. The following comparison is more meaningful: for each
number of nodes we compare the ”best run” for each method, i.e., the one
with the smallest error for xN using the largest time step, in other words the
smallest number of computations.

N = 11 error in xN ∆t CPU time in sec.

Semi-implicit 2.13.10−2 5.10−3 1.56.10−2

Implicit 0.6168.10−3 2.10−2 3.12.10−2

N = 21

Semi-implicit 0.2086.10−2 5.10−4 6.24.10−2

Implicit 0.1247.10−2 2.10−2 6.24.10−2

N = 41

Semi-implicit 0.5522.10−3 1.10−4 0.1716

Implicit 0.8079.10−4 1.10−2 0.4524

The work relation varies from 34 times better accuracy for double the CPU
time in the N = 11 case, to twice the accuracy for the same CPU time for the
N = 21. For N = 41, there is again a good advantage for the implicit scheme.
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