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Abstract

The Ultra Weak Variational Formulation (UWVF) is a powerful numerical method

for the simulation of acoustic, elastic, and electromagnetic waves. Key to its strength

is the superior approximation properties of the Trefftz basis of local solutions of the

homogeneous form of the equation to be solved. In this thesis we consider time harmonic

acoustic wave propagation in two dimensions, as modelled by the Helmholtz equation.

We investigate enrichment of the UWVF basis for wave scattering and propagation

problems, with applications in geophysics.

A new Hankel basis is implemented in the UWVF, allowing greater flexibility than

the traditional plane wave basis. We use ray tracing techniques to provide a good

a priori choice of direction of propagation for the UWVF basis. A reduction in the

number of degrees of freedom required for a given level of accuracy is achieved for the

case of scattering by a smooth convex obstacle.

The use of the UWVF for forward seismic modelling is considered, simulating wave

propagation through a synthetic sound speed profile of the subsurface of the Earth. The

practicalities of implementation in a domain of highly varying sound speed are discussed,

and a ray enhanced basis is trialled. Wave propagation from a source on the interior

of the domain is simulated, representative of an explosive sound source positioned at

depth. The UWVF typically has difficulties representing the inhomogenous Helmholtz

equation. An augmentation to the UWVF called the Source Extraction UWVF is

presented which allows the superior approximation properties of the Trefftz basis to be

maintained.
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Chapter 1

Introduction

1.1 Motivation

Time harmonic wave theory for elliptic partial differential equation (PDE) problems

encompasses acoustic waves (on the scalar field) [19], elastic waves (over scalar and

vector fields) [43], and electromagnetic waves (over two coupled vector fields) [24, 57].

The wave propagation problems associated with these wave types are numerous, and

are areas of intensive study in mathematics, physics, and engineering. The widespread

interest in the accurate simulation of wave propagation is due to the broad range of

applications, such as those in defense, seismology, and medical physics. Wave scattering

techniques are commonly used in imaging processes, for example in radar, sonar, seismic

imaging, and non invasive medical imaging [18,43,70].

Commonly used numerical methods for the approximation of wave propagation,

including Finite Difference (FD) and Finite Element Methods (FEM), often require a

fixed number of degrees of freedom per wavelength in order to resolve the oscillatory

nature of the solution [20]. This means that to obtain an accurate approximation,

the number of degrees of freedom required grows linearly in each dimension with the

wave frequency, i.e., of the order of the wavenumber to the power of the number of

dimensions. High frequency problems are those where the wavelength is very small

compared to the domain of definition, thus the solution is highly oscillatory. At high

1
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frequencies, the number of degrees of freedom per wavelength has to be even larger, in

comparison to cases of relatively low frequencies where a rule of thumb of ten degrees

of freedom per wavelength are required to achieve enginering accuracy [18,44,47]. Due

to the linear requirement on the number of degrees of freedom in each direction, the

numerical approximation of high frequency solutions can lead to linear systems of a large

number of unknowns, which can be highly computationally expensive to solve. This

computational expense can be reduced through the use of enhanced approximation

spaces, such as polynomials of a high degree [4, 56] or those which incorporate the

known oscillatory behaviour [9, 21, 44].

This thesis is on the subject of new generation FEM, motivated by applications

in geophysics. Current iterative and FEM for the simulation of seismic wave propa-

gation and reflection in the Earth’s subsurface are hugely expensive in computational

resources [26]. Due to the large scale of the domain of interest, accurate simulations

come with large storage requirements and long computation times. We consider a class

of numerical methods called Trefftz methods, the Ultra Weak Variational Formulation

(UWVF) [16,17] in particular. Those in the seismic industry have an interest in meth-

ods of this type, as it is hoped that they will be more efficient for imaging the Earth’s

subsurface in order to locate hydrocarbon bearing rocks. The concept that is key to

this improved efficiency is the assumption of wave like behaviour on each element,

incorporating the known physical behaviour of the solution.

1.2 Aims and Key Results

The overall aim of this thesis is to increase the stock of knowledge about the UWVF, and

to give greater insight into the potential for its increased widespread use. Specifically

we aim to:

• Investigate and assess the impact of enrichment of the UWVF basis.

• Find ways of reducing the computational cost of approximating solutions whilst

maintaining high levels of accuracy.
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• Investigate the applicability of the UWVF as a method for forward seismic mod-

eling.

To do this we consider several areas:

1. The use of a Hankel basis in the UWVF.

2. The use of ray tracing techniques, for both constant and non constant media, to

give a good a priori choice of basis.

3. The use of the UWVF to approximate wave propagation in a domain of highly

variable parameters typical of those seen in the subsurface of the Earth.

4. The UWVF approximation of point sources on the interior of the domain, repre-

sentative of a likely real world set up of a sound source down a well.

Key results of this thesis are

1. We present an alternative method for solving inhomogeneous equations in the

UWVF, called the Source Extraction UWVF [38]. Numerical results are presented

that are of higher accuracy than the standard UWVF.

2. We use the UWVF to approximate wave propagation in a synthetic seismic do-

main, the Marmousi model [54], where the sound speed profile is complex and

highly varying.

3. We present an algorithm for finding the local ray traced centre of curvature of the

scattered field produced by wave interaction with a smooth convex obstacle.

4. We augment the UWVF basis with these ray traced centres of curvature, resulting

in a reduction in the number of degrees of freedom required for a given level of

accuracy.

5. In the case of a domain of varying wavespeed, we use Fast Marching Methods

[13,63] to provide ray directions for use in the basis in the UWVF approximation.



CHAPTER 1. INTRODUCTION 4

6. We use a new Hankel basis in the UWVF, which allows greater flexibility in the

level of curvature and variability of wavefronts than the standard plane wave

basis.

7. We present a comparative study of the Hankel and traditional plane wave basis,

focusing on the accuracy achieved and the conditioning of the linear system of

equations.

8. We derive what is to the author’s knowledge the first Discontinuous Galerkin

(DG) formulation of the UWVF for the inhomogeneous Helmholtz equation in a

domain where the wavenumber and density are non-constant.

1.3 Outline

The thesis structure is as follows.

In Chapter 2 we provide the context for the research in the subsequent chapters. We

introduce some background of acoustic wave propagation, and the equation governing

wave motion: the Helmholtz equation. Factors that need to be taken into consideration

for the accurate numerical simulation of time harmonic acoustic wave propagation are

explained, such as the truncation of an infinite domain, the imposition of boundary

conditions, and computational time and storage costs. Details of two very different

methods for understanding wave propagation are given. The first, the Method of Fun-

damental Solutions (MFS) [9], approximates the solution of the Helmholtz equation

throughout the domain by a linear combination of fundamental solutions, by forcing

conditions to hold on the boundary of the domain. The second method, Ray Trac-

ing, is a method widely used in the seismic industry [2, 12, 32]. It provides a high

frequency approximation to the direction of propagation of wavefronts and the travel

time taken. This thesis is concerned with forward modelling, that is the simulation

of wave propagation given a domain and set parameters that hold. Details of the re-

lated inverse problem are explained, where the structures within or parameters that

hold in the domain are predicted often based upon the results of multiple trials of the
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forward problem, either at varying frequencies or differing parameter set-ups [70]. The

motivation for this research comes from the seismic imaging industry. We give back-

ground as to the numerical methods currently used in the seismic industry, and detail

the practicalities of real world data acquisition.

In Chapter 3, we introduce the UWVF [16,17,44]. The UWVF is a powerful numeri-

cal method for the approximation of acoustic, elastic, and electromagnetic waves in two

and three dimensions. The UWVF belongs to a category called Trefftz methods: the

solution of the equation governing wave motion is approximated by a basis of functions

that also satisfy the homogeneous form of the governing equation in each polygonal el-

ement of a discretised domain. The specific problem set up for the Helmholtz equation

and the UWVF approximation form is given, as well as the derivation of the UWVF

in the original variational and the more recently shown DG framework [15, 29, 31]. To

the author’s knowledge, the DG formulation of the Helmholtz equation presented is the

first such derivation for a domain of non-constant wavenumber and density. Key theo-

retical results from the literature are explained. Computational aspects of the UWVF

are then detailed, including the derivation of the linear system of equations, condi-

tioning issues that arise. A plane wave basis has been used in most UWVF literature

to date [16, 17, 40, 41, 44], however there has been some experimentation with a Bessel

basis in [52, 53]. Here, we introduce a Hankel basis, of circular wavefronts propagating

outwards from a point source. This basis allows flexibility in the set, as varying levels

of curvature of the wavefronts may be included, with zero curvature returning the clas-

sical plane waves. We present a comparison study of wave propagation using either a

plane wave or Hankel basis, considering both the convergence to the exact solution, the

conditioning of the linear system of equations, and the point at which ill-conditioning

causes the solution to break down.

In Chapter 5 we consider the case of wave scattering by a smooth convex obstacle,

in a domain of constant wavespeed. We use ray tracing techniques in order to find a

good a priori choice of basis function. We do this by finding the ray trajectory of a

wavefront that propagates through a domain and interacts with a scatterer, causing a
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reflected wave. An algorithm is developed that gives the centre of curvature for the

reflected wavefronts, that can then be used in the UWVF Hankel basis. The algorithm

is presented for a general smooth convex obstacle, with the specific examples of a

circular and an elliptical scatterer further expanded upon. An initial study of the best

approximation in an individual element for scattering by a circle is presented, as well

as an investigation into the question of in which regions of the domain the ray traced

basis is most accurate.

Chapter 5 is the first in which we investigate the enrichment of the UWVF basis for

specific problem types. Similar strategies have been investigated in [9, 11]. We present

the UWVF approximations to wave scattering by a circle, and then by an ellipse. We

use first of all the traditional equi-spaced plane wave basis, and then compare with the

results of using a basis augmented by the ray traced centres of curvature. Numerical

results show there is a significant reduction in the number of degrees of freedom required

for a given level of accuracy when using the ray traced augmented basis.

In Chapter 6 we extend the use of ray tracing techniques for enriching the UWVF

basis to a domain where the wavespeed profile varies. This case is more relevant to

the seismic community, as the sound speed profile of the subsurface of the Earth is

one which varies with depth, usually in horizontal layers with seismic faults. For our

numerical experiments we use the Marmousi model, a two-dimensional synthetic sound

speed profile often used as a test case in the seismic industry [2, 54]. To the author’s

knowledge this is the first time the UWVF has been used to approximate wave propa-

gation in a complicated domain of highly varying wavenumbers. Ray tracing techniques

are widely used in the seismic community [2, 12, 22]. Two methods for ray tracing are

presented: the first uses the Method of Characteristics to provide multiple ray paths

of wavefronts based upon an initial starting trajectory; the second uses Fast March-

ing Methods (FMM) to find the direction of the ray path of the fastest propagating

wavefront, at any point in the domain. Ray directions from the latter method are imple-

mented into the UWVF basis, and compared with results of the standard equi-spaced

plane wave basis. In this case numerical results suggest that alternative methods of
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incorporating ray directions on the UWVF basis may prove more effective. With the

FMM ray directions used in the UWVF basis, although there are some initial gains in

accuracy by using the ray traced basis, these gains are lost as the number of degrees of

freedom used increases and the solution converges to a steady state.

In Chapter 7 we consider another problem highly relevant to seismic imaging, that of

wave propagation from a source on the interior of the domain. This set-up is common-

place in the seismic industry, as real world data collection often uses an explosive sound

source positioned at a significant depth below ground level [28, 68]. To approximate a

sound source on the interior domain requires solving the inhomogeneous form of the

Helmholtz equation. Due to the Trefftz basis, the UWVF is not well disposed to solv-

ing the inhomogeneous Helmholtz equation (as explained in [16, §I.2.1.5]): we present

example results demonstrating this for the case of wave propagation from an interior

sound source in a domain of constant wavenumber. We then present an augmentation

to the UWVF which we call the Source Extraction UWVF. In this new method we

effectively remove the inhomogeneity of the equation, splitting the domain into a small

region containing the source where only the back scattered field is approximated, and

the remainder of the domain where the total field is approximated. The two fields

are matched on the inter-region boundaries through the use of augmented impedance

traces. Similar techniques have been used in [6, 29, 59]. Accurate results of the Source

Extraction UWVF are presented for a domain of constant wavenumber. Results for

differing discretisations and frequencies are presented for wave propagation in a section

of a smoothed Marmousi velocity profile, which concur with those using a high order

FD approximation. This work has been published seperately in [38].

Finally in Chapter 8 the findings of this thesis are summarised and conclusions

drawn. Ideas for further work are also presented.



Chapter 2

Background

In this chapter we provide some background for the research of this thesis. In §2.1 we

explain key concepts in acoustic wave propagation, such as the Helmholtz equation,

boundary conditions, and scattering problems. Numerical techniques used in acoustic

wave simulation are discussed in §2.2, including the MFS and ray tracing. Finally, in

§2.3, we explain aspects of the use of acoustic wave propagation in seismic imaging,

such as the forward and inverse problems, and real world data acquisition.

2.1 Acoustic Wave Scattering

Time harmonic wave propagation can take the form of acoustic, elastic, or electro-

magnetic waves. There are many applications in which they arise, providing areas for

intensive research in mathematics, physics, and engineering. Here we focus on two

dimensional (2D) time harmonic acoustic wave propagation, and its applications in

seismic imaging. As well as seismic imaging however, there are many more applications

of acoustic wave propagation, for example to communicate with or detect vessels using

sonar, or medical imaging via ultrasound.

8
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2.1.1 The Wave Equation and Helmholtz Equation.

Acoustic waves are small oscillations in pressure in an acoustic medium (a compressible

ideal fluid), which interact in such a way that energy is transferred through the medium

[45]. We consider the 2D spatial variable x = (x, y) and denote time by t. For acoustic

waves, the velocity potential or pressure fluctuation U = U(x, t) satisfies the wave

equation
1

c2
Utt = ∆U =

∂2U

∂x2
+
∂2U

∂y2
, x ∈ Ω, t > 0, (2.1)

(in two dimensions), where the domain Ω ⊂ R
2, ∆ = ∇2 is the Laplacian, and c is the

speed of sound. The time harmonic case assumes that all waves are steady state, and

so the time variable can be separated from a stationary function of the space variable,

resulting in the form

U(x, t) = Re{e−iωtu(x)}.

Here i is the imaginary unit, ω = 2πfr is the angular wave frequency, fr is the frequency,

and the complex valued u is the acoustic pressure. The parameter κ = ω/c is known as

the wavenumber. It is the spatial frequency of the wave, and depends upon the wave

frequency ω > 0 and the speed of sound c. It follows that

∂2U

∂t2
= −ω2Re{e−iωtu(x)} = −κ2c2Re{e−iωtu(x)}, x ∈ Ω, t > 0,

and substituting this into (2.1) we have

−κ2Re{e−iωtu(x)} = Re{e−iωt∆u(x)} x ∈ Ω, t > 0.

By rearranging, we see that u satisfies the Helmholtz equation

∆u+ κ2u = 0 x ∈ Ω. (2.2)

The simplest plane wave solutions of the Helmholtz equation, eiκx·d, where d is a con-

stant unit vector, are spatially periodic, the length of the period given by the wavelength

λ =
2π

κ
. (2.3)
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The Helmholtz equation is elliptic, and the use of Green’s functions is particularly

appropriate for solving this type of PDE [66]. The standard fundamental solution

Φ(x,y) of the Helmholtz equation is the solution that satisfies

∆u(x) + κ2u(x) = −δ(x− y), (2.4)

for x ∈ Ω := R2, where δ is the Dirac delta function, and y ∈ Ω is the source point.

The solution of (2.4) gives the acoustic pressure field from a time-harmonic point sound

source in free space. In 2D the standard fundamental solution of the Helmholtz equation

is the Green’s function [18, Equation 1.2]

Φ(x,y) =
i

4
H

(1)
0 (κ|x− y|), (2.5)

where H
(1)
0 denotes the Hankel function of the first kind of order zero. In three dimen-

sions (3D) it is given by (also [18, Equation 1.2])

Φ(x,y) =
eiκ|x−y|

4π|x− y| . (2.6)

In both the 2D and 3D case, Φ(x,y) is singular at x = y, i.e. |Φ(x,y)| → ∞ as x → y,

as explained for (2.5) by [3, Equation 9.1.8]. The behaviour of the singularity for the

2D case is given by

Φ(x,y) ∼ 1

2π
ln |x− y| as |x− y| → 0. (2.7)

The Hankel function is also known as a Bessel function of the third kind, so called

as it is a complex linear combination of Bessel’s functions of the first kind Jν(x), and

second kind Yν(x), both of order ν, given by

H(1)
ν (x) = Jν(x) + iYν(x).

Bessel functions are so called as they are linearly independent solutions of Bessel’s

equation

x2y′′ + xy′ + (x2 − ν2)y = 0.

In free space (Ω = R
n, where n = 2, 3 is the dimension), the physical solutions

we seek are outgoing, thus we require for our approximations that there are no wave
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reflections at infinity. The Sommerfeld radiation condition [12, §6.4] is a far field condi-

tion which ensures waves are absorbed at infinity and not reflected back. It is derived

through integration of the Helmholtz equation with the Green’s function fundamen-

tal solution [45, §1.1.3]. The Sommerfeld radiation condition in 2D is that waves are

absorbed at infinity provided

u = O(r−1/2), iκu− ∂u

∂r
= o(r−1/2), as r → ∞. (2.8)

The notation f(x) = O(g(x)) as r → ∞, uniformly in x̂ = x/r, means that, for some ĉ >

0 and R > 0, |f(x)/g(x)| ≤ ĉ for |x| ≥ R, whilst f(x) = o(g(x)) means f(x)/g(x) → 0

uniformly in x̂/|x| as r → ∞. The first equation in (2.8) characterises the decay of the

solution, whilst the second ensures the direction of the far field behaviour is outgoing.

2.1.2 Acoustic wave scattering typical problem set-up.

There are many different problem set-ups often considered in the study of acoustic wave

propagation. In this thesis we consider two types of problem:

1. the Helmholtz equation (2.2) with constant wavenumber holds in Ω = R
2\Ω+,

where Ω+ is a bounded Lipschitz domain - this represents scattering by an obstacle

in a homogeneous medium;

2. the Helmholtz equation with spatially varying wavenumber holds in Ω ⊂ R
2, i.e.

(2.2) holds in Ω where κ = κ(x) - this represents propogation and scattering in

an inhomogeneous medium with varying wavespeed.

Problem 1 is known as a scattering problem, in which there are one or more obstacles

on the interior of the domain, as per Figure 2.1. The field generated by a source is

known as the incident field. An incident wave field propagating in Ω will interact with

the boundary of the obstacle Γ1, causing a scattered field to be produced. Thus the

total wave field u can be expressed as the sum of the known incident field ui, and the

scattered field us produced:

u = ui + us.
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Both of ui and us are separately solutions of the Helmholtz equation (2.2). Incident

fields commonly used, for example, are a plane wave as shown in Figure 2.2, a circular

wave propagating outwards from a point source as shown in Figure 2.3, or a linear

combination of these wave types, such as a dipole source (two point sources positioned

proportionally to the wavelength, that are of opposite phase).

us

Ω

Ω+

Γ1
ui

.

Figure 2.1: Total wave field u = ui + us, where ui is the incident wave and us is the

scattered wave.

Problem 2 is known as an interior problem, in which we solve for the wave field

propagating through the interior of a bounded domain Ω ⊂ R
2. The incident field

is generated from an interior or exterior source. The scattered field is created by

reflection and diffraction effects caused at the boundary, or by variations in the physical

parameters of the medium, such as the density or sound speed.

When we take Ω as a bounded domain, boundary conditions are applied to match the

physical set up required. Dirichlet boundary conditions, or the boundary condition of

the first kind [12, §6.1], are those where data is provided on boundary Γ as a restriction

of the solution u, referred to as being sound-soft in the case of acoustic scattering.

Neumann boundary conditions, or the boundary condition of the second kind, are

referred to as being sound-hard; here ∂u/∂n is specified on Γ, that is the rate of change

of the solution in the direction normal to the boundary. Note that here and throughout,

∂/∂n denotes the outward normal derivative. The case of boundary data being provided

as a linear combination ∂u/∂n− αu for some α ∈ C is known as mixed, impedance, or

Robin boundary conditions. When the mixed condition is of the form ∂u/∂n− iκβ̂u =
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Figure 2.2: A plane wave

Figure 2.3: A Hankel circular wave from a point source
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g, the function β̂ is the relative surface admittance, which governs the level of flow

permitted through the boundary [19]. The impedance boundary condition with β̂ = 1

is often used as a crude approximation to the Sommerfeld radiation condition, as it

forces the wave field to be out-going in the normal direction.

For the case of scattering by an obstacle, the obstacle will cause the total reflection

of waves that interact with it. In this case we can apply Dirichlet or Neumann boundary

conditions on Γ1. In the case of a concave obstacle or multiple scatterers, it is possible

to get multiple reflections, and even trapped modes where the oscillations are confined

to a region, and the wave energy dissipates only exponentially slowly. Alternatively,

one could simulate an obstacle which is penetrable, allowing some wave energy to flow

into and out of the obstacle. In this case we would solve the Helmholtz equation in

Ω ∪ Ω+, and set transmission boundary conditions on Γ1 to replicate the comparative

properties of the two media [34].

2.1.3 Forward and inverse problem.

A major reason for the extensive interest in wave theory and simulation is due to

imaging applications, where properties inside a domain that is not easily accessible can

be discovered non-invasively [12]. These applications include medical imaging, such

as x-ray and MRI, where details of bone fractures or tumors can be imaged without

the need for surgery. Non-Destructive Testing is another wide ranging application in

engineering, construction and aerospace, where wave scattering techniques are used to

find cracks and faults in structures and engine parts. Wave based imaging techniques

are widely used in the defence industry, including radar and sonar, where they can be

used to identify unknown vessels or concealed weapons. Details of the use of acoustics

in seismic imaging are given in §2.3.

For many applications there are two stages required in the imaging process: the

solving of the direct or forward problem on multiple levels, and then solving the in-

verse problem. The direct scattering problem is that which aims to find the scattered

field produced by the interaction of a known incident wavefield with structures in the
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domain or variations in the medium, based upon knowledge of the differential equation

governing the wave motion. The inverse scattering problem is that of trying to deter-

mine the nature of the object or domain of definition, based upon the behaviour of the

scattered field. There exist inverse methods which do not require the forward prob-

lem to be solved, such as the sampling method [23] and the point source method [65].

However in situations where information is limited, for example if the wavefield is only

available on the boundary of the domain, iterative techniques are more widely used. In

this type of inverse method the forward problem would be solved several times for a

given domain structure, either for different source types or positions, or over a range of

frequencies. Through comparison of the actual received signals and travel times with

those generated by the numerical simulations, the wave trajectories from the source

can be reconstructed, and an image of the domain created based upon a structure that

would cause the said trajectories.

2.2 Numerical Methods for Acoustic Wave Mod-

elling

When solving acoustic wave propagation problems, it is impossible to find an analyt-

ical solution unless the geometry of the domain is particularly simple. Consequently,

numerical schemes are required. The accurate simulation of acoustic wave propagation

is an area that has been extensively studied, and in which many different methods have

been proposed. When choosing the appropriate method to use, there are many factors

to consider. These include: whether the discrete solution is unique or not; the level of

accuracy of solutions required; the stability of the method; the rate of convergence of so-

lutions; factors that might make a scheme particularly suited to the problem type; and

the computational cost of producing the solutions, both in terms of time and storage.

The FEM is in numerical technique for approximating solutions to boundary value

problems of PDEs, through the use of a variational formulation. The domain of approx-

imation is discretised into a finite number of elements, in which solutions are approx-
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imated by a linear combination of basis functions. When approximating solutions of

time-harmonic equations, it can be beneficial to adopt a strategy of incorporating infor-

mation of the equation into the scheme, in order to save on computational expense. To

this end many different wave-based numerical methods have been proposed, which in-

corporate the wavenumber into the approximation space. Trefftz methods are so named

after Erich Trefftz [64]. The title includes all finite element schemes in which the test

and trial spaces are spanned by solutions of the governing equation, for example, a

solution of the Helmholtz equation is approximated by a linear combination of basis

functions which are also solutions of the Helmholtz equation. Knowledge of the oscil-

latory character of solutions and their intrinsic wavelengths are thus incorporated into

the discretisation of the problem through the use of oscillatory basis functions. These

type of methods include Plane Wave Discontinuous Galerkin (PWDG) methods [29,31],

the UWVF [16, 17, 44], and the Discontinuous Enrichment Method (DEM) [69]. More

extensive detail of the two former methods are given in Chapter 3. An alternative tech-

nique commonly used for incorporating the wavenumber into the numerical scheme is

through the use of the modulated basis: oscillatory shape functions that are the prod-

uct of local solutions of the equation and non-oscillatory functions, usually low-degree

polynomials. This has been done both for FEM [11, 48] and Boundary Element Meth-

ods (BEM) [18,34], usually using plane wave local solutions (although Bessel solutions

have also been used in [48]). Polynomial modulated methods include the Partition of

Unity FEM (PUFEM) and wave interpolation finite element schemes [47]. A compari-

son of these wave based methods with the UWVF can be found in [30,39]. For further

discussion of the pollution effect in FEM for approximating the Helmholtz equation,

see [7].

High order FEM schemes, where the oscillatory behaviour is instead captured by

polynomials of a high degree, have also proved to be highly effective [4, 56]. However,

as the wave frequency increases, a higher number of degrees of freedom are required

to obtain a given level of accuracy. When improving the approximation through the

use of mesh refinement, known as h−version FEM, the approximation suffers from

numerical dispersion, also known as the pollution effect: solutions show an accumulation
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of phase error. A very fine mesh is required in order to overcome these pollution

errors when approximating high frequency solutions, rendering h−version FEM too

computationally expensive to implement in some cases [57]. By instead improving the

solution through increased polynomial degree, pollution errors can be avoided, at the

cost of the locality of the approximation. Similarly, h−version PWDG methods also

suffer from the pollution effect [31], and so improving the solution through an increased

number of wave basis functions is recommended [31,36].

Another type of method where the oscillatory behaviour and wavelength of the so-

lution is incorporated is the Method of Fundamental Solutions (MFS) [9]. The MFS

is a collocation method, which approximates the Helmholtz solution by a linear com-

bination of its fundamental solutions (2.5). More detail of this method is given in the

following section §2.2.1. We then detail in §2.2.2 a very different type of method widely

used in the study of acoustic wave propagation, not for finding an approximate solution,

but for approximating the direction of wave propagation and travel time taken: that of

ray tracing.

2.2.1 The Method of Fundamental Solutions

The MFS is a collocation method for solving Helmholtz boundary value problems, as

detailed in [9]. In this section we detail this numerical method so that it can be used

later in §4.2.3 to provide a comparison solution with which to compare our UWVF

results. We solve the Helmholtz equation (2.2) where Ω is a bounded domain in R
2,

with boundary Γ, and the wave number κ > 0 is constant throughout (the medium is

homogenous). On Γ, a source term g ∈ L2(Γ) is applied through boundary conditions,

enforced as discussed below. The solution of (2.2) is approximated by u(N), a solution

which takes the form of a linear combination of N fundamental solutions

u(x) ≈ u(N)(x) =
i

4

N∑

j=1

αjH
(1)
0 (κ|x− yj|) yj ∈ R

2\Ω, (2.9)

where αj are amplitude coefficients to be found. The yj are the source or charge points

of the fundamental solutions: cylindrical waves propagate outwards from these points.
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They are all chosen to lie outside of the domain, thus avoiding the singularity of the

Hankel function at zero. They are commonly chosen to be equally spaced along a smooth

curve: this allows the interpretation of the method as a discretisation of an external

single layer representation of u [9]. Consider a closed curve ΓE enclosing the closure of

the domain of approximation Ω such that Γ and ΓE are distinct, dist(Γ,ΓE) > 0, as

illustrated in Figure 2.4. For a given density function g̃(s) =
∑N

j=1 αjδ(s − yj) with a

point set {yj} ⊂ ΓE, the MFS formulation (2.9) is equivalent to

u(x) ≈ u(N)(x) =
i

4

∫

ΓE

g̃(s)H
(1)
0 (κ|x− s|)ds, x ∈ Ω. (2.10)

The MFS is different from BEM (see [18,19]), which also use single and double layer rep-

resentations, in that the boundary of the domain and the curve of sources are distinct,

avoiding singularities of the kernel and allowing ease and accuracy of evaluation.

A linear system Aα = g is created by forcing (2.9) to hold at M ≥ N collocation

points xm, m = 1, . . . ,M on the boundary Γ. Using a standard matrix solver, this

system is then solved to find the vector α of coefficients αj. For numerical results in

this thesis we use an appropriate solver as chosen by Matlab’s backslash operator. For

the case that M = N (A is square), the backslash operator uses Gaussian elimination

with partial pivoting to find the solution α to Aα = g. If M > N , the system is

overdetermined, and so the backslash operator finds the least squares solution which

minimises ||Aα − g||22. The coefficients in α can then be used in (2.9) to approximate

the solution over the whole domain.

For example, if we wish to solve (2.2) with the Dirichlet boundary condition

u = g on Γ, (2.11)

assuming a form (2.9) and forcing (2.11) to hold at the collocation points on ∂Ω results

in entries of matrix A being given by

Am,j =
i

4
H

(1)
0 (κ|xm − yj|). (2.12)

If instead we had the mixed boundary condition given by

∂u

∂n
− iκu = g on Γ, (2.13)
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Ω
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yN−1

x1

xM

xM−1

Figure 2.4: The MFS set-up for wave propagation in a unit circle. The source points

are represented by red dots, and the collocation points are represented by blue circles.

the matrix A would have entries

Am,j =
κ

4

(
H

(1)
0 (κ|xm − yj|)− inm · xm − yj

|xm − yj|
H1

1 (κ|xm − yj|)
)
. (2.14)

In this equation nm represents the outward normal vector at xm.

As explained in [9], for the interior Dirichlet problem, the boundary error norm

∥∥u(N) − g
∥∥
L2(Γ)

(2.15)

controls the error on the interior as

∥∥u(N) − u
∥∥
L2(Ω)

≤ CΩ

d

∥∥u(N) − g
∥∥
L2(Γ)

. (2.16)

Here d := minj[|κ2−Ej|/Ej], with Ej > 0 the domain’s Dirichlet eigenvalues (the values

of κ2 for which there exists a non-zero solution of (2.2) satisfying the homogeneous

Dirichlet condition u = 0 on Γ), and CΩ is a domain dependant constant. This means

that we may use the boundary norm as a bound on the L2 error on the interior for any

fixed non-resonant κ.
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2.2.2 Ray Tracing

Ray methods provide a natural combination of mathematical and physical insights into

wave propagation. They originate from the basic concepts in geometric optics, and

have been extended to other wave phenomena, including acoustic, elastic and electro-

magnetic wave propagation [12]. Ray methods provide a high frequency asymptotic

approximation to the direction of propagation of expanding wave fronts and the travel

time taken. Although the formal derivation and rigorous analysis hold for κ → ∞,

this is by no means the limit to which the method has been demonstrated to be valid.

Indeed, the high frequency approximations remain valid even in mid-range frequencies.

Ray tracing techniques use the ansatz that the wave behaves locally as a plane

wave [5, 14],

u(x) = A(x) exp(iψ(x)), x ∈ Ω, (2.17)

where A(x) ≥ 0 is the amplitude of the wave at the point x = (x, y), and ψ(x) ∈ R is

the phase. The rays are in the direction ∇ψ, travelling perpendicular to the wavefronts

(lines of constant phase). A ray model gives good understanding of the direction in

which the waves are travelling at high frequencies, due to the high frequency asympotic

derivation of the ray tracing equations, as will be explained below. Rays that travel

through a medium of varying wavespeed are often turning. This is due to Snell’s Law

(or the law of refraction): at an interface of two media the ratio of the sines of the angle

of incidence θi and angle of refraction θt when measured from the normal is equal to

the ratio of the phase velocities of each of the media [32]. For piecewise smooth media,

with velocity c1 in the initial medium and c2 in the second medium, Snell’s Law states

that
sin(θi)

sin(θt)
=
c1
c2
. (2.18)

To many in the geophysics industry, ray theory is considered the cornerstone of high

frequency wave seismology [22]. It is a vital aid for the description and interpretation

of seismic signals in the realistically complex media of the subsurface of the Earth.

Asymptotic ray theory for an acoustic medium can be separated into three main strands:

kinematic ray theory, dynamic ray theory, and polarisation theory. Kinematic ray
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theory gives a description of the geometry and the travel times of rays and wave fronts.

Dynamical ray theory describes the geometric spreading of rays and the magnitude of

displacement. Finally polarisation theory describes the direction of displacement. Here

we concentrate on kinematic ray theory.

The key aspect in acoustic kinematic ray theory is the solving of the acoustic Eikonal

equation

(∇τ)2 = 1

c2
(2.19)

where τ is known as the Eikonal, and 1
c
is the slowness, determined by the local

wavespeed c. As detailed in [5, 12, 22], the acoustic Eikonal equation derives from

applying the ray ansatz (2.17) to equations of acoustic wave motion and constitutive

relations for an acoustic medium. The ray ansatz assumes that the solution behaves

locally as a plane wave, and so the velocity and pressure can be represented as a sum

of multiple plane wave ray paths, known as the ray expansion. The path of each ray

is itself a function of the source, the receiver, and other parameters along the ray such

as reflections and transmissions history. This allows the representation of the solution

as a function of frequency-dependent phase factors and frequency-independent travel

times combined with a frequency-independent series of amplitude coefficients. After the

ray ansatz is applied, coefficients of each power of the angular frequency ω are set to

zero [12,22], which must hold for the equations to be true for arbitrary frequencies. By

taking the first non-zero terms of the expansion we obtain the Eikonal equation (2.19).

For more details on the derivation see [22].

For the isotropic acoustic wave equation, rays travel orthogonal to wave fronts. The

wave front surfaces are given by the Eikonal τ(x) = t at time t: the different times

correspond to the different wave fronts as a wave travels through a medium [14]. The

slowness vector s is equivalent to the travel time gradient, with a magnitude equal to

the reciprocal of the velocity, |s| = 1
c
. It is perpendicular to the wave front, thus rays

travel in the direction of the slowness vector s [12]. As they travel orthogonal to the

wavefronts we have

s(x) = ∇τ(x) (2.20)
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[14, Equation (2.25)]. Thus we can write the Eikonal equation as

‖s(x)‖22 =
1

c(x)2
. (2.21)

This represents a non-linear constraint for the slowness vector s, where c(x) is the sound

speed at the point x. By solving (2.20) for the Eikonal τ we calculate first arrival travel

times along the geometric trajectories.

As explained in [14], there are several different approaches to solving the Eikonal

equation. In Chapter 6 we detail two of these methods. The first is that of using

the method of characteristics to solve the Eikonal equation in the form of a Hamilton-

Jacobi system of equations. This technique provides multi-travel timed ray paths for

ray trajectories in chosen directions from a point source. The second approach, the

Fast Marching Method, is a grid based direct solver which provides for any point in the

domain the direction of the fastest propagating wavefront.

2.3 Seismic Imaging

Geophysical exploration for oil and other minerals is a major world wide industry.

Investment in drilling operations may cost millions of dollars per well, and so extensive

research is done beforehand into the viability of potential drilling sites [68]. Seismic

imaging to determine the interior structure of the Earth is one type of method widely

used in these initial investigations, in the search for economically useful deposits. In

seismology there are two directions in which this is done: the forward problem and the

inverse problem. The former is that of computing seismic wave properties such as wave

forms and travel times for a given model of the Earth’s sub-structure and given seismic

source. The inverse problem is that of comparing this computed data with the real

data collected by physical experiments, in order to deduce the actual sub-structure.

In reality seismic waves are elastic, however due to their complex nature more often

in practice acoustic wave propagation is simulated instead. This can often provide

sufficient insight necessary for exploration applications.

For foward modelling, there are many different methods used in the seismic industry.
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Wave fields may be modelled in 2 or 3 spatial dimensions as well as in time, on large

domains of highly complex media. Thus it is preferable to use numerical methods which

minimise computational expense both in terms of memory and processing requirements,

and are parallelisable. Explict FD methods are popular in the seismic industry due to

the speed at which the solution can be evaluated: many FD methods can be solved

more quickly than the linear system of equations resultant from FEM discretisations

for a given number of degrees of freedom [26]. However there are also various FEMs

used by the seismic modelling community. Although they may be less efficient than

FD discretisations, there are advantages in that the discretisation of the domain can

be specially designed to replicate the surface topography and the discontinuities in

the velocity profile that arise due to the layered structure of the subsurface of the

Earth. High order polynomial basis functions can well represent the oscillatory nature

of the solution, and so high levels of accuracy can be achieved. The spectral-element

method (SEM) is one type of FEM used for seismic imaging, particularly for complex

geometries such as boreholes and fractures. It uses polynomials of a high degree in the

approximation space, where a low sampling ratio of 4 − 5 nodes per wavelength in an

eighth order method has been demonstrated to achieve high accuracy [26]. Also widely

used are various forms of DG methods. These are well suited to seismic applications, as

the discontinuities of the basis functions on element interfaces are suited to discontinities

in the velocity profile and other model parameters. Both types of method mentioned

here have been used for the simulation of both acoustic and elastic wave propagation

[26].

In order to distinguish the physical qualities of the actual substructure of the Earth,

the forward modelling solution must be considered with the inverse problem: does

the wave signal pattern received at the surface in physical experiments match those

predicted by the numerical model? Full waveform inversion (FWI) is one method of

inversion, an iterative method where by readjusting various parameters of a model

a good level of agreement between the predictive model and the real data can be

achieved [70]. This is done in the form of an iterative optimisation problem. The

forward modelling of the waveform is performed on an initial starting model, usually
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for several sources of a single frequency or frequency group. The starting model may be

highly inaccurate, as there may be limited information about the substructure available,

either from the real data set or geological knowledge of the region. If there is extra

information available however, with this method there is the ability to incorporate

a large amount of the geological qualities of the domain. The discretisation of the

wave equation results in a linear system of equations which is solved iteratively, each

iteration providing an update to the velocity profile which will converge to that of the

real data [70]. As the forward modelling process must be repeated for each iteration

of the inversion process, it is favourable to use a forward modelling technique that can

provide accurate solutions with minimal memory and processing requirements.

There are various other types of inversion process that have been developed for

seismics, such as travel time inversion and reflection seismology [12]. In travel time

inversion, details of the the domain’s background velocity profile is deduced by con-

sideration of the arrival times of a wave packet as a function of the distance between

the seismic source and the signal receiver [5]. In the case of reflection seismograms,

the seismic velocity profile of the domain is not recovered, but instead the impedance,

the product of the velocity and density. This is recovered by considering the echoes

received after an impulsive seismic wave is sent downward and reflects off layers in the

Earth’s interior. These inverse techniques can be a more useful alternative in the case

that the direct modelling technique is highly complicated, or there is a large amount of

high resolution real data available for the seismic domain.

On the practical side of seismic imaging is the acquisition of real seismic data. A

seismic source, or ‘shot’, is set off either on ground level or down a seismic well, and sent

as a wave signal through the sub-surface below. This wave signal interacts with the sub-

surface structures, and is reflected, refracted, or scattered back to the surface, where

an array of receivers picks up the signal [28]. There are various techniques available for

the data acquisition in a seismic survey, dependent upon the amount of data required

and the region to be imaged. For land-based data acquisition, the source may be

generated by either explosives or vibrators. For explosive sources, a series of shot holes



CHAPTER 2. BACKGROUND 25

up to 100 metres deep are drilled, the explosive charges are buried inside, and then

detonated by electronic detonators [28]. For vibrator sources (Vibroseis), a specially

designed large truck equipped with hydraulic pumps or electromagnetic vibrators can

produce an extended signal at a range of frequencies. The signals will then be received

by an array of seismometers (detectors) called geophones, which are highly sensitive to

seismic motion. This set up is illustrated in Figure 2.5. In sea-based data acquisition,

data production may be much higher as a ship can be used to gather data up to 24

hours a day (there are fewer legal restrictions to noise levels at sea). Marine sources

are either in the form of explosives or air guns, where pulses of compressed air are

released behind the ship. A floating cable of hydrophones (water-based seismometers)

trails behind the ship, recording the reflected arrivals, as illustrated in Figure 2.6. In

all inversion techniques, there is also the inaccuracy of the geophysical data to bear in

mind. In the acquisition of data there may be both measurement error and noise, as

well as incompleteness in the data set. Before data can be reliably used, it may need to

be corrected for any variation in the positioning of receivers, and processed to remove

noise and distortions produced by the instruments [28].
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Figure 2.5: Seismic data acquisition on land. A shot is fired at the source S, producing

sound waves. These propagate in the direction of the ray paths, reflecting off lower

layers. The reflected arrivals are recorded by an array of geophones g.

Shh h h

Figure 2.6: Seismic data acquisition at sea. A shot S is fired from the ship, producing

sound waves. These propagate in the direction of the ray paths, reflecting off the sea

bed and lower layers. The reflected arrivals are recorded by a cable of hydrophones h.



Chapter 3

The Ultra-Weak Variational

Formulation

In this chapter we introduce a powerful numerical method for the approximation of

accousic wave propagation, the Ultra-Weak Variational Formulation (UWVF). Key to

this method is the use of solutions of the homogeneous form of the equation to be solved

in the approximation space. In §3.1 we give details of the background of the UWVF,

the Helmholtz problem to be solved, the approximation space and the formulation.

In §3.2 we present the derivation of the UWVF, in its original variational framework.

We then follow in §3.3 with an equivalent derivation in a Plane Wave Discontinuous

Galerkin (PWDG) framework. To the author’s knowledge this is the first time that the

UWVF for the inhomogenoeous Helmholtz problem with non-constant wavenumber κ

and density ρ has been derived in the PWDG setting. Due to the equivalence with

PWDG, much progress has been made on the convergence analysis of the UWVF; key

results are presented in §3.4. Computational aspects are discussed in §3.5, including
the linear system of equations that arise in the discretisation of the UWVF, as well as

issues relating to the conditioning of the system. A new Hankel basis for the UWVF

is introduced in §3.6, and a comparison study of the conditioning of the linear system

with the original plane wave and the Hankel basis is presented in §3.7.

27
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3.1 The Ultra-Weak Variational Formulation

The UWVF was originally proposed in the mid 1990s by Cessenat and Després, in

[16, 17]. It is a new generation FEM which has been used for the accurate simula-

tion of acoustic waves in 2D [16, 17, 27, 44] and 3D [41], as well as elastic [40, 51] and

electromagnetic [16, 24, 25, 42] waves. Applications have included wave propagation,

transmission, and scattering [40,41,53], road traffic noise simulation [27], and radiation

in optoelectronic devices [50]. Here we restrict our attention to time harmonic acoustic

wave propagation, modelled in 2D by the following Helmholtz boundary value problem

(BVP):

∇ ·
(
1

ρ
∇u
)
+
κ2

ρ
u = f in Ω, (3.1a)

(
1

ρ

∂u

∂n
− iσu

)
= Q

(
−1

ρ

∂u

∂n
− iσu

)
+ g on Γ. (3.1b)

Here Ω ⊂ R
2 is a bounded domain with Lipschitz boundary Γ. The wavenumber

κ = κ(x) is complex with Im(κ) ≥ 0 and Re(κ) > 0. The density ρ = ρ(x) and

impedance parameter σ are real and positive; and f ∈ L2(Ω) and g ∈ L2(Γ) are the

volume and boundary source terms respectively. The parameter Q is complex with

|Q| ≤ 1. The choice of Q is important as it gives the type of boundary condition.

Taking Q = −1 gives the Dirichlet boundary condition,

u =
gi

2σ
;

taking Q = 1 gives the Neumann boundary condition

∂u

∂n
=
ρg

2
;

taking Q = 0 gives the impedance boundary condition

1

ρ

∂u

∂n
− iσu = g.

The UWVF is a Trefftz-type method: the exact solution of a Helmholtz boundary

value problem is approximated by a linear combination of basis functions which, inside

each mesh element, are solutions of the homogeneous Helmholtz equation, i.e. equation
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(3.1a) with right-hand side f = 0. As with standard FEM, the domain Ω is partitioned

into a polygonal mesh; however the solution variables are impedance traces on the skele-

ton of the mesh. These traces are approximated by the corresponding traces of a Trefftz

trial space; the approximation is automatically achieved also in the element interiors if

the discretised BVP is homogeneous (f = 0), see [15, Theorem 4.1], [37, Theorem 4.5].

In [15,31,36] the UWVF has been derived in a DG framework, allowing a more general

derivation of the formulation (see e.g. [36, §3.2]), extensive analysis of the method, and

the derivation of error estimates. By incorporating the known wavelike behaviour of

the solution into the approximation space, the UWVF can produce accurate results

requiring significantly fewer degrees of freedom than standard FEMs, in some cases for

mesh sizes encompassing several wavelengths λ. This is because the wavelike behaviour

is captured directly by the oscillatory basis functions, rather than by high degree piece-

wise polynomials as in standard FEM. The solution of the Helmholtz equation is often

approximated using a plane wave basis [15–17,31,36], however it is also possible to use

other solutions of the homogeneous Helmholtz equation, such as a Bessel function basis

as used in [52].

We introduce in this section the classic UWVF for the inhomogeneous Helmholtz

BVP (3.1), which is slightly more general than that considered in [17] in the fact that

varying coefficients are allowed (compare also with [44]). We will mainly follow the

notation of [44]. Note that complex wavenumbers κ (i.e. absorbing media) can be

considered as in [15, §5].

We partition Ω into a mesh T = {Ωk}Kk=1 composed of triangular elements Ωk, in

which we find local solutions uk ≈ u|Ωk
. The boundary of each element is denoted

by ∂Ωk. The interelement edge between elements Ωk and Ωj , is denoted by Σk,j =

∂Ωk ∩ ∂Ωj. Any exterior edges are denoted by Γk = ∂Ωk ∩ Γ. The outward pointing

unit normal vector on ∂Ωk is denoted nk. We denote the outward normal derivative

from element Ωk by ∂
∂nk

. This set-up is illustrated in Figure 3.1. For all numerical

results in this thesis, the triangulated mesh is provided by Distmesh, a mesh generator

in Matlab written by P-O. Persson and G. Strang [61,62]. Inputs required for the mesh
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generator are function handles detailing the structure of the domain to be meshed and

the refinement levels required. Outputs provided by the mesh generator are two vectors:

the first containing the node numbers of the vertices of each element, and the second

containing the node positionings in Cartesian co-ordinates.

nk

nk

Ωk

Ωj

Γk

Σk,j

.

Figure 3.1: Element structure: the edge between elements Ωk and Ωj, is denoted by

Σk,j, exterior edges are denoted by Γk, and all normals are exterior.

The method uses a variational formulation that ensures that the solution is weakly

continuous across the boundaries of elements. The wavenumber and density are taken

to be constant inside each element, so piecewise constant in Ω, with κk = κ|Ωk
and

ρk = ρ|Ωk
. The impedance parameter σ is defined as

σ =
1

2

(
Re(κk)

ρk
+

Re(κj)

ρj

)
, on Σk,j (3.2)

and as

σ =
Re(κk)

ρk
, on Γk. (3.3)

We introduce the Trefftz space H :=
∏K

k=1Hk, with

Hk :=

{
vk ∈ H1(Ωk)

∣∣∣−∇ ·
(

1

ρk
∇vk

)
− κ2k
ρk
vk = 0 in Ωk,

∂vk
∂nk

∈ L2(∂Ωk)

}
, (3.4)

and we represent any v ∈ H as a vector {vk}Kk=1 with vk := v|Ωk
. To avoid technical

difficulties with the regularity of f and the solution u of the BVP (3.1), as in [16, Section
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I.5.1] we start by assuming that u belongs to

H̃ :=
K∏

k=1

H̃k with H̃k :=

{
vk ∈ H1(Ωk),

∂vk
∂nk

∈ L2(∂Ωk)

}
.

If ρ is constant and f ∈ L2(Ω), this is always guaranteed [38]. For piecewise constant

ρ, H1(Ω) regularity of u was discussed in [10]. However the L2 regularity of the normal

derivatives on the element boundaries is not entirely clear.

We define the sesquilinear forms d, c : H̃ × H̃ → C as

d(v, w) :=
K∑

k=1

∫

∂Ωk

1

σ

(
− 1

ρk

∂

∂nk
− iσ

)
vk

(
− 1

ρk

∂

∂nk
− iσ

)
wk dS,

c(v, w) :=
K∑

k,j=1
k 6=j

∫

Σk,j

1

σ

(
− 1

ρj

∂

∂nj
− iσ

)
vj

(
1

ρk

∂

∂nk
− iσ

)
wk dS (3.5)

+
K∑

k=1

∫

Γk

Q

σ

(
− 1

ρk

∂

∂nk
− iσ

)
vk

(
1

ρk

∂

∂nk
− iσ

)
wk dS.

We define the antilinear functional β : H̃ → C as

β(w) := −2i
K∑

k=1

∫

Ωk

fwk dV +
K∑

k=1

∫

Γk

g

σ

(
1

ρk

∂

∂nk
− iσ

)
wk dS. (3.6)

In [17, Theorem 1.3] it is proved that, if |Q| < 1 (to ensure well-posedness), ρ and κ

are constant, f ∈ L2(Ω) and g ∈ L2(Γ), then the solution u ∈ H̃ of the BVP (3.1a)

satisfies the variational problem

d(u, v)− c(u, v) = β(v) (3.7)

for all v ∈ H. The same proof (see also [44, Equation (10)]) holds true also for discon-

tinuous coefficients (recall that we assumed u ∈ H̃).

Define χ ∈ V :=
∏K

k=1 L
2(∂Ωk) as

χ|∂Ωk
= χk =

(
− 1

ρk

∂uk
∂nk

− iσuk

)
|∂Ωk

1 ≤ k ≤ K. (3.8)

In order to find the solution u of (3.1a) with (3.1b) using the UWVF, we must find the
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union of the unique solutions uk ∈ H̃(Ωk), k = 1, . . . , K, that exist if χ is a solution of

∑

k

∫

∂Ωk

1

σ
χk(−

1

ρk

∂φk
∂nk

− iσφk) dS

−
∑

k

∑

j

∫

Σk,j

1

σ
χj(

1

ρk

∂φk
∂nk

− iσφk) dS +
∑

k

∫

Γk

Q

σ
χk(

1

ρk

∂φk
∂nk

− iσφk) dS

= −2i
∑

k

∫

Ωk

fφk dV +
∑

k

∫

Γk

g

σ
(
1

ρk

∂φk
∂nk

− iσφk) dS. (3.9)

We explain in §3.2 how the UWVF (3.9) is derived. We require that equation (3.9) must

hold for any φ∗ ∈ H, φ∗ = (φk)k=1,...,K . The test space of basis functions is spanned

by Trefftz functions φk, with supp(φk)= Ωk, that satisfy the homogeneous form of the

Helmholtz equation

∇2φk + κ2kφk = 0 in Ωk. (3.10)

The UWVF discretisation consists of considering the variational problem (3.9) in the

discrete space Hh =
∏K

k=1 span{φk,l}
pk
l=1 ⊂ H defined by the basis functions φk,l ∈ Hk,

1 ≤ k ≤ K, 1 ≤ l ≤ pk, of which we give specific examples below. Basis functions φk

are those which have support in Ωk; we denote by pk the number of basis functions that

have support in element Ωk. As there can be between one and pk basis functions per

element, these are then indexed by l, so that φk,l is the l-th basis function on element

Ωk.

The solution in each element is approximated by a linear combination of basis func-

tions that holds on the respective element,

uk =

pk∑

l=1

χk,lφk,l k = 1, . . . , K. (3.11)

We then approximate χk, as defined in (3.8), by

χk ≈ χak =

pk∑

l=1

χk,l

(
− 1

ρk

∂

∂nk
− iσ

)
φk,l k = 1, . . . , K (3.12)

where χk,l are the unknown amplitude coefficients to be determined. Once these am-

plitude coefficients are found, they can be used in (3.11) to approximate the solution

in each element, and thus in the entire domain.
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Much current literature uses a plane wave basis on each element, in pk equally spaced

directions, but with the number of directions used varying over the different elements.

A plane wave basis allows the integrals that arise in the UWVF to be evaluated in

closed form. The plane wave basis functions are defined as

φk,l(x) =





exp(iκkdk,l · x) in Ωk

0 elsewhere,
(3.13)

with κ the wavenumber to be taken as piecewise constant, with κk ≡ κ|Ωk
, and

dk,l =

(
cos

(
2π

(l − 1)

pk

)
, sin

(
2π

(l − 1)

pk

))
, l = 1, ..., pk. (3.14)

There are a variety of alternative options for the basis φk,l, for example a Bessel

or Hankel basis set may also be used. The key requirement in the choice of basis

functions is that they must also be solutions of the homogeneous Helmholtz equation

(recall (3.10)). This ensures the cancellation of many domain integrals in the UWVF,

leaving integrals over the element boundaries only in case of solving the homogeneous

form of the Helmholtz equation.

3.2 Derivation of the UWVF: Variational Frame-

work

We now explain the derivation of the UWVF, in the variational setting in which it was

originally proposed. As shown in [16,17,44], the UWVF is derived by multiplying (3.1a)

by a test function φ in each element, and applying the Divergence Theorem twice to find

the (ultra) weak form of (3.1a). In standard FEM the Divergence Theorem is applied

once to obtain the weak form of the equation; by applying the Divergence Theorem

a second time we obtain a very, i.e., ultra weak form. Transmission conditions are

applied to match the solutions and its normal derivative on the interelement boundaries,

followed by the application of boundary conditions.

The derivation of the UWVF is as follows. As per [16, 17, 53], we can write the
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identity
∫

∂Ωk

1

σ
(− 1

ρk

∂

∂nk
− iσ)uk(−

1

ρk

∂φk
∂nk

− iσφk) dS

−
∫

∂Ωk

1

σ
(
1

ρk

∂

∂nk
− iσ)uk(

1

ρk

∂φk
∂nk

− iσφk) dS

=

∫

∂Ωk

2i

ρk
(uk

∂φk
∂nk

− ∂uk
∂nk

φk) dS. (3.15)

We wish to solve equation (3.1a) in each element,

∇ ·
(

1

ρk
∇uk

)
+
κ2k
ρk
uk = f, in Ωk, (3.16)

using an approximation by Trefftz basis functions that solve (3.10),

∇2φk + κ2kφk = 0 in Ωk.

We multiply (3.16) by φk and multiply the conjugate of (3.10) by uk. We then integrate

over the element and apply the Divergence Theorem to each equation, thus applying

the Divergence Theorem twice. This results in
∫

Ωk

(
− 1

ρk
∇uk∇φk +

κ2k
ρk
ukφk

)
dV +

∫

∂Ωk

φk
ρk

∂uk
∂nk

dS =

∫

Ωk

fφk dV (3.17)

and ∫

Ωk

(
− 1

ρk
∇uk∇φk +

κ2k
ρk
ukφk

)
dV +

∫

∂Ωk

uk
ρk

∂φk
∂nk

dS = 0. (3.18)

By subtracting (3.17) from (3.18) we are left with

∫

∂Ωk

(
uk
ρk

∂φk
∂nk

− φk
ρk

∂uk
∂nk

)
dS = −

∫

Ωk

fφk dV. (3.19)

Using (3.19) in (3.15) we have

∫

∂Ωk

1

σ
(− 1

ρk

∂

∂nk
− iσ)uk(−

1

ρk

∂φk
∂nk

− iσφk) dS

−
∫

∂Ωk

1

σ
(
1

ρk

∂

∂nk
− iσ)uk(

1

ρk

∂φk
∂nk

− iσφk) dS

=

∫

Ωk

−2ifφk dV. (3.20)

We assert transmission conditions in coupled form:
(

1

ρk

∂

∂nk
− iσ

)
uk|Σk,j

=

(
− 1

ρk

∂

∂nj
− iσ

)
uj|Σj,k

. (3.21)
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This ensures that the solution on the boundary of one element matches that on the

boundary of an adjacent element, and ensures that the flow going into an element is

equal to the flow out of the adjacent element. The boundary conditions (3.1b) are

applied on an individual element in the form

(
1

ρ

∂u

∂n
− iσu)|Γk

= Q(−1

ρ

∂u

∂n
− iσu)|Γk

+ g. (3.22)

Substituting (3.21) and (3.22) into (3.20) results in

∫

∂Ωk

1

σ
(− 1

ρk

∂

∂nk
− iσ)uk(−

1

ρk

∂φk
∂nk

− iσφk) dS (3.23)

−
(∫

Σk,j

1

σ
(− 1

ρj

∂

∂nj
− iσ)uj(

1

ρk

∂φk
∂nk

− iσφk) dS (3.24)

+

∫

Γk

Q

σ
(− 1

ρk

∂

∂nk
− iσ)uk(

1

ρk

∂φk
∂nk

− iσφk) dS

)
(3.25)

=

∫

Ωk

−2ifφk dV +

∫

Γk

g

σ
(
1

ρk

∂φk
∂nk

− iσφk) dS. (3.26)

Using χ given by (3.8) and summing over all basis functions and elements, we are left

with the formulation (3.9).

For further clarification of the derivation of the formulation see [16, 17, 44].

3.3 Reformulation of the UWVF as a PWDGMethod

After its original derivation in a variational setting, the UWVF has been shown to be

equivalent to a form of PWDG method, through a certain choice of flux parameters.

There are several derivations available, such as those in [15, 29, 31]. This realisation

has led to significant advances in error analysis, as techniques for the analysis of DG

methods can now also be used for the UWVF. Here for completeness we present the

unification of the original derivation of the UWVF and the DG formulation setting, fol-

lowing the approach from [15,52]. To the author’s knowledge this is the first derivation

of the UWVF of (3.1) in the DG framework for a medium where the wavenumber κ

and density ρ are non-constant. In the following §3.4, we detail some of the theoretical

convergence results achieved in the literature.
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First our Helmholtz problem (3.1) is reformulated as a coupled first order system




−iζ = ∇u
ρ

in Ω,

− iκu
ρ

− 1
κ
∇ · ζ = 1

iκ
f in Ω,

(−iζ · n− iσu) = Q (iζ · n− iσu) + g on ∂Ω.

(3.27)

Here as before, Ω is a bounded Lipshitz domain in R
2 (as we work in here, although

the derivation holds for Rd, d = 2, 3) with boundary Γ, κ(x) > 0 is the wavenumber,

and f ∈ L2(Ω) and g ∈ L2(Γ) are the domain and boundary source terms respectively.

Using the finite element mesh T on Ω, we multiply the first and second equations of

(3.27) by smooth test functions τ and v respectively, integrate over each element, and

apply the Divergence Theorem to each equation, resulting in

∫

Ωk

−iζ · τ +
u

ρ
∇ · τ dV −

∫

∂Ωk

u

ρ
τ · n dS = 0 (3.28)

and ∫

Ωk

− i

ρ
κuv +

1

κ
ζ · ∇v dV −

∫

∂Ωk

1

κ
ζ · nv dS =

∫

Ωk

1

iκ
fv dV. (3.29)

Approximating by discrete functions on each element we have

∫

Ωk

−iζk · τ k +
uk
ρk

∇ · τ k dV −
∫

∂Ωk

uk
ρk

τ k · nk dS = 0 (3.30)

and

∫

Ωk

− i

ρk
κkukvk +

1

κk
ζk · ∇vk dV −

∫

∂Ωk

1

κk
ζk · nkvk dS =

∫

Ωk

1

iκk
fvk dV. (3.31)

By multiplying (3.30) by ρk and (3.31) by κk, adding the two, and approximating uk

and ζk across the interelement boundaries by their numerical fluxes û and ζ̂, it follows

∫

Ωk

ζk · (iρkτ k +∇vk) + uk

(
i
κ2k
ρk
vk +∇ · τ k

)
dV

= −
∫

Ωk

ifv dV +

∫

∂Ωk

ûτ k · nk + ζ̂k · nkvk dS. (3.32)

Through the choice of Trefftz-type basis functions vk and τ k that satisfy the adjoint

Helmholtz equation

(
iρkτ k +∇vk

)
= 0 and

(
i
κ2kvk
ρk

+∇ · τ k
)

= 0 in Ωk, (3.33)
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we obtain ∫

∂Ωk

ûτ k · nk + ζ̂ · nkvk dS =

∫

Ωk

ifvk dV. (3.34)

The DG approach is to use numerical fluxes composed of a linear combination of the

averages and jumps. We define the averages by

{{u}} :=
uk + uj

2
, {{ζ}} :=

ζk + ζj

2
(3.35)

and the jumps by

[[u]] := uknk + ujnj, [[ζ]] := ζk · nk + ζj · nj. (3.36)

Using different choices for the flux results in alternative DG methods. Using similar

strategies to the formulations in [31,36,52], the DG numerical fluxes on the interelement

edges are given by

ζ̂ = {{ζ}} − σ

2
[[u]], (3.37)

and

û = {{u}} − 1

2σ
[[ζ]]. (3.38)

Using the defined fluxes (3.37) and (3.38), and the definitions of the averages (3.35)

and jumps (3.36), (3.34) can be rearranged to give

∫

Σk,j

ûτ k · nk + ζ̂ · nkvk dS

=

∫

Σk,j

(
uk + uj

2
− 1

2σ

[
ζk · nk + ζj · nj

])
τ k · nk

+

(
ζk + ζj

2
− σ

2
[uknk + ujnj]

)
· nkvk dS

=

∫

Σk,j

1

2

[
ukτ k · nk −

1

σ
ζk · nkτ k · nk + ζk · nkvk − σukvk

]
dS

+

∫

Σk,j

1

2

[
ujτ k · nk −

1

σ
ζj · njτ k · nk + ζj · nkvk + σujvk

]
dS

= −
∫

Σk,j

1

2σ

[
(−iσuk + iζk · nk)

(
−iσvk + ink · τ k

)]
dS

+

∫

Σk,j

1

2σ

[(
−iσuj + iζj · nj

) (
−iσvk − ink · τ k

)]
dS

= −
∫

Σk,j

1

2σ
XkYk dS +

∫

Σk,j

1

2σ
XjFk(Yk) dS (3.39)
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on a single interlement edge. Here Xk := (−iσuk + iζk · nk), Yk := (−iσvk + ink · τ k),
and Fk(Yk) := (−iσvk − ink · τ k). On the exterior edges Γk we define the fluxes û = u

and ζ̂ = ζ, thus similarly we have
∫

Γk

ûτ k · nk + ζ̂ · nkvk dS

=

∫

Γk

1

2σ

[
(−iσuk − iζk · nk)

(
−iσvk − ink · τ k

)]
dS

−
∫

Γk

1

2σ

[(
−iσuj + iζj · nj

) (
−iσvk + ink · τ k

)]
dS

=

∫

Γk

1

2σ
Fk(Xk)FkYk dS −

∫

Γk

1

2σ
Xj(Yk) dS. (3.40)

Adding (3.39) and (3.40) and rearanging, (3.34) can then be written as
∫

∂Ωk

1

σ
XkYk dS −

∑

j

∫

Σk,j

1

σ
XjFk(Yk) dS

= −
∫

Ωk

2ifvk dV +

∫

Γk

1

σ
Fk(Xk)Fk(Yk) dS. (3.41)

Now including the boundary conditions given in the third equation of (3.27), and sum-

ming over all elements k = 1, . . . , K, we obtain the original UWVF: find X ∈ L2(∂Ωk)

such that
K∑

k=1

∫

∂Ωk

1

σ
XkYk dS −

K∑

k=1

K∑

j=1,j 6=k

∫

Σk,j

1

σ
XjFk(Yk) dS

−
K∑

k=1

∫

Γk

Q

σ
XkFk(Yk) dS

= −
K∑

k=1

∫

Ωk

2ifvk dV +
K∑

k=1

∫

Γk

1

σ
gFk(Yk) dS (3.42)

for all Yk ∈ L2(∂Ωk), k = 1, . . . , K. This is equivalent to the original formulation (3.9).

3.4 Convergence Results

Since the realisation that the UWVF can be reformulated as a class of PWDG methods,

there has been extensive progress in the analysis of the method, as DG analysis tech-

niques can now be used. Several equivalent derivations were presented in 2007− 2009,

available in [15, 29,31].
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The existence and uniqueness of discrete solutions were proved first of all by Cessenat

and Després in [16,17], and then separately in the DG setting by Gittelson et al. in [31].

Convergence analysis is presented in [31] for the h-version (improving the solution

through refinement of the numerical mesh) of PWDG methods. However the choice of

flux parameters considered are not those which fit the UWVF, and although the results

presented have given insight and motivation for further work (in [52]), they do not

apply to the UWVF. An a-priori convergence analysis of PWDG methods, in which the

UWVF is this time included, is presented in [36] for the case of p refinement, where the

solution is improved through increasing the number of plane wave basis functions per

element. Convergence rates are derived for the homogeneous Helmholtz equation on

2D convex domains with impedance boundary conditions (Q = 0), using mesh skeleton

based norms. The p-version error estimates require the product κh, where h is the mesh

size parameter, to be sufficiently small in order for the wavelength to be resolved in the

trial space. However the requirement on κh is less severe than that which is required

in standard FEM for the avoidance of pollution errors. A bound for the L2 norm of

the error is presented, as well as best approximation estimates in a norm on the mesh

skeleton.

The unification of the UWVF and DG methods is presented by Buffa and Monk in

[15], as well as explicit error estimates in a mesh dependant norm. Extensive numerical

results suggest however that the UWVF does converge not just on the mesh skeleton,

but throughout the entire domain. In the case of a convex domain, the mesh norm

estimate can be used as an estimate of the L2(Ω) norm of the error. Recent work by

Melenk et al. [55] presents theory for the stability and convergence of the UWVF, in

the case of a highly indefinite Helmholtz problem in up to three spatial dimensions.

3.5 The Linear System of Equations

The standard formulation (3.9) results in the linear system, given in matrix form by

(D − C)X = b̂. (3.43)
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Entries in the matrix D correspond to the integral (3.23), entries of C to those of (3.24)

and (3.25), and the entries of vector b̂ to (3.26). The coefficients χk,l are determined by

solving the linear system (3.43) where

X = (χ1,1, χ1,2, ..., χ1,p1 , χ2,1, ..., χK,pK )
T .

Here χk,l refers to the coefficient corresponding to the lth basis function (l = 1, . . . , pk)

on the kth element (k = 1, . . . , K). The linear system (3.43) is solved for the elements of

X, so that they can then be used to approximate u over the whole domain using (3.11)

(where u|Ωk
= uk). The matrix D is block diagonal, made up of blocks Dk = [Dl,m

k ]

corresponding to each element k = 1, . . . , K. Each of these blocks contains integrals

combining the impedance traces of each basis function that holds in the element, for

l = 1, . . . , pk, m = 1, . . . , pk. This results in the form

D =




[Dl,m
1 ]

[Dl,m
2 ]

. . .

[Dl,m
K ]




(3.44)

with entries given by

Dl,m
k =

∫

∂Ωk

1

σ
(− 1

ρk

∂φk,m
∂n

− iσφk,m)(−
1

ρk

∂φk,l
∂n

− iσφk,l) dS (3.45)

for k = 1, ..., K, l = 1, ..., pk, m = 1, ..., pk.

Entries of the matrix C are given by

C l,m
k,j =

∫

Σk,j

1

σ
(
1

ρj

∂φj,m
∂nk

− iσφj,m)(
1

ρk

∂φk,l
∂nk

− iσφk,l) dS

+

∫

Γk

Q

σ
(− 1

ρk

∂φk,m
∂nk

− iσφk,m)(
1

ρk

∂φk,l
∂nk

− iσφk,l) dS, (3.46)

resulting in up to three integrals over the internal edges Σk,j, and another integral over

any exterior edges Γk. This results in the matrix C having a sparse block structure,

with submatrices Ck,j being non-zero only if elements Ωk and Ωj are adjacent, or if Ωk

has a side on the exterior boundary Γ.
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For the right-hand side vector b̂, entries are given by

blk =

∫

Ωk

−2ifφk dV +

∫

Γk

g

σ
(
1

ρk

∂φk,l
∂n

− iσφk,l) dS, (3.47)

for k = 1, ..., K, l = 1, ..., pk. When solving the homogeneous Helmholtz equation

(f ≡ 0), vector b̂ has non-zero entries for the kth subvector only when Ωk has an

exterior edge.

It is suggested in [16, 44] that for numerical stability, the matrix system (3.43) is

best solved in the preconditioned form

(I −D−1C)X = D−1b̂. (3.48)

As the matrix D has a sparse, block diagonal structure, inversion of the matrix can be

done element wise for each Dk. For numerical results in this thesis, we solve the system

(3.48) iteratively using the biconjugate gradient stabilized method (BiCGStab).

A main complication in the practical use of the UWVF is the issue of ill-conditioning.

The condition number of the submatrices Dk increases as we increase the number of

directions pk tested on each element, causing the solution to break down. This is

because when using basis functions in equally spaced directions in an element Ωk, as

we increase the number of basis functions pk, the angle between the consecutive wave

directions decrease, thus the basis becomes closer to being linearly dependent. For a

plane wave basis of waves propagating in directions d and d′, as the directions get closer

together, d → d′, and so a single basis function can tend to a multiple of another:

exp(iκd · x) = exp(iκ(d− d′) · x) exp(iκd′ · x)

→ exp(iκd′ · x) as d → d′.

The conditioning of the matrix Dk depends upon pk but also upon κk�k where �k is

the diameter of the element Ωk. The factor κk�k is larger when the wavelength is small

in comparison to the size of the element, and smaller when the wavelength is large in

comparison to the size of the element. For a plane wave basis propagating in direction

d,

exp(iκd · x) = exp(iκd · x0) exp(iκd · (x− x0))

= exp(iκd · x0)[1 + iκd · (x− x0) +O((κ�k)
2)] as κk�k → 0
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since |κd · (x− x0)| ≤ κ�k for an element with centroid x0. Thus as κk�k → 0, when

the wavelength is very large compared to the element size, the plane waves become

approximately linearly dependent. In either case, as the basis set approaches linear

dependency, the condition number of the corresponding submatrix Dk grows.

By consulting the existing literature [44] and through running experiments we were

able to choose an upper bound of 1010 for the maximum condition number of each

submatrix max(cond(Dk)), beneath which the solution did not break down. A varying

number of basis functions per element was then implemented based upon this upper

bound: an initial maximum number of basis functions per element was chosen, if the

condition number of the respective submatrix Dk exceeded the desired upper bound the

number of basis functions was reduced and Dk recomputed until the condition number

was below the upper bound. This scheme, first introduced in [44], allows for stable

inversion of all blocks Dk.

3.6 A Hankel Basis for the UWVF

In the above we have detailed the plane wave basis for the UWVF, which has been

studied widely in much literature including [16, 17, 31, 36, 41, 44]. Recently there has

been investigation into the use of a Bessel basis, in [52, 53]. As an alternative form of

Trefftz basis functions φk,l ∈ Hk, from now on in this thesis we instead consider a Hankel

basis. A Hankel basis allows greater flexibility than the plane wave basis, providing the

possibilty of adapting the basis to the curvature of the solution’s wavefronts, and also

providing more freedom to reduce the linear dependence of the basis. However a Hankel

basis does mean extra computational expense, as the integrals in (3.9) can no longer

be solved in closed form, and so a numerical quadrature must be used.

The Hankel basis functions are circular waves in 2D, defined as

φk,l(x) =





H1
0 (κk|x− yk,l|) in Ωk

0 elsewhere,
(3.49)

for l = 1, ..., pk, k = 1, ..., K. The wavenumber κ is taken to be piecewise constant with
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κk ≡ κ|Ωk
, and the point source locations are given by

yk,l =

(
xCk +RPS cos

(
2πl

pk

)
, yCk +RPS sin

(
2πl

pk

))
, l = 1, ..., pk. (3.50)

Here RPS > dmax > 0 is a positive constant greater than the maximum distance

dmax = max
s

(|xCk − xVk,s|)

between the centroid of the element xCk = (xCk , y
C
k ) and each vertex of the triangular

element xVk,s, s = 1, .., 3, ensuring each point source is exterior of its corresponding

element.

A Hankel set is a good choice of basis in the UWVF as it allows flexibility in both

the direction of propagation and in the level of curvature of the wave fronts that hold

over an element, as illustrated in Figure 3.2. By taking the points yk,l far from the

element, we can replicate the conventional plane wave basis. This important property

comes from the leading order asymptotic behaviour of the Hankel function [12, 6.3.18]

H(1)
ν (z) ∼

√
(2/(πz)) exp(i(z−νπ/2−π/4)) −π < arg z < 2π, |z| → ∞. (3.51)

By choosing the positioning in the near field to the element, a higher level of curvature

of wave fronts can be introduced.

With the use of the Hankel basis, there is extra computational expense when com-

pared to the traditional plane wave basis. As can be seen in Table 3.1, the average

computation time in Matlab for the evaluation of a Hankel function at various points

is orders of magnitude longer than the same for a plane wave evaluation. Thus it will

be preferable to keep the number of basis functions to evaluate at a minimum for our

approximations. As well as the Hankel evaluation expense, there is also extra compu-

tational expense with this choice of basis set compared with the plane wave basis in

that the UWVF integrals in (3.9) cannot be evaluated in closed form, thus we require

a numerical integration method. We use a Gauss–Legendre quadrature rule, with forty

grid points per wavelength for high accuracy. This high number of Gauss integration

points may be excessive, and lead to additional round-off errors.



CHAPTER 3. THE ULTRA-WEAK VARIATIONAL FORMULATION 44

Table 3.1: Average Evaluation Time of Wave Functions

Function Type Average Time (seconds)

Hankel 1.12×10−4

Plane Wave 2.12×10−6

3.7 A Comparison Study of Conditioning: The Han-

kel and Plane Wave Bases

One of the main issues that is a hindrance to the UWVF is that of ill-conditioning.

As explained in §3.5, the traditional plane wave basis can become close to linearly

dependant when a large number of basis functions are used on each element, resulting

in the submatrices Dk becoming badly conditioned and the solution breaking down. By

using a Hankel function basis, more variation in the wavefronts can be enforced, so that

a large number can be used on an element without the set becoming close to linearly

dependent. Here we present a comparison study of the conditioning of the UWVF for

differing bases. We consider acoustic wave propagation through a 2D bounded domain.

The problem we consider here is identical to that in the thesis of Andrea Moiola [57]

using a plane wave basis. Here we repeat using a Hankel basis, comparing three choices

of the set:

• point sources equi-spaced around a ring in the far field, simulating a plane wave

basis;

• point sources equi-spaced around a ring in the near field to each element;

• point sources equi-spaced around two rings near each element.

We compare the convergence of errors and conditioning of the system using the three

Hankel basis sets, as well as the traditional equi-spaced plane wave basis.
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In the square domain Ω = [0, 1]× [−0.5, 0.5] we approximate the regular solution of

the Helmholtz equation

u(x) = J1(κr) cos(θ), (3.52)

given in polar coordinates x = (r cos(θ), r sin(θ)) centred at the origin, where J1 denotes

the Bessel function of the first kind of order one. We use the same wavenumber κ = 10

as in [57], and the same mesh, with K = 8 elements all of the same size. Following

the notation of §3.1, we consider the homogeneous problem with f = 0, use a constant

density ρ = 1, the impedance condition with Q = 0, and

g =
∂u

∂n
− iκu

is given on the boundary of the domain. The domain and mesh are shown on the left

hand side of Figure 3.3, whilst the exact solution is shown on the right.

In the numerical experiments we do not impose a bound on the condition numbers

of the submatrices Dk that arise in the system of equations, instead we maintain a

constant number of basis functions on each element. For the first set of basis functions,

the point sources are equally spaced around a circle of radius RPS = 600 taken from

the centroid of each element, so that wavefronts over the element are close to parallel,

similar to those of a plane wave basis. For the second set, the point sources are taken

equally spaced around a circle of radius RPS = 1.1×dmax where dmax is the maximum

distance between the centroid of the element and its vertices. For the third set, the point

sources are taken equally spaced around two circles, as per Figure 3.4, where the inner

circle is of radius RI
PS = 0.5 and the outer radius is RO

PS = 2 (so RI
PS = 1.34×dmax and

RO
PS = 5.37 × dmax). The basis functions are angularly equi-spaced and split equally

between the two rings: only even total numbers of basis functions are tested.
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Figure 3.2: Orientation of the point source basis affects both the direction and level of

curvature of wave fronts over an element. In the upper plot: wavefronts in an element

for H1
0 (κ|x − yk,1|). By taking a point source in the near field to the element, a high

level of curvature of the wavefronts can be obtained. In the lower plot: wavefronts in

an element for H1
0 (κ|x − yk,2|). By taking a point source further in the field from the

element we obtain wavefronts that are less curved.
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Figure 3.3: The mesh of K = 8 elements used (left) and the exact solution for κ = 10

(right).

Figure 3.4: Diagrammatic of point source positions in two ring case.
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Figure 3.5: L2 relative errors against number of basis functions per element.
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Figure 3.6: Maximum condition number of Dk against number of basis functions per

element.
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The L2(Ω) relative errors against number of point source basis functions per element

is plotted in Figure 3.5, and the estimated maximum condition number of the subma-

trices Dk again against number of point source basis functions per element is plotted

in Figure 3.6. The condition number of each submatrix is estimated by a lower bound

for the 1 norm condition number. The far field point source and plane wave bases give

similar levels of errors and achieve the same estimates on the condition number, as

the far field sources are set to replicate plane waves. Their results are by far the most

accurate for the fewest number of degrees of freedom. However, the solution breaks

down and errors grow as the system becomes more ill-conditioned. The near field point

sources on a single ring are much less accurate even when a much higher number of

degrees of freedom is used in the approximation. This could be due to many factors,

such as the basis wave field having an incorrect level of curvature across the element, or

the peak close to the singularity of the Hankel function not well representing the exact

solution. This basis does however maintain relatively low condition numbers through-

out. For the sources on the two rings around each element, high accuracy is achieved,

but at a much greater cost than with the far field sources. It is also worth noting that

the ill-conditioning increases as functions in the basis become more similar to plane

waves. In this case it appears that a plane wave basis is preferable if there is little

consideration given to the placing of the point sources relative to the expected solution.

In the following chapter, we will consider how to choose the point source positions of

the Hankel basis more appropriately.



Chapter 4

Ray Tracing for High Frequency

Scattering by Convex Obstacles

Ray tracing techniques are widely used in the geophysics community [5,12,22]. As de-

tailed in Chapter 2, rays are a high frequency asymptotic approximation of the direction

of wave propagation. Thus at high frequencies, a ray model gives a good understanding

of the direction of propagation of a wave and its reflections.

To further progress the UWVF, we use ray tracing techniques in order to find a

good a-priori choice of basis function. Similar techniques have been trialled in [11]. We

consider the case of two dimensional wave scattering by a smooth convex obstacle, in a

domain where the wave speed, and thus the wavenumber, is constant. In this chapter

we detail a method for finding a ray traced centre of curvature for wavefronts at points

in the domain. In the following Chapter 5 we then use these ray traced centres of

curvature to augment the UWVF basis. We will consider how similar ideas can be

applied to more general domains of non-constant wavespeed in Chapter 6. A smooth

convex obstacle is a good choice of scatterer to study with regards to ray tracing, as

without corners there will be no strong diffraction effects, and due to the convexity there

can be no multiple reflections. There will still however be creeping waves generated at

the shadow boundary [18].

As we consider in this chapter a domain where the wave speed is constant, wavefronts

50
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will propagate without turning. Rays travel perpendicular to the wavefronts, so ray

directions will be straight lines. When these rays interact with a surface, the Law

of Reflection from geometric optics states that the direction of the reflected ray is

determined by the angle the incident ray makes with the surface normal [22]. The

incident and reflected rays lie in a single plane, and the angle of reflection between the

reflected ray and the surface normal, θr, is the same as that between the incident ray

and the normal, known as the angle of incidence θi. That is, θi = θr, as illustrated in

Figure 4.1.

normal to surface

incident ray reflected ray

θi θr

Figure 4.1: Diagram of the Law of Reflection

In §4.1 we present the setup for finding reflected ray directions for scattering by a

general smooth convex obstacle. Once the reflected direction at a single point is found,

it can be considered with those for neighbouring points, allowing a centre of curvature

to also be derived for wavefronts at the point. Two particular examples are considered:

we apply the ray tracing techniques to the case of scattering by a circle in §4.1.1, and to

the case of scattering by an ellipse in §4.1.2. Scattering by a circle is a good initial case

to study due to its symmetric properties and the existance of a known exact solution

(presented in §4.2.1). Scattering by an ellipse is a more complex case than that of

a circle as there are fewer symmetrical properties. A known solution is presented for

completeness in §4.2.2, as well as a numerical reference solution provided by the MFS

in §4.2.3. The presence of exact solutions allows us to study the best approximation
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achievable through the use of our ray-traced directions and centres of curvature alone.

We present two best approximation studies: in §4.3.1 we consider the element-wise

best approximation to the scattered field for the case of a circular scatterer. This is

done first for the approximation on a single element, and then for all elements in a

discretised domain. A second study is presented in §4.3.2, where we consider the best

approximation to the total field for both differing sizes of the area of approximation and

for different regions around the domain. The best approximation studies give insight

into the value ray tracing techniques may have in aiding the choice of basis functions

in the UWVF.

4.1 Ray Tracing for Wave Scattering by a Smooth

Convex Obstacle

Here we present the outline of a method for finding ray directions for the case of scatter-

ing by a general smooth, convex obstacle Ω+, the closure of the bounded convex domain

Ω+. We consider a wave scattering problem in the exterior domain Ω := R2\Ω+, as per

Figure 2.1. We define the boundary of the scatterer by Γ1 = (R(θ) cos(θ), R(θ) sin(θ))

where R(θ) > 0 is the radial distance, and θ ∈ [−π, π). Any smooth convex obstacle

can be written like this. Without loss of generality we take the incident plane wave to

be propagating in the negative x direction, ui(x) = exp(−iκx), with the unit incident

direction vector di = (−1, 0).

We must first consider the regions of the domain in which the incident field can

propagate. We call the lit side of the obstacle Γlit the portion of Γ1 that the incident

field will hit and produce a reflected wave, i.e. the part where di ·n ≤ 0, where n is the

unit outward normal vector from Γ1 into Ω. The remainder of the obstacle boundary for

which di · n > 0 we call the shadow side Γshadow, where the incident field is blocked by

the obstacle and so can not penetrate. The shadow region Ωshadow is the region extended

from this: Ωshadow = {α+tdi; t ≥ 0,α ∈ Γshadow}. We call the remainder of the domain

the lit (also known as illuminated) region Ωlit = Ω\Ωshadow. The boundary between the
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ΩlitΩshadow

ΓlitΓshadow

diΩ+

ΓSB

ΓSB

Figure 4.2: The exterior scattering problem

two regions is known as the shadow boundary ΓSB. This set-up is illustrated in Figure

4.2.

As the incident field does not penetrate the shadow region, we need only consider

points in Ωlit for the application of ray tracing techniques. To find our ray directions

throughout the lit region we first consider the ray setup for a single point. At any point

in Ωlit there will be at most two rays: one representing the incident wave direction, and

another representing the scattered field (there may be more in the case of a non-convex

or non-smooth obstacle). We aim to find for any given point x ∈ Ωlit: the direction

of the reflected ray, given by the unit vector dr; the unique point of reflection z ∈ Γlit

where the incident ray hits the scatterer; and the angle at which it reflects, θ = θi = θr.

We define the reflection point z on the surface of the scatterer by

z = (R(ψ) cos(ψ), R(ψ) sin(ψ)) = R(ψ) cos(ψ)i+R(ψ) sin(ψ)j, (4.1)

for an angle ψ to be found. Here i and j are, as usual, unit vectors in the x and y

directions. Now consider an independent coordinate system (v,n) as per Figure 4.3,

where n = cos(θi)i+sin(θi)j is a unit vector in the normal direction, and v = − sin(θi)i+

cos(θi)j is perpendicular to n. In the new coordinate system we have

di = (di · n)n+ (di · v)v. (4.2)

Using the Law of Reflection,

dr = −(di · n)n+ (di · v)v. (4.3)
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φ

Figure 4.3: The set-up of scattering by a smooth convex obstacle.

As per Figure 4.3, the point x is on the line {z+ tdr; t ≥ 0} if and only if

x = z+ tdr (4.4)

for some t ≥ 0. From (4.4) and (4.3) we have

x = z+ t ((−di · n)n+ (di · v)v) , (4.5)

and so it follows by taking the scalar (dot) product with n and v, that

x · n = z · n− tdi · n (4.6)

and

x · v = z · v + tdi · v. (4.7)

Writing x = xi+ yj, we have

x cos(θi) + y sin(θi) = z · n+ t cos(θi) (4.8)

and

− x sin(θi) + y cos(θi) = z · v + t sin(θi). (4.9)
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Multiplying (4.8) by sin(θi) and (4.9) by cos(θi) and taking the difference, we are left

with

x sin(2θi)− y cos(2θi) = z · (n sin(θi)− v cos(θi))

= R(ψ) sin(2θi − ψ). (4.10)

Now writing x in polar cordinate form, x = (r cos(φ), r sin(φ)), where r is the radial

distance from the origin and φ is the angle measured from the positive x axis (as shown

in Figure 4.3), (4.10) can be written as

f̂(θi, ψ) :=
r

R(ψ)
sin(2θi − φ)− sin(2θi − ψ) = 0. (4.11)

At z, the unit tangent vector is given by

s(ψ) = lim
δψ→0

z(ψ + δψ)− z(ψ)

|z(ψ + δψ)− z(ψ)| (4.12)

in other words,

s(ψ) =
z′(ψ)

|z′(ψ)| (4.13)

where z′(ψ) = (R′(ψ) cos(ψ) − R(ψ) sin(ψ), R′(ψ) sin(ψ) + R(ψ) cos(ψ)). We find the

unit normal n = (n1, n2) at z using s · n = 0, thus taking

n =
(R′(ψ) sin(ψ) +R(ψ) cos(ψ),−R′(ψ) cos(ψ) +R(ψ) sin(ψ))√
(R′(ψ) cos(ψ)−R(ψ) sin(ψ))2 + (R′(ψ) sin(ψ) +R(ψ) cos(ψ))2

. (4.14)

To find θi, the angle between the incident ray and the normal n at z, we then use the

sine rule to obtain

n2

sin(θi)
=

|n|
sin(π/2)

= 1. (4.15)

Using this to eliminate θi in (4.11), we are left with an equation for ψ. Defining

f(ψ) :=
r

R(ψ)
sin(2 arcsin (n2)− φ)− sin(2 arcsin (n2)− ψ), (4.16)

our point of reflection is given by (4.1), i.e. by

z = (R(ψ) cos(ψ), R(ψ) sin(ψ)),
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where ψ ∈ (−π/2, π/2] is the value which satisfies

f(ψ) = 0. (4.17)

We can find solutions to (4.17) using the bisection algorithm. We discuss this method

for finding solutions of (4.17) in more detail in §4.1.1.

Once the ray directions have been obtained, we can then use them as an aid to

enhance the approximation in our discretised domain. For points inside a single element

we would expect the local scattered field to be propagating in the ray direction, but

we would also expect there to be some curvature of the wave fronts. We can use the

point of reflection z and angle of reflection θi to find the intersection of rays from points

which are close to one another, in order to find an originating centre of curvature.

Given a point x, let a second point x0 have a distance from the origin r0, and angle

φ0 between the point and the x axis. Let rays through x0 be at an angle of reflection

θ0, having reflected off the scatterer at the point z0. For the two points x = (x, y) and

x0 = (x0, y0), if we extend the rays that travel through these points back through the

scatterer Ω+, they will cross at some point xC either within or on the opposite side of

the scatterer. This setup is illustrated in Figure 4.4. Using this idea, we can write

xC = z+ λ̃(x− z) (4.18)

and

xC = z0 + λ̃0(x0 − z0) (4.19)

where λ̃ and λ̃0 are to be found. By equating the right hand sides of (4.18) and (4.19)

and writing the points z, z0, x and x0 in their polar coordinate form, we are left with

two equations,

R(ψ) cos(ψ)+λ̃(r cos(φ)−R(ψ) cos(ψ)) = R(ψ0) cos(ψ0)+λ̃0(r0 cos(φ0)−R(ψ0) cos(ψ0))

(4.20)

and

R(ψ) sin(ψ)+ λ̃(r sin(φ)−R(ψ) sin(ψ)) = R(ψ0) sin(ψ0)+ λ̃0(r0 sin(φ0)−R(ψ0) sin(ψ0)).

(4.21)
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Through rearranging and substituting for λ̃0, we obtain the equation for

λ̃ =
T

B
. (4.22)

where

T = (r0 cos(φ0)−R(ψ0) cos(ψ0))× (R(ψ0) sin(ψ0)−R(ψ) sin(ψ))

+(R(ψ) cos(ψ)−R(ψ0) cos(ψ0))× (r0 sin(φ0)−R(ψ0) sin(ψ0))

= r0R(ψ0) sin(ψ0 − φ0) +R(ψ)r0 sin(φ0 − ψ)

+R(ψ0)R(ψ) sin(ψ − ψ0) (4.23)

and

B = (r0 cos(φ0)−R(ψ0) cos(ψ0))× (r sin(φ)−R(ψ) sin(ψ))

−(r cos(φ)−R(ψ) cos(ψ))× (r0 sin(φ0)−R(ψ0) sin(ψ0))

= r0r sin(φ− φ0) +R(ψ)r0 sin(φ0 − ψ)

+R(ψ0)r sin(ψ0 − φ) +R(ψ)R(ψ0) sin(ψ − ψ0). (4.24)

As we are considering points close to each other, we also consider the limit as

θ → θ0, and so it follows that φ → φ0 and ψ → ψ0. In the current form however an

indeterminate form may arise, in which case the use of l’Hôpital’s Rule is required. We

define

λ∗ := lim
ψ→ψ0

λ̃ = lim
ψ→ψ0

∂T
∂ψ0

∂B
∂ψ0

(4.25)

To calculate the centre of curvature for a circular wave (to be used in our UWVF

basis) propagating in an element we take the point x in (4.18) to be the centroid of

each element. The limiting value of λ̃ in (4.25) with r = r0, is then substituted into

(4.18). This is a realistic way of finding the centre of curvature xC, as the points within

each element are close together, so we have θ → θ0 and r → r0. Thus overall we have

xC = z+ λ∗(x− z). (4.26)

This is illustrated in Figure 4.4.
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Figure 4.4: Rays through points x and x + δx cross at the point X. The centre of

curvature of wavefronts at x is xC = limδx→0X.
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Figure 4.5: The set-up of scattering by a circle.

4.1.1 Ray Tracing for Scattering by a Circle

As an initial study we first consider the simple case of scattering by a circle, CR(0, 0),

of radius R centred at the origin. This is a good test case to use as the exact solution

is known, allowing calculation of errors to test for improved accuracy. We again do the

ray tracing theory for an incident field from the +∞ direction, so ui(x) = exp(−iκx),
and maintain the boundary of the circular scatterer Γ1 = (R cos(θ), R sin(θ)) where

R > 0 is the (now constant) radius of the circle, and θ ∈ [−π, π).

We use the same set up as presented in §4.1, with unit incident and reflected direction

vectors |di| = 1, |dr| = 1, and di = −i. We again use the independent coordinate system

(v,n) as per Figure 4.5, where n = cos(θi)i+sin(θi)j and v = − sin(θi)i+cos(θi)j, and

equations (4.2–4.4) still hold. However as we are now considering a circular scatterer

rather than a general convex obstacle, through a priori knowledge of the geometry of

the circle (that the surface normal is in the radial direction), we know that the angle

for our point of reflection z is equal to the angle of reflection, ψ = θi. As per Figure

4.5, we have our reflection point on the surface of the scatterer

z = Rn. (4.27)
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As the circle is a special case with the property ψ = θi, we can use the equality to

eliminate ψ in (4.11), rather than eliminating θi to obtain (4.16). We are left with a

simpler equation to solve for θi. We define

f(θi) := sin(2θi − φ)− υ sin(θi), (4.28)

where υ = R/r ∈ (0, 1]. The angle of incidence and reflection is given by θi, the value

for which

f(θi) = 0, (4.29)

and our point of reflection between the ray and the circular scatterer is given by z =

(R cos(θi), R sin(θi)).

An example of (4.28) is shown in Figure 4.6 for a point x = (2, 2). As can be seen,

there are multiple solutions of x
R
sin(2θ)− y

R
cos(2θ)− sin(θ) = 0 (f(θ) rearranged) for

θ ∈ [−π, π). The correct solution corresponds to taking θi as the angle of incidence

and reflection as measured from the exterior normal (outwards into Ω). The remaining

solution corresponds to θi being measured from the interior normal (into Ω+), if the

incident ray was interacting with the scatterer on its interior. To find the appropriate

solution we use the bisection algorithm, using our knowledge of the physical setup to set

an appropriate starting interval. As the total angle between the incident and reflected

ray is θi + θr = 2θi, we actually require θi ∈ [−π/2, π/2]. For points x = (x, y) =

(r cos(φ), r sin(φ)) with x > 0, we require our solution θi to satisfy |φ|/2 ≤ |θi| ≤ |φ|
and so we use this for our starting bounds for the bisection algorithm. When x > 0

and y = 0 we have the solution θi = 0. When x < 0 we take θi ∈ (0, π/2] for y > R and

θi ∈ [−π/2, 0) for y < R. In the shadow region Ωshadow (see Figure 4.2) where x < 0

and |y| < R there is no solution (θi = π/2 is included here).

Continuing with the structure of §4.1, we now use the point of reflection z and

angle of reflection θi in order to find an originating centre of curvature. We again

use equations (4.18) and (4.19), write the points in polar coordinates, rearrange, and

substitute for λ0 (see §4.1 for details). We obtain (4.22) for the circle,

λ̃ =
R(R sin(θi − θ0) + r0[sin(φ0 − θi) + sin(θ0 − φ0)])

R2 sin(θi − θ0) +R[r0 sin(φ0 − θi) + r sin(θ0 − φ)] + rr0 sin(φ− φ0)
. (4.30)
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Figure 4.6: Multiple solutions of equation (4.29) for a point x = (2, 2). The correct

solution and reflection point z shown by the red circles, the incorrect solution and

reflection point shown by the blue circles.

As we are considering points close to each other, we also consider (4.25), this time

however using the limit as θi → θ0, φ → φ0 as for the circle θi = ψ. Using l’Hôpital’s

Rule, we have

lim
θi→θ0

λ̃ =
−R2 +Rr0 cos(θi − φ)

−R2 + (2− ν cos(θi)
cos(2θi−φ)

)(Rr0 cos(φ− θi)− rr0) +Rr cos(θi − φ)
(4.31)

Each of these values for λ̃ give a fairly good approximation of our intersection point.

As illustrated in Figure 4.7, the intersection points calculated using (4.31) in (4.19) get

better as θi → θ0, and the value of λ̃ using (4.30) approaches the limiting value from

(4.31), as shown in Figure 4.8.

To calculate a single centre of curvature for a circular wave propagating in an el-

ement, we take the point x in (4.18) to be the centroid of the element. The limiting
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value of λ̃ in (4.31) with r = r0, is then substituted into (4.18). This is a realistic way of

finding the centre of curvature xC, as the points within each element are close together,

so we have θi → θ0 and r → r0. Thus overall we have (4.26),

xC = z+ λ∗(x− z),

with

λ∗ =
−R2 +Rr cos(θi − φ)

−R2 + (2− ν cos(θi)
cos(2θi−φ)

)(Rr cos(φ− θi)− r2) +Rr cos(θi − φ)
. (4.32)
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by green circle markers. Improving as θi → θ0.
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4.1.2 Ray Tracing for Scattering by an Ellipse

We now consider the use of our ray tracing algorithm detailed in §4.1 for the case of

scattering by an ellipse. This is a more challenging test case than the circle as there

are fewer symmetrical properties. We continue with the ray tracing theory detailed

in §4.1, with an incident field ui(x) = exp(−iκx), and then reflect all results in the

y-axis in later numerical experiments. Define the boundary of the ellipse scatterer by

Γ1 = (R(θ) cos(θ), R(θ) sin(θ)) where θ ∈ [−π, π), and R(θ) > 0 is the radius of the

ellipse given by

R(θ) =
ab√

b2 cos2(θ) + a2 sin2(θ)
. (4.33)

where a and b are the lengths of the major and minor semi-axis respectively. In para-

metric form, the boundary can be written as

Γ1 = (a cos(t), b sin(t)),

for t ∈ [0, 2π) [72]. The incident ray interacts with the scatterer at the point given by

(4.1),

z = (R(ψ) cos(ψ), R(ψ) sin(ψ)), (4.34)

and reflects at an angle of reflection θi.

The ellipse is a particular case of a smooth convex obstacle, as considered in §4.1.
We proceed in the same manner as for the case of scattering by a general convex

obstacle. Again we use the independant coordinate system (v,n) as per Figure 4.3,

where n = cos(θi)i+ sin(θi)j and v = − sin(θi)i+ cos(θi)j. The derivation in equations

(4.2)–(4.11) all hold. To eliminate θi in (4.11), we use n as in (4.14) with

R′(ψ) =
ab(b2 − a2) sin(ψ) cos(ψ)

(b2 cos2(ψ) + a2 sin2(ψ))3/2
. (4.35)

This is then used in (4.15), and so we can solve an equation for ψ. Using definition

(4.16),

f(ψ) :=
r

R(ψ)
sin(2 arcsin (n2)− φ)− sin(2 arcsin (n2)− ψ),

the value ψ such that f(ψ) = 0 gives our point of reflection between the ray and the

circular scatterer, z = (R(ψ) cos(ψ), R(ψ) sin(ψ)). We again find solutions to (4.17)

using the bisection algorithm.
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Continuing with the structure of §4.1, we seek to find a centre of curvature for

wave fronts over an element. For two points x = (x, y) and x0 = (x0, y0) in the

domain, and their respective points of reflection z = (R(ψ) cos(ψ), R(ψ) sin(ψ)) and

z0 = (R(ψ0) cos(ψ0), R(ψ0) sin(ψ0)), we can use these to find the intersection of rays

from points which are close to one another. Following the arguments in §4.1, we need

to consider (4.18)–(4.19). Equating the right hand sides and writing the points in polar

form, we obtain equations (4.20)–(4.21). Through rearranging and substituting for λ̃0,

we obtain the equation (4.22),

λ̃ =
T

B
,

where T is given by (4.23),

T = r0R(ψ0) sin(ψ0 − φ0) +R(ψ)r0 sin(φ0 − ψ)

+R(ψ0)R(ψ) sin(ψ − ψ0)

and B is given by (4.24),

B = r0r sin(φ− φ0) +R(ψ)r0 sin(φ0 − ψ)

+R(ψ0)r sin(ψ0 − φ) +R(ψ)R(ψ0) sin(ψ − ψ0).

As we are considering points close to each other, we also consider the limit as

ψ → ψ0. Using l’Hôpital’s Rule, we have

lim
ψ→ψ0

λ̃ = lim
ψ→ψ0

∂T
∂ψ0

∂B
∂ψ0

(4.36)

with

∂T

∂ψ0

= r0
(
R′(ψ0) sin(ψ0 − φ0) +R(ψ0) cos(ψ0 − φ0)

+
∂φ0

∂ψ0

(R(ψ0) cos(ψ0 − φ0) +R(ψ) cos(φ0 − ψ))
)

+ R(ψ) (R′(ψ0) sin(ψ − ψ0)−R(ψ0) cos(ψ − ψ0)) (4.37)

and

∂B

∂ψ0

= R(ψ0) (r cos(ψ0 − φ)−R(ψ) cos(ψ − ψ0))

+ R′(ψ0) (r sin(ψ0 − φ) +R(ψ) sin(ψ − ψ0))

+
∂φ0

∂ψ0

r0 (R(ψ) cos(φ0 − ψ)− r cos(φ− φ0)) , (4.38)
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and where

∂φ0

∂ψ0

=
2√

1− n2
2

−
R′(ψ0) sin(2 arcsin(n2)− ψ0)−R(ψ0) cos(2 arcsin(n2)− ψ0)(

2√
1−n2

2

− 1)

r cos(2 arcsin(n2)− φ0)
,

obtained by differentiating (4.16) with respect to ψ0 and rearranging.

To calculate the centre of curvature for a cylindrical wave travelling over an element

we take the point x in (4.18) to be the centroid of each element. The limiting value of

λ̃ in (4.36) with r = r0, is then substituted into (4.18). This is a realistic way of finding

the centre of curvature xC, as the points within each element are close together, so we

have θ → θ0 and r → r0. Thus overall we have

xC = z+ λ∗(x− z) (4.39)

with

λ∗ =
r
(
R′(ψ) sin(ψ − φ) +R(ψ) cos(ψ − φ)(1 + 2 ∂φ

∂ψ
)
)
−R2(ψ)

R(ψ)r cos(ψ − φ)−R2(ψ) +R′(ψ)r sin(ψ − φ) + ∂φ
∂ψ

(R(ψ)r cos(φ− ψ)− r2)
.

(4.40)
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4.2 Exact and Reference Solutions

The ray-traced centres of curvatures computed in §4.1 are to be used to enrich the basis

when approximating wave scattering by a smooth convex obstacle using the UWVF. In

order to find the level of accuracy achieved for the two cases we explore, the circle and

the ellipse, we require a reference solution with which errors can be computed. Here we

present the exact solution for the circle in §4.2.1, and for the ellipse in §4.2.2. However,
the exact solution for the elliptical case is presented for completeness alone: due to the

difficulty in evaluating the Mathieu functions required for the exact solution for the

ellipse, we instead used a MFS solution as detailed in §4.2.3 as a reference solution.

4.2.1 The Exact Solution for a Circular Scatterer.

We now present the known exact solution for the problem of acoustic wave scattering by

a circle for a plane wave incident field, so that it can be used for measuring the accuracy

of our ray-traced centres of curvature and the solutions produced by the UWVF. The

exact solution can be represented in the form of an eigenfunction expansion (see [49]).

The incident wave when coming from −∞ in the x direction, ui = exp(iκx), can be

written in polar coordinates as

ui(r, θ) =
∞∑

m=0

εmi
mJm(κr) cos(mθ), (4.41)

[49, eqn. 2.77], and the outgoing diffracted field can be written as

ud(r, θ) =
∞∑

m=0

amεmi
mH(1)

m (κr) cos(mθ), (4.42)

[49, eqn. 2.78] where εm is the Neumann symbol defined as

εm =





1, for m = 0,

2, for m ≥ 1,
(4.43)

and Jm(z) is a Bessel function of the first kind of order m centred at z. By applying

Dirichlet boundary conditions (the total field u = 0) on the boundary of a circular
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scatterer CR(0, 0) centred at the origin with radius R, we can obtain the coefficients

am. Thus the total field u is given by

u(r, θ) =
∞∑

m=0

εmi
m

(
Jm(κr)−

Jm(κR)

H
(1)
m (κR)

H(1)
m (κr)

)
cos(mθ) (4.44)

and the scattered field us is given by

us(r, θ) =
∞∑

m=0

εmi
m−Jm(κR)
H

(1)
m (κR)

H(1)
m (κr) cos(mθ). (4.45)

In the case of Neumann boundary conditions (∂u/∂n = 0 on the boundary of the

circular scatterer), the scattered field is given by

us(r, θ) =
∞∑

m=0

εmi
m

(
−J ′

m(κR)

H
(1)′
m (κR)

H(1)
m (κr)

)
cos(mθ). (4.46)

In practice, as we cannot evaluate an infinite sum in our numerical computations, we

have to truncate the series. If we consider the error in approximating our incident field

by a series truncated after N terms,

EN = ui − uiN =
∞∑

m=N+1

εmi
mJm(κr) cos(mθ), (4.47)

it follows that

|EN | ≤ 2
∞∑

m=N+1

|Jm(κr)|. (4.48)

Using [3, 9.1.62], that for z ≥ 0 fixed and m ≥ 1/2,

|Jm(z)| ≤
|1
2
z|m

Γ(m+ 1)
=

|z|m
2mm!

,

it follows that

|EN | ≤ 2
∞∑

m=N+1

(κr
2
)m

m!

= 2
(κr
2

)N+1 1

(N + 1)!

∞∑

m=0

(κr
2
)m(N + 1)!

(N + 1 +m)!

≤ 2
(κr
2

)N+1 1

(N + 1)!

∞∑

m=0

(κr
2
)m

m!

= 2
(κr
2

)N+1 1

(N + 1)!
exp(κr/2). (4.49)
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By [3, 6.1.38],

(N + 1)! ≥
√
2π(N + 1)N+3/2 exp(−N − 1), (4.50)

and so

|EN | ≤
√

2

π(N + 1)
exp(κr/2)

(
eκr

2(N + 1)

)N+1

. (4.51)

To achieve an error in our truncated series that is less than a set tolerance ǫ, we find

the appropriate N to truncate the series at by finding the zero of the function

f̃(Ñ) =

√
2

πÑ
exp(κr/2)

(
eκr

2Ñ

)Ñ
− ǫ. (4.52)

It is necessary to start with N > eκr
2

− 1, as

(
eκr

2(N + 1)

)N+1

→ 0

provided (
eκr

2(N + 1)

)
< 1,

ensuring f̃ will be decreasing. For any N greater than the Ñ for which f̃ = 0, the

error in the truncation of the series will be less than ǫ. We set ǫ = 10−8 and use the

Matlab root finding function fzero to find the appropriate term after which to truncate

the series. This requires inputs of a function handle for the function for which the root

is required, f̃ , and we provide as an initial value N = eκr
2

− 1.

4.2.2 The Exact Solution for Scattering by an Ellipse

As is the case for scattering by a circle, there exists a known solution for exterior

scattering by an ellipse. It comes in the form of an infinite series of Mathieu functions.

In practice this solution is rarely used however, due to the difficulty in computing

Mathieu functions [49]. However, we present the solution here for completeness. As

detailed in [33], the solution is represented in terms of elliptic coordinates (µ, η), which

are related to Cartsesian coordinates (x, y) by

x = s cosh(µ) cos(η), (4.53)
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and

y = s sinh(µ) sin(η), (4.54)

where s describes the location of the foci of the ellipse. We set a parameter q to

satisfy
√
q = κs/2, and consider the scatterer boundary Γ1 on which µ = â, a constant.

Let cer(η, q) and ser(η, q) denote angular functions that satisfy Mathieu’s differential

equation
d2y

dη2
− (λ̂− 2q cosh(2η))y = 0, (4.55)

where the seperation constant λ̂ is denoted by ar and br for cer and ser respectively. Let

Mc
(3)
r (µ, q), r = 0, 1, ... and Ms

(3)
r (µ, q), r = 1, 2, ... denote the radial Mathieu-Hankel

functions, as given in [3]. These satisfy Mathieu’s modified differential equation

d2y

dµ2
− (λ̂− 2q cosh(2µ))y = 0, (4.56)

where again the seperation constant λ̂ is denoted by ar and br for Mc
(3)
r and Ms

(3)
r

respectively. The solution of the exterior scattering problem for µ ≥ â is given by

uE(µ, η) =
1

π

∞∑

r=0

Mc
(3)
r (µ, q)

Mc
(3)
r (a, q)

cer(η, q)

∫ 2π

0

uE(a, η′)cer(η
′, q)dη′

+
1

π

∞∑

r=0

Ms
(3)
r (µ, q)

Ms
(3)
r (a, q)

ser(η, q)

∫ 2π

0

uE(a, η′)ser(η
′, q)dη′. (4.57)

For more information on this exact solution see [33, §4.4]. Due to the difficulty in

computing Mathieu functions needed to evalute (4.57), we do not use (4.57) as an

exact solution with which to reference our UWVF solutions to. In the following §4.2.3
we present an alternative, the MFS solution, with which we can compare our UWVF

results to.

4.2.3 The Method of Fundamental Solutions for Scattering by

an Ellipse

Due to the computational difficulty of evaluating the Mathieu function representation of

the solution of scattering by an ellipse (see §4.2.2), we instead use the MFS, as detailed
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in 2.2.1 and [9], to find a reference solution (which we take as being “exact” for the

purpose of computing errors). For the purpose of computing a reference solution, the

MFS represents a fast, reliable, and relatively easy to program option. However, the

number of degrees of freedom in MFS scales with the wavenumber [9]. We investigate

the use of ray-traced basis functions in the UWVF, in the hope that we will have a

scheme for which the number of degrees of freedom will grow at a sublinear rate as the

wavenumber increases.

We find a solution u(N) in the form of (2.9), a linear combination of N fundamental

solutions

u(x) ≈ u(N)(x) =
i

4

N∑

j=1

αjH
1
0 (k|x− yj|) yj ∈ R

2\Ω.

The yj are the source points of the fundamental solutions. These are chosen to lie

equi-spaced along a smooth closed curve ΓE on the exterior of the domain, i.e. the

interior of the ellipse, such that ΓE and Γ1 are distinct, dist(Γ1,Γ
E) > 0. The curve

ΓE is taken to be an ellipse with major and minor axis ǫ := λ/3 less than the scatterer

ellipse Γ1, so source points are positioned at yj = ((a − ǫ) cos(ψj), (b − ǫ) sin(ψj)) for

ψj = 2πj/N , j = 1, ..., N . This set-up is illustrated in Figure 4.9.

We look for a solution in the form

u(x) = ui(x) +

∫

ΓE

(
∂Φ(x,y)

∂n(y)
− iκΦ(x,y)

)
α̂(y)ds(y). (4.58)

Here Φ(x,y) = i
4
H1

0 (κ|x − y|) is the standard fundamental solution of the Helmholtz

equation (2.5) and α̂ is a function to be determined. The motivation for this comes

from [18, Equation (2.70)], where the scattered field is represented using the boundary

integral representation

us(x) =

∫

Γ1

(
∂Φ(x,y)

∂n(y)
− iκΦ(x,y)

)
α̂(y)ds(y). (4.59)

This combined layer potential form provides a unique integral representation of the

scattered field [18]. We cannot use this form directly for our MFS representation as

the singularities of the fundamental solutions would lie on Γ1 where we are forcing

our boundary condition u = 0 to hold. However it is hoped that by instead taking
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the integral over the boundary ΓE we will still get an accurate representation as the

two boundaries are taken to be close together. With the form (4.58) we still have

that the scattered field satisfies the Sommerfeld Radiation Condition (2.8) and the

solution satisfies the Helmholtz equation, the only thing remaining is to enforce the

boundary condition u = 0 within our MFS. Thus for our MFS approximation we use a

representation of (4.58) of the form

u(N)(x) = ui(x) +
N∑

j=1

αj [n(yj) · ∇yΦ(x,yj)− iκΦ(x,yj)] , x ∈ Ω, (4.60)

where the coefficients αj approximate the unknown function α̂. We choose the coeffi-

cients αj to enforce that

u(xm) ≈ 0, m = 1, ...,M . (4.61)

at M ≥ N collocation points xm ∈ Γ1, applying the boundary condition u = 0 for

x ∈ Γ1. This results in a linear system Aα = v, in which we force

−ui(x) =
N∑

j=1

αj [n(yj) · ∇yΦ(x,y)− iκΦ(x,y)] , (4.62)

to hold at xm, m = 1, ...,M . The entries of matrix A are given by

Am,j = n(yj) · ∇yj
Φ(xm,yj)− iκΦ(xm,yj). (4.63)

In this equation n(yj) represents the outward normal vector at yj. The entries of vector

v are given by

vj = − exp(iκx(m)). (4.64)

We use a standard matrix solver, Matlab’s backslash operator, to solve the system

Aα = v in order to find the vector α of coefficients αj. For a matrix A and vector v,

using Matlab’s backslash operator in α = A\v provides the least squares solution to

Aα = v. The coefficients in α can then be used in (4.60) to approximate the solution

over the whole domain.

The real part of the MFS solution for κ = 10 for scattering by an ellipse with a = 1.2

and b = 1 is shown in Figure 4.10, with the total field on the left and the scattered
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yN−1

x1

xM

xM−1

Figure 4.9: The MFS set-up for wave scattering by an ellipse. Source points are repre-

sented by red dots, collocation points are represented by blue circles.

field on the right. This approximation was achieved using Nλ = 10 degrees of freedom

per wavelength on the boundary of the ellipse: we take N = ceil(LΓ1
Nλ/λ) where the

function ceil rounds upwards towards positive infinity, and

LΓ1
≈ π(a+ b)

(
1 +

3ĥ

10 +
√
4− 3ĥ

)
,

with ĥ = (a−b)2

(a+b)2
, gives the approximate circumference of the ellipse [72]. Thus the

results shown in Figure 4.10 were achieved using N = 111 point sources on ΓE in the

approximation, with M = 131 collocation points on Γ1.

To test the accuracy of the MFS approximation we consider the maximum absolute

error on the boundary of our scatterer Γ1, at points away from the collocation points

where we have forced the boundary condition to hold. Figure 4.11 shows the maximum

absolute error on Γ1 against the number of degrees of freedom per wavelength Nλ on the
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(a) Reu (b) Reus

Figure 4.10: The MFS approximation for κ = 10, a = 1.2, b = 1, with N = 111 and

M = 131.

boundary in the computation of the MFS solution. As can be seen we get exponential

convergence, i.e. the error ≈ C exp(−cNλ). With this high level of accuracy achieved,

we can conclude that the MFS using the representation of the form (4.58) gives an

accurate solution for the purpose of comparing with our UWVF solutions.
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Figure 4.11: Maximum error of MFS on the boundary Γ1 for various κ.
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4.3 Best Approximation Studies

Here we present two initial studies which aim to see how well the ray-traced wave

directions and centres of curvatures obtained in §4.1 can be used to approximate wave

scattering by a convex obstacle. These studies give insight into the value ray tracing

techniques may have as an aid for the enrichment of the UWVF basis. First, in §4.3.1,
we consider the element-wise best approximation of the scattered field for the case of

a circular scatterer. This is done first for the approximation on a single element, and

then for all elements in a discretised domain. The second study is presented in §4.3.2,
where we consider the best approximation to the total field for both differing sizes of

the area of approximation and for different regions around the domain.

4.3.1 A Preliminary Study: Best Approximation for Wave

Scattering by a Circle

Equipped with an exact solution (4.44), we can now investigate the level of accuracy

it is possible to achieve by using the ray-traced centres of curvatures of §4.1.1 in our

approximation space. Before implementing these centres of curvature in the UWVF

basis, we first do an initial study to give an indication as to how well a ray-traced

basis may work, for the case of scattering by a unit circle (R = 1). As with FEM

and the UWVF, we find a solution on a discretised domain of triangular elements.

The incident plane wave direction is given and so can easily be approximated, thus for

our initial study we only test the scattered field approximation. We consider the best

approximation to the scattered field using just one degree of freedom per element, using

the ray-traced centres of curvature xC, given by (4.26) with (4.32), either in the basis

or as an initial guess when searching for an optimal centre of curvature (as explained

below). However, the exact solution we have is for an incident field ui = exp(iκx) (see

§4.2.1), whereas our ray tracing algorithm assumed an incident field ui = exp(−iκx)

(see §4.1.1). For all further work we reflect the ray-traced centres of curvature in the y

axis (i.e. xC = (x, y) becomes xC = (−x, y)), so that the two methods correspond.
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To find a good approximation to the scattered field in each element, we minimise

||us − uopt||L2(Ωk) (4.65)

where us is the scattered field given by (4.45), and uopt is an optimal approximation

we seek to find. Note that although we use the exact solution here to test how well

this method can work, the algorithmic ray tracing approach does not require a priori

knowledge of the solution. To minimise the norm (4.65), we used the Matlab function

fminsearch, a nonlinear optimisation routine that finds a local minimum of an inputted

function of several variables, requiring initial starting estimates. We experiment with

various options, the first using

uopt(x) = AΦ̃(x, ẑ), (4.66)

where A is a complex amplitude, and Φ̃(·, ẑ) is a Hankel function circular wave, prop-

agating outwards from a source point ẑ, which we seek to find. We use the ray-traced

centre of curvature xC as an initial guess for ẑ and then optimise over both A and ẑ.

For the second option we consider the best approximation by a single plane wave basis,

taking

uopt(x) = A exp(iκx · d), (4.67)

and optimise over both A and d, where we use the ray-traced direction

dr = (− cos(2θi), sin(2θi))

(again having reflected in the y axis) as an initial guess. For the final set we again use

a Hankel basis, taking

uopt(x) = AΦ̃(x,xC), (4.68)

optimising over A only and maintaining the centre of curvature as xC. In all cases for

an initial guess for the amplitude, we use

Â =
us(x)

Φ̃(x,xC)
(4.69)

for a point x close to the centroid of Ωk.
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As discussed in the above paragraph we first find the best approximation to the

scattered field using a single Hankel degree of freedom per element by minimising (4.65),

with uopt given by (4.66), optimising over the amplitude A and the centre of curvature ẑ.

For a single element Ω1 with vertices (−1.9, 1.6), (−1.4, 2.5), (−2.4, 2.1), we use the ray

tracing algorithm detailed in §4.1.1 to find the centre of curvature for wavefronts at the

centroid of the element, at (−1.9, 2.066). This gave the value of xC = (−0.6403, 0.1098).

This value of xC is used as an intial guess in the optimisation routine, which found the

optimal centre of curvature ẑopt = (−0.6575, 0.1269). The proximity of the obtained

optimal and ray-traced centres of curvatures suggests that the use of the ray tracing

algorithm for the direction and local curvature of wavefronts is accurate. Numerical

results of the best approximation by a single optimal Hankel degree of freedom using

(4.66) are shown in Figure 4.12 for κ = 10 and Figure 4.13 for κ = 80. In these

figures we show the real part of the exact scattered field (given by (4.45)) in Ω =

[−3, 0] × [0, 3]\CR(0, 0) and in the element alone in the two upper plots. In the lower

left plot we have the real part of the approximation by a single optimal Hankel function,

and in the lower right we have the absolute error plotted on a log10 scale. The ray-

traced centre of curvature xC is shown by the black circle marker, whilst the optimal

centre of curvature ẑopt is shown by the red circle marker. Clearly the solution is most

accurate around the centroid of the element, however there is still in both cases high

accuracy, of less than 0.01 absolute error over the whole element for κ = 10 and over

the majority of the element for κ = 80.

This can be compared with conventional FD or low order FEM, where a rule of

thumb of Nλ = 10 degrees of freedom per wavelength is needed for a reliable approxi-

mation, of engineering accuracy [18,44,47]. In one spatial dimension, the total number

of degrees of freedom NT on a segment of length L is given by

NT =
NλL

λ
=
NλLκ

2π
.

Extending this to two dimensions, to achieve Nλ degrees of freedom per wavelength in

each direction in a domain Ω, we need a number of degrees of freedom

NT =
N2
λ |Ω|κ2
4π2

(4.70)
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where |Ω| is the area of the region. Thus with standard FD and FEM, to discretise

the element shown in Figure 4.12 we would expect to need 89 degrees of freedom for

κ = 10 and 5674 degrees of freedom for κ = 80 to achieve an accurate representation

of the scattered field in the element.

(a) Reus (b) Reus in Ω1

(c) Reuopt in Ω1 (d) log10 |us − uopt| in Ω1

Figure 4.12: Best approximation by AΦ̃(·, ẑ) optimising over A and ẑ (as in (4.66)), for

κ = 10. xC shown by the black circle marker, ẑopt shown by the red circle marker.

To see the effectiveness of the new Hankel basis compared to the conventional plane

wave basis, we compare these results with those of an approximation by a single optimal

plane wave direction using (4.67). In the case of the plane wave we used the ray-traced

reflected direction dr as an initial guess and then optimised over the amplitude and

the direction of the plane wave. Table 4.1 compares the Root Mean Square Error
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(a) Reus (b) Reus in Ω1

(c) Reuopt in Ω1 (d) log10 |us − uopt| in Ω1

Figure 4.13: Best approximation by AΦ̃(·, ẑ) optimising over A and ẑ (as in (4.66)), for

κ = 80. xC shown by the black circle marker, ẑopt shown by the red circle marker.

(RMSE) and Relative Root Mean Square Error (RRMSE) obtained by approximating

the scattered field using a single Hankel circular wave and a single plane wave on the

element. Here the RMSE and RRMSE are computed using

RMSE=

√
∑NP

j=1
|us(xj)−uopt(xj)|

2

NP
RRMSE=

√∑NP
j=1

|us(xj)−uopt(xj)|
2

∑NP
j=1

|us(xj)|2

where xj, j = 1, ..., NP , are equi-spaced evaluation points in the element. The number

of evaluation points NP is chosen as NP = NT of (4.70) with Nλ = 10.

Clearly the Hankel basis gives a much better approximation with an RRMSE of less
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Table 4.1: Comparison of Hankel Circular Wave (using (4.66)) and Plane Wave (using

(4.67)) Approximation Errors in Ω1 for an Optimal Basis.

Circular Wave Plane Wave

κ RMSE RRMSE RMSE RRMSE

10 1.8× 10−3 4.1× 10−3 5.4× 10−2 1.2× 10−1

20 2.4× 10−3 5.5× 10−3 1.0× 10−1 2.3× 10−1

40 2.8× 10−3 6.5× 10−3 1.9× 10−1 4.5× 10−1

80 3.4× 10−3 7.9× 10−3 3.0× 10−1 6.9× 10−1

than 1% in all cases, compared to those from 12% to 69% for the approximation by

a single plane wave. It is also worth noting that, for the Hankel basis, where the

wavenumber κ has increased by a factor of eight, the RRMSE has not even doubled.

We now move to the best approximation by a single basis function in elements over

an entire domain Ω = [−3, 3]× [−3, 3]\CR(0, 0), rather than a single element. The ray

tracing algorithm works in the illuminated region of the domain, the region in which

the incident field can penetrate. In the shadow region, where the obstacle blocks the

incident field (on the opposite side of the circle from the direction of incidence in this

case -see §4.1) the ray tracing theory does not hold. Thus we took elements with

centroids with xCk > 0 and |yCk | ≤ R to be those in the shadow. For these elements we

used as an initial guess for ẑ in (4.66) a point source in the far field in the negative x

direction (x = −600), to represent the incident field. This is a good starting choice, as

where the total field ut ≈ 0 in the shadow, it means that the scattered field us ≈ −ui.

Figure 4.14 shows some example numerical results with (4.66) taken in K = 184

elements over the entire domain for κ = 30. It has three plots: (a) shows the real part of

the exact solution us with the computational mesh imposed over it; (b) shows the real

part of the optimal approximate solution using one Hankel function on each element,

optimised over the amplitude and centre of curvature separately in each element; and

(c) shows the absolute error plotted on a log10 scale. For the optimal approximation

we have not used curved edges for elements adjacent to the scatterer boundary, instead
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using triangular elements. This means that part of each triangle adjacent to the circle

extends slightly into the circle interior, however all errors are set to zero here (as it is

not part of Ω considered). Overall we get a fairly accurate solution in the illuminated

region, with errors ranging from 10−3 to 10−5. In the region immediately close to the

scatterer, in the shadow region, and on the shadow boundary, absolute errors increase

to around 10−1.

(a) Reus (b) Reuopt

(c) log10 |us − uopt|

Figure 4.14: Best approximation optimised over A and ẑ by AΦ̃(·, ẑ) (using (4.66)), for

κ = 30, K = 184 elements.
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Now we compare this with the best approximation by a conventional plane wave

basis, using (4.67), optimising over A and d in A exp(iκx · d). Figure 4.15 shows

comparable numerical results, with (4.67) taken on elements of the same mesh of K =

184 elements over the entire domain for κ = 30. Again there are three plots: (a) shows

the real part of the exact solution with the computational mesh imposed over it; (b)

shows the real part of the optimal approximate solution using one plane wave on each

element and optimising over the amplitude and direction; and (c) shows the absolute

error plotted on a log10 scale. We use the same colour range for plot (c) as in Figure 4.14

for easier comparison. Clearly here we get much higher errors throughout the domain,

suggesting the Hankel basis is preferable in this case. However it is interesting to note

that the plane wave approximation is more accurate than the Hankel basis in the shadow

region directly behind the scatterer. Theoretically the optimal Hankel basis should be

no worse than the optimal plane wave basis (as a Hankel function can replicate a plane

wave), suggesting there is some sort of error in the optimisation routine.

The motivation behind finding the ray-traced centres of curvatures is for their even-

tual use in the basis set for the UWVF. In the approximation of the form (4.68), we use

our ray-traced centre of curvature and optimise over the amplitude alone. Optimising

over the amplitude alone provides a more realistic comparison with the UWVF: we are

testing for a given enriched basis to be be used in the UWVF; amplitude coefficients

are solved for separately within the formulation. Figure 4.16 shows some example nu-

merical results with an ansatz (4.68) in each element for κ = 30. Again there are three

plots: (a) shows the real part of the exact solution with the same computational mesh of

K = 184 elements imposed over it; (b) shows the real part of the optimal approximate

solution using one Hankel function on each element and optimising over the amplitude

only; and (c) shows the absolute error plotted on a log10 scale. Again the same colour

range as in Figure 4.14 is used for plot (c) for easier comparison. Here we get a similar

pattern to those using (4.66) in Figure 4.14, with a fairly accurate solution in the illu-

minated region, and errors increasing in the region immediately close to the scatterer
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(a) Reus (b) Reuopt

(c) log10 |us − uopt|

Figure 4.15: Best approximation over A and d by A exp(ix · d) (using (4.67)), for

κ = 30, K = 184 elements.

and on the shadow boundary. However the errors are generally slightly higher overall,

as we would expect; theoretically the absolute errors in Figure 4.16 must be at least as

large as those in Figure 4.14.

By considering the error in each individual element, we can deduce in which region

our ray tracing algorithm gives good accuracy, and in which regions we might need to

augment the UWVF basis to achieve a better approximation. Figure 4.17 shows for the
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(a) Reus (b) Reuopt

(c) log10 |us − uopt|

Figure 4.16: Best approximation by AΦ̃(·,xC) optimising over A (using (4.68)), for

κ = 30, K = 184 elements.

higher wavenumber κ = 50, and finer discretisation of K = 334 elements, the absolute

error around the domain plotted on a log10 scale, as well as a table showing the RMSE

and RRMSE for various elements in the domain. The different coloured entries of the

table correspond to the different highlighted elements. Here the approximate solution

has been found using one Hankel function on each element and optimising over the

amplitude alone, using the ray-traced centres of curvature. Again we get some very

accurate results, with the highest accuracy in Ωlit and higher errors in the shadow

region and on the shadow boundary.
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log10 |us − uopt|

RMSE RRMSE

2.98× 10−5 6.49× 10−5

1.60× 10−3 3.40× 10−3

5.40× 10−2 6.04× 10−2

3.08× 10−2 3.07× 10−2

1.85× 10−2 2.76× 10−1

Figure 4.17: The absolute error in the best approximation using (4.68), on a log10

scale for κ = 50, K = 334. The different coloured entries correspond to the different

highlighted elements.

Overall, from this study we found that a single Hankel degree of freedom per element

provides a good approximation, particularly in the illuminated region to the forefront

of the scatterer. Our initial experiments suggest that in some cases it may be possible

to use one degree of freedom to replace 5000 degrees of freedom that may be required

in conventional FD and FEM. The main areas of error were near the shadow boundary,

near the scatterer, and in the shadow zone generally. Using a single plane wave degree

of freedom is much less accurate (for the mesh sizes/wavelengths explored).

4.3.2 Best Approximation Study

We now present a further study into the best approximation by a ray-traced basis. Here

we systematically investigate the best approximation achievable by the ray-traced basis

in different areas of the domain, and in different sized regions. We now consider the

total field, for both a circular and an elliptical scatterer. We seek to find this best ap-

proximation in a circle Bε(x
p), centred at a point xp with radius ε, for various positions
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θ

R

ui = exp(iκx)

xp

Figure 4.18: Best approximation in Bε(x
p)

throughout the domain, for example as per Figure 4.18. We use a representation from

the two dimensional subspace

V = {A exp(iκx) +BH1
0 (κ|x− xC |) : A,B ∈ C} (4.71)

where xC is the ray-traced centre of curvature. The first term represents a plane wave

incident field, and the second term represents the scattered field by just a single Hankel

function. We seek to find the appropriate ξN ∈ V that minimises the dimensionless

quantity

E = min
ξN∈V

‖u− ξN‖L2(Bε(xp))

‖1‖L2(Bε(xp))

= min
ξN∈V

‖u− ξN‖L2(Bε(xp))√
πε

. (4.72)

To find the value of our dimensionless quantity E, we consider it as a classical

least squares problem. Linear least squares is a method for best fitting data in an

overdetermined linear system of equations by minimising the residuals [8]. We use it

to find the best fitting coefficients c = (c1, c2) for our approximation

ξN(x) =
2∑

i=1

aici = c1 exp(iκx) + c2H
1
0 (κ|x− xC |), (4.73)

for x ∈ Bε(x
p). To do this we consider (4.73) at M points xj ∈ Bε(x

p), and denote

a1,j = exp(iκxj) (with xj(= (xj, yj)) and a2,j = H1
0 (κ|xj−xC |) in the matrix Â = [ai,j].
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The continuous ratio E is approximately equal to the corresponding discrete ratio, and

so in this way we can write

E ≈ 1√
πε

min
ξN∈V

M∑

j=1

|u(xj)− ξN(xj)|2

=
1√
πε

min
c∈C2

M∑

j=1

|u(xj)−
2∑

i=1

ai,jci|2

=
1√
πε

min
c∈C2

M∑

j=1

|u(xj)− (Âc)j|2

=
1√
πε

min
c∈C2

‖u− (Âc)‖22. (4.74)

Here u = (u(xj))
M
j=1 is a vector of our exact reference solution evaluated at M points

xj ∈ Bε(x
p)). For the case of a circular scatterer we use (4.44), and for an ellipse we

use the MFS solution obtained by (4.60). The solution c of (4.74) is then the solution

of the normal equations [8, Equation 6.22]

ÂHÂc = ÂHu (4.75)

given by

c = (ÂHÂ)−1ÂHu, (4.76)

where the H superscript indicates the conjugate transpose of a matrix.

The value of E is computed for various Bε(x
p) centred at xp = xp(R × R(θ), θ)

for R = 1.5, 2, 3, R(θ) as in (4.33), and θ ∈ (0, π) provided xp is in the illuminated

region with |R × R(θ) sin(θ)| ≥ a and R×R(θ) cos(θ) < 0. Example points and the

corresponding ray-traced centres of curvatures are shown in Figure 4.19 for an ellipse

with a = 1, b = 1.2, R = 2. The dimensionless best approximation quantity E for

a unit circle is shown in Figures 4.20–4.21, and an ellipse with a = 1.2 and b = 1 in

Figures 4.22–4.23. Results are shown for κ = 10, 80, in Bε(x
p) with ε = 0.5λ, 2λ, and

R = 1.5, 2, 3, θ ∈ (0, π]. Clearly the ray-traced approximation is less accurate in the

near field close to the scatterer (R = 1.5), and the approximation is more accurate

further away, for R = 2, 3. It is also more accurate for the circular scatterer than the

ellipse. The approximation is least accurate in the region close to the shadow bound-

ary, improving as xp enters the region to the forefront of the scatterer. In all cases the
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κ = 80 best approximations are more accurate than the κ = 10 best approximations.

This may be due to ray-traced basis working better at high frequencies as it is a high

frequency approximation, or that the area considered Bε(x
p) is much smaller for the

higher frequency as we use radii dependant upon the wavelength λ. The levels of accu-

racy achieved is again promising, suggesting that the ray-traced centres of curvatures

do provide a good approximation to the scattered field wavefronts in a limited region

around the evaluation point.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

x

y

Figure 4.19: xp in red markers and the corresponding xC in black markers (moving

anti-clockwise together) for an ellipse with a = 1, b = 1.2, R = 2. The boundary of the

scatterer shown in blue.
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(a) κ = 10
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(b) κ = 80

Figure 4.20: The dimensionless best approximation quantity E for a unit circle, for

ε = 0.5λ, R = 1.5, 2, 3, θ ∈ (0, π].
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(b) κ = 80

Figure 4.21: The dimensionless best approximation quantity E for a unit circle, for

ε = 2λ, R = 1.5, 2, 3, θ ∈ (0, π].
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(b) κ = 80

Figure 4.22: The dimensionless best approximation quantity E for an ellipse with a = 1,

b = 1.2, for ε = 0.5λ, R = 1.5, 2, 3, θ ∈ (0, π].
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Figure 4.23: The dimensionless best approximation quantity E for an ellipse with a = 1,

b = 1.2, for ε = 2λ, R = 1.5, 2, 3, θ ∈ (0, π].
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4.4 Summary

In this chapter we presented a ray tracing method to be used as an aid for finding

a good a priori choice of basis function for the UWVF, which follows in Chapter 5.

We considered the case of wave scattering by a smooth convex obstacle in a domain

of constant wavespeed, with examples given of circular (§4.1.1) and elliptical (§4.1.2)
scatterers. In §4.1, ray tracing techniques were used to develop an algorithm that

gives reflected ray directions and the local centre of curvature for reflected wavefronts.

In §4.2 exact and reference solutions are presented, with which we conducted best

approximation studies to give insight into the value ray tracing techniques may have

in aiding the choice of basis functions in the UWVF. Initial studies were presented in

§4.3, considering the best approximation by various bases in an individual element,

and regions of the domain the ray-traced basis is most accurate. The results were

promising, with the wavefield representation by two ray traced basis functions per

element achieving high accuracy in large regions of the domain.



Chapter 5

Ray Enrichment of the UWVF

basis: High Frequency Scattering

by Convex Obstacles

To further progress the UWVF, here we incorporate the ray tracing techniques detailed

in Chapter 4 into the method, in order to find a good a-priori choice of basis function.

Similar techniques have been trialled in [11]. A strength of the UWVF is the incorpo-

ration of the intrinsic wavelength into the method. In a similar fashion we now adapt

the method to incorporate details based upon the structure of the domain.

As explained in Chapter 3, the UWVF approximation holds on a domain that has

been discretised into triangular finite elements. In this chapter we seek to find a good

choice of basis function on each of these elements Ωk, k = 1, . . . K, using ray tracing

theory as an aid for finding dominant wave directions and choosing point source posi-

tions for a Hankel basis. We consider the case of two dimensional wave scattering by a

smooth convex obstacle, in a domain where the wave speed, and thus the wavenumber,

is constant. We will consider how similar ideas can be applied to more general domains

of non-constant wavespeed in Chapter 6.

In §5.1 aspects of the use of the UWVF for the case of scattering by a circle are ex-

94
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plained, with comparison between the conventional equally-spaced basis (§5.1.1) and a

ray tracing augmented basis (§5.1.2) given. The UWVF for an elliptical scatterer is pre-

sented in §5.2, again with comparison of the equally-spaced and ray tracing augmented

basis given in §5.2.3.

5.1 ApproximatingWave Scattering by a Circle with

the UWVF

We now progress to the use of the UWVF for approximating our wave scattering prob-

lem, first considering the case of scattering by a circle. This is an ideal case to use to

test the use of a ray enriched UWVF basis as the exact solution is known, and so we

can easily calculate errors and levels of accuracy. To implement this numerically in our

UWVF codes, we truncate the unbounded exterior domain to a square of edge length

6 where we are considering scattering by a circle of radius R = 1, both centred at the

origin: Ω = [−3, 3]× [−3, 3]\CR(0, 0), as illustrated in Figure 5.1. We approximate the

total field produced by a plane wave incident field ui = exp(iκx), solving the Helmholtz

equation (3.1a) with a zero interior source term f = 0 and constant wavenumber κ and

density ρ = 1 throughout. For the boundary conditions on the surface of the scatterer

Γ1 we use Q1 = −1 in (3.1b) for Dirichlet boundary conditions and take the source

term g1 = 0. On the outer boundary Γ2 we use Q2 = 0 in (3.1b) for impedance bound-

ary conditions, and take source term g2 = ∂u
∂n

− iκu, where u is obtained from (4.44)

truncated at the appropriate N which achieves a zero of f̃ in (4.52). These Q and g

terms correspond to those of the boundary condition set-up of the UWVF detailed in

§3.1, where we have added the subscript 1, 2 for the parameters holding on Γ1 and Γ2

respectively.

With the aim of improving the accuracy of results, various mesh adaptations are

made, suited to the shape of the domain. The mesh is refined in the region close to

the scatterer, as recommended by [37,44]. In all results in this section the geometry is

represented exactly through curved elements. Element edges on Γ1 are given a different
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Ω

Γ2

Γ1

ui = exp(iκx)

Figure 5.1: The domain set-up for approximating scattering by a circle by the UWVF.

parameterisation, so that integrals in submatrices D (given by (3.45)) and C (given

by (3.46)) are evaluated along the curve of the scatterer, rather than along a straight

element edge. The representation of the exact geometry in this way negates the need

for mesh refinement around the scatterer: it is still possible to use large elements,

permitting high numbers of basis functions to hold (recall that as the element size is

reduced in comparison to wavelength, problems with ill-conditioning arise -see §3.5).

The numerical results are set into three sections. In §5.1.1 we present results for the

UWVF approximation using the conventional angularly equi-spaced basis. In §5.1.2 we

then compare these results to those obtained using a basis enriched with ray-traced cen-

tres of curvature. Finally in §5.1.3 we consider ways of combining the two approaches,

with the aim of reducing the overall number of degrees of freedom required.

5.1.1 Approximation by an Equi-spaced Basis

We first present results using an angularly equi-spaced Hankel basis (3.49), with point

sources (3.50) taken in the far field around a circle of radius RPS = 6000. This setup
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replicates an equi-spaced plane wave basis, as used conventionally in the UWVF. We

consider κ = 10, 20, 40.

Figure 5.2 shows the approximate solution for κ = 10 using the mesh of K = 455

elements shown in Figure 5.3 and using pk basis functions in element k, for k = 1, , K,

where the values of pk are as shown in Figure 5.3. We remind the reader (see §3.5) that
our strategy for selecting the values of pk is to choose a number of degrees of freedom

p (in this case p = 18) and then in each element to take pk to be as large as possible

subject to the constraints that pk ≤ p and that cond(Dk), the condition number of the

local submatrix Dk, is ≤ 1010. For a fixed discretisation, the conditioning improves for

a larger κ, allowing a higher number of basis functions to be used in an element. For the

lower wave number κ = 10 we get a highly accurate approximation, with the absolute

error plotted on a log10 scale shown in Figure 5.4. Although the domain is symmetric in

the x axis, here we do not have symmetric errors as the discretisation of the domain and

the number of basis functions on each element is not symmetric. However, as the wave

number increases so does the absolute error when the same approximation parameters

(K = 455 and p = 18) are used, as can be seen in Figure 5.5 for κ = 20. Clearly using

the same discretisation parameters regardless of frequency results in reduced accuracy

as the solution becomes more oscillatory. For the higher wavenumber κ = 40 there are

not enough degrees of freedom per wavelength to well represent the highly oscillatory

solution accurately, either because the mesh is not sufficiently refined or more basis

functions per element are required to well represent the solution (or both). This is

further illustrated in Figure 5.6 where the L2(Ω) relative errors against the average

degrees of freedom per wavelength Nλ are presented for wavenumbers κ = 10, 20, 40 for

varying p.
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Figure 5.2: Real part of the UWVF approximation using an equi-spaced plane wave

basis, κ = 10, p = 18, K = 455.
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Figure 5.3: Mesh discretisation of domain, with number of basis functions tested upon

each element, for approximation with κ = 10, K = 455. A maximum of p = 18

degrees of freedom is tested, with pk reduced depending upon the conditioning of the

submatrices Dk (see §3.5).
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Figure 5.4: Absolute error on a log10 scale for approximation by equi-spaced plane wave

basis, κ = 10, p = 18, K = 455 (the computational mesh and range of pk is shown

in Figure 5.3). We believe that the lack of symmetry in the error is due to the non

symmetry of the underlying triangulation.

Figure 5.5: Absolute error on a log10 scale for approximation by equi-spaced plane wave

basis, κ = 20, pk ∈ {17, 18}, K = 455 (the computational mesh is shown in Figure 5.3).
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Here the L2(Ω) relative error is approximated by

L2(Ω) relative error ≈

√√√√
∑NP

j=1 |u(xj)− uN(xj)|2
∑NP

j=1 |u(xj)|2
, (5.1)

where u is the exact solution given by (4.44), uN is the UWVF approximation (3.11),

and xj, j = 1, ..., NP , are evaluation points in the element, taken equi-spaced to satisfy

Nλ = 10 (i.e. NP is computed using NP = NT given by (4.70)). The average number

of degrees of freedom per wavelength used in the UWVF approximation is computed

by inversion of (4.70), giving

Nλ = λ

√∑K
k=1 pk
|Ω| , (5.2)

where |Ω| is the area of the domain. Oscillations can be seen in the L2(Ω) relative

errors in Figure 5.6, the troughs corresponding to the incident field direction di being

included in the basis.
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Figure 5.6: L2 relative errors (5.1) against average degrees of freedom per wave-

length (5.2) for the UWVF approximation by an equi-spaced plane wave basis for

κ = 10, 20, 40, K = 455.



CHAPTER 5. RAY ENRICHED UWVF: SCATTERING BY CONVEXOBSTACLES 101

5.1.2 Incorporating Ray Tracing into the UWVF

The results of the preliminary study detailed in §4.3.1 are very promising, suggesting

that the ray tracing algorithm does provide an accurate centre of curvature for the

approximation of the scattered field by a single Hankel function on each element. We

now go on to enrich the UWVF Hankel basis, incorporating the ray-traced centres of

curvature. We intend to see if there is improvement by using the ray-traced basis in

terms of achieving a given level of accuracy for a reduced number of degrees of freedom in

comparison to the traditional equi-spaced basis. We test on the same case of scattering

by a unit circle first of all, and extend this to the case of scattering by an ellipse in

Sections 4.1.2 and 5.2. There are several different ways in which the ray-traced basis

can be incorporated in the lit region Ωlit:

(A) using only the two ray-traced Hankel basis functions per element: one a single far

field source representing the plane wave incident field and another with the point

source at the ray-traced centre of curvature xC, given by (4.26) with (4.32), to

represent the scattered field.

(B) using the ray-traced basis as detailed in (A), as well as equi-spaced plane wave

directions (represented by far field point sources) on each element.

(C) using only the ray-traced basis as detailed in (A) in a sectioned portion of the

domain, and equi-spaced directions together with the ray-traced basis elsewhere.

In the shadow region Ωshadow, basis functions are set to represent equi-spaced plane

waves, including the incident wave direction. Again we need to match the incident

wave directions used in our ray tracing algorithm and the UWVF approximation. We

are using an incident field ui = exp(iκx) (matching our boundary source term to the

exact solution in §4.2.1), whereas our ray tracing algorithm assumed an incident field

ui = exp(−iκx) (see §4.1.1). Again we reflect the ray-traced centres of curvature in the

y axis (i.e. xC = (x, y) becomes xC = (−x, y)), so that the two methods correspond.

For option (A), our numerical results below show that only a limited level of ac-

curacy can be achieved. Table 5.1 shows the RMSE (4.3.1), maximum error, and L2
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relative error (5.1) for the UWVF approximation using method (A), two ray-traced

basis functions per element, for a wavenumber κ = 10. For an increasingly refined

mesh (higher number of elements K), there are not significant gains in accuracy, with

L2 relative errors remaining at around 5%. This suggests that there are wave directions

present in the exact solution which are not picked up by the ray-traced basis.

Table 5.1: Error in UWVF approximation for κ = 10 using method (A) of 2 ray-traced

basis functions per element.

K RMSE Maximum Error L2 Relative Error

334 6.23× 10−2 3.13× 10−1 6.18× 10−2

719 5.34× 10−2 2.85× 10−1 5.31× 10−2

1022 5.24× 10−2 2.92× 10−1 5.20× 10−2

1434 5.06× 10−2 3.17× 10−1 5.02× 10−2

We would expect our ray-traced basis to be more effective at higher frequencies, as

ray tracing gives the wave directions that are dominant in the high frequency limit. For

a high wavenumber κ = 80, Table 5.2 shows that we can get an L2 relative error of under

9% using the two ray-traced basis functions alone. Although this is a rather high error,

it has been achieved with an average of just 0.4 degrees of freedom per wavelength

(as computed by (5.2)), rather than the 10 degrees of freedom per wavelength rule

of thumb requirement in standard FD and FEM. This massive computational saving

could be useful in applications where a more general idea of the wave reflection is needed

rather than high accuracy, perhaps as an initial guess of state. The levels of accuracy

achieved by the UWVF with the two ray-traced basis basis functions is lower than

one might expect given the high level of accuracy achieved in the preliminary study of

§4.3.1 when the ray-traced centres of curvature was used to find a best approximation

to the scattered field, optimising over the amplitude alone (using (4.68). This could

perhaps be due to the matching of solutions on interelement boundaries (3.21) in the

UWVF, meaning that high errors in one element could be carried across to neighbouring

elements (whereas in the best approximation study solutions in each element were

independent of one another).
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Table 5.2: Errors in UWVF approximation for κ = 80 using method (A) of 2 ray-traced

basis functions per element.

K 482

Total Degrees of Freedom 964

RMSE 8.97× 10−2

L2 Relative Error 8.88× 10−2

Max Error 8.16× 10−1

Average DoF per Wavelength 4.25× 10−1

Further UWVF results using two ray-traced basis functions are shown in Fig-

ures 5.7 – 5.9. Figure 5.7 shows the computational mesh of K = 422 elements; in

each element only the two ray-traced basis functions were used, resulting in a total of

844 degrees of freedom. Figure 5.8 has the real part of the approximate solution using

this mesh on the left and the absolute error plotted on a log10 scale on the right for

κ = 10. This approximation required an average of 3.18 degrees of freedom per wave-

length, to achieve a 7.34% L2 relative error. For comparison, using the same mesh but

with the wavenumber quadrupled, Figure 5.9 has results in the same layout for κ = 40.

Here a 7.94% L2 relative error has been achieved using an average of 0.80 degrees of

freedom per wavelength.
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Figure 5.7: Computational Mesh with K = 422 elements.
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(a) ReuN (b) log10 |u− uN |

Figure 5.8: The real part of the total field in (a) and the absolute error plotted on a

log10 scale in (b) for κ = 10, by p = 2 ray-traced basis functions (method (A)) and

K = 422 elements (mesh shown in Figure 5.7).

(a) ReuN (b) log10 |u− uN |

Figure 5.9: The real part of the total field in (a) and the absolute error plotted on a

log10 scale in (b) for κ = 40, by p = 2 ray-traced basis functions (method (A)) and

K = 422 elements (mesh shown in Figure 5.7).
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We now investigate whether we can achieve higher accuracy with method (B) or

(C). For the second option (B) of using the ray-traced basis as well as equi-spaced

plane wave directions on each element, care had to be taken to avoid basis functions

becoming close to linearly dependant. The equi-spaced basis functions are taken around

a circle of radius RPS = 6000. To include the ray-traced basis representing the incident

field (as in §5.1.1, from −∞ in the x direction: di = (1, 0)) we take the set to always

include this direction and then the remainder are equi-spaced around this. Thus the

equi-spaced basis functions in the kth element Ωk are given by (3.49) with the point

source locations given by

yk,l =

(
xCk +RPS cos

(
2πl

pk − 1
− π

)
, yCk +RPS sin

(
2πl

pk − 1
− π

))
, l = 1, ..., pk−1.

(5.3)

For the final basis function we use as the point source location the centre of curva-

ture xC, (4.26) with (4.32), given by our ray tracing algorithm. Figures 5.10–5.12

show the L2 relative error achieved using an equi-spaced plane wave basis (repre-

sented by the Hankel basis (3.49) with sources given by (3.50)) as done in §5.1.1
and existing literature, and those achieved by method (B), combining the ray trac-

ing and an equi-spaced plane wave basis, for κ = 10, 20, 40 respectively. For these

approximations we again use the mesh of K = 455 elements, as shown in Figure

5.3, and take p = 10, 12, 14, 15, 16, 17, 18 for the equi-spaced approximation and p =

2, 10, 12, 14, 15, 16, 17, 18 for the equi-spaced and ray-traced approximation (p = 2 cor-

responds to option (A), the ray-traced direction basis only). As can be seen, in all

cases a given level of accuracy is achieved using fewer degrees of freedom when the

ray-traced centres of curvature are used within the basis as well. The oscillations in the

equi-spaced basis results correspond to the case where the incident field is (the troughs)

or is not (the peaks) included in the basis. In all cases, the approximations using the 2

ray traced basis functions combined with n equi-spaced wave directions leads to better

results than using the traditional equi-spaced basis in n + 2 directions. These results

suggest that the ray-traced basis is more effective at increasing the accuracy of the

solution as the wave frequency increases.
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Figure 5.10: L2 Relative Error against average degrees of freedom per wavelength for

an equi-spaced basis (p = [10, 12, 14, 15, 16, 17, 18]) and an equi-spaced basis combined

with ray tracing (p = [10, 12, 14, 15, 16, 17, 18]), κ = 10, K = 455.
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Figure 5.11: L2 Relative Error against average degrees of freedom per wavelength for

an equi-spaced basis (p = [10, 12, 14, 15, 16, 17, 18]) and an equi-spaced basis combined

with ray tracing (p = [2, 10, 12, 14, 15, 16, 17, 18]), κ = 20, K = 455.
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Figure 5.12: L2 Relative Error against average degrees of freedom per wavelength for

an equi-spaced basis (p = [10, 12, 14, 15, 16, 17, 18]) and an equi-spaced basis combined

with ray tracing (p = [2, 10, 12, 14, 15, 16, 17, 18]), κ = 40, K = 455.

5.1.3 Sectioning of the Domain

The UWVF results in Figures 5.8(b) and 5.9(b) show that there are areas of the domain

where errors are consistently higher when the ray-traced basis is used alone (method

(A)). As the initial study in §4.3.1 suggested, the highest errors were around the surface

of the scatterer, and towards the shadow region. We now consider method (C), a way

of using the ray-traced basis selectively: we wish to maintain a low number of degrees

of freedom in elements where the ray tracing is most effective, and use a higher number

in elements where errors have shown to be higher. We separate areas of the domain into

regions in which a higher or lower number of basis functions is used in each element.

This region Ωp+ ⊂ Ω is defined by taking the intersection of Ω, a circle of radius H > 0

centred at the origin and a region {(x, y) : x ≥ (1 + H) + R cos η; |y| ≤ R sin η}, for
R > 0 and some η ∈ [−π/2, π/2]. For elements whose centroids are contained in Ωp+, a

higher number of basis functions per element is used. For the elements whose centroids

lie outside this region, i.e. in Ω\Ωp+, we use the two ray-traced basis functions per

element of the form (3.49), one with point source at (−6000, yCk ) to approximate the



CHAPTER 5. RAY ENRICHED UWVF: SCATTERING BY CONVEXOBSTACLES 108

incident field, and the other using the ray-traced centre of curvature. An example of

the mesh used and number of basis functions per element is shown in Figure 5.13 for

H = 0.2 and η = π/4. Here, as just described, the two ray-traced degrees of freedom

have been used in part of the lit region, and a higher number of degrees of freedom

used on elements in the remainder of the domain, again with a reduced number used

in some smaller elements to maintain cond(Dk) ≤ 1010 (see §3.5 for more detail).
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Figure 5.13: Example mesh discretisation of domain, with number of basis functions

tested upon each element, for K = 338, κ = 10, H = 0.2 and η = π/4. For Ωk ⊂ Ω\Ωp+

p = 2, whilst for Ωk ⊂ Ωp+ pk ∈ [10, 18].

A variety of sectionings of the number of basis functions on each element was tried.

Figure 5.14 shows the L2 errors over the domain for H = 0.2 and η = π, η = π/2,

η = π/4, η = π/6, and a comparison with the original formulation of §5.1 using equi-

spaced plane wave basis functions with no ray tracing over the whole domain. In the

results of the original formulation and those of the η = π sectioning (corresponding

to using p = 2 ray-traced basis functions in elements with the centroid xCk = (xCk , y
C
k )

with xCk ≤ −H = −0.2 and a larger p for elements with xCk ≥ −H = −0.2), the

accuracy is increased by using an increased number of basis functions. For the remaining

paritionings of the domain the L2 errors start off decreasing but soon plateau, at fairly

low levels of accuracy. One explanation for this is that only limited accuracy can be
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achieved by the ray-traced basis, and so higher errors in the elements where only two

basis functions per elements were used may be carried over into elements where a large

number of basis functions were used, by the transmission conditions (3.21) matching

the solutions on the interelement edges.
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Figure 5.14: L2 Relative Error over the domain against average degrees of freedom per

wavelength, for an equi-spaced basis and an equi-spaced basis combined with ray tracing

in various sections of the domain. HereK = 364, and p = [2, 10, 12, 13, 14, 15, 16, 17, 18].
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5.2 The UWVF for Scattering by an Ellipse

We now progress to the second of our convex obstacles considered, the case of the

ellipse. The ellipse is a more complex case for approximating wave scattering, as there

are fewer symmetrical properties of the domain and the curvature of the scatterer is no

longer constant. We again present first of all the UWVF approximation using an an

angularly equi-spaced basis, replicating the plane wave basis conventionally used in the

literature, in §5.2.1. We then compare this in §5.2.2 with a the results of the UWVF

approximation using a ray enriched basis, where the centres of curvatures computed in

§4.1.2 are incorporated.

We approximate the total field produced by a plane wave incident field ui = exp(iκx),

solving the Helmholtz equation (3.1a) with constant density ρ = 1 and a zero interior

source term f = 0. To implement the case of scattering by an ellipse numerically in the

UWVF codes, we use a simillar domain set up to that in §5.1, truncating the domain

in a square of edge length 6, centred at the origin. For the boundary conditions on

the surface of the scatterer Γ1 we use Q1 = −1 in (3.1b) for Dirichlet boundary condi-

tions and take the source term g1 = 0. On the outer boundary Γ2 we use Q2 = 0 for

impedance boundary conditions, and take source term g2 = ∂u
∂n

− iκu, where u is our

MFS reference solution (2.9) with representation (4.60).

In order to obtain high accuracy of results, we again refine the mesh around the

scatterer, to have a closer representation of the smooth, curved edge. To further improve

this, element edges on Γ1 were given a different parameterisation, so that integrals in

submatrices D and C are evaluated along the curve of the scatterer rather than a

straight element edge. This means that the elements with edges on Γ1 are curvilinear

triangles, whereas those in the remainder of the domain have three straight edges.

5.2.1 Approximation with an Equi-Spaced Basis

We first present results using an angularly equi-spaced Hankel basis (3.49), with point

sources given by (3.50) taken in the far field around a circle of radius RPS = 6000,
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replicating the conventional equi-spaced plane wave basis. We use the same computa-

tional mesh for all experiments, with K = 250, as shown in Figure 5.15. Accuracy is

then improved by increasing the number of basis functions on each element, subject

to bounds on the condition number of the corresponding matrices Dk. The L2 rela-

tive error for wavenumbers κ = 10, 20, 40 is shown in Figure 5.16. As can be seen,

these approximation parameters well represent the solution for the lower wavenumber

of κ = 10, with the L2 relative error converging to zero. For the higher wavenumbers

κ = 20, 40 the L2 relative error is decreasing but is still at a high level. The trend

suggests that by further increasing the average number of basis functions (either by

increasing the number of basis functions in each element or using a finer discretisation

or both) a higher accuracy can be achieved.
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Figure 5.15: Mesh discretisation of domain, for a = 1.2, b = 1, K = 250.

5.2.2 Incorporating Ray Tracing

We now present results of the UWVF extended to incorporate the ray-traced centres of

curvature into the Hankel basis. We intend to see if, as with the circular scatterer, the

use of ray tracing techniques can achieve a given level of accuracy for a reduced number
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Figure 5.16: L2 relative errors for approximation by equi-spaced plane wave basis for

κ = 10, 20, 40, K = 250. For κ = 10, 20, p = [2, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18] and for

κ = 40, p = [2, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 22, 24].

of degrees of freedom compared to the conventional equi-spaced basis. We consider two

options for incorporating the ray-traced basis in Ωlit:

(A) Use only the two ray-traced Hankel basis functions per element, one with a far

field source representing the plane wave incident field and another with the point

source at the ray-traced centre of curvature xC, given by (4.39) with (4.40), to

represent the scattered field.

(B) Use the ray-traced basis as detailed above, as well as equi-spaced directions on

each element.

In Ωshadow basis functions are set to represent equi-spaced plane waves, including the

incident wave direction.

For the first option, (A), of using just the two ray-traced basis functions per element,

we can get a fair representation of the total and scattered wave field, as shown in Figure

5.17. However, although the phase and directions are essentially correct, the amplitudes
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are not smoothly varying and only a limited level of accuracy can be achieved. Table

5.3 contains the root mean square error (RMSE), maximum error, and L2 relative

error for the UWVF approximation by two ray-traced basis functions per element for

a wavenumber κ = 10. For an increasingly refined mesh (higher number of elements

K), there are no significant gains in accuracy. This can be compared with Table 5.1:

clearly the ray-traced basis is less effective for the elliptical scatterer, as the L2 relative

errors now remain at around 10%.

(a) ReuN (b) Reus
N

Figure 5.17: UWVF approximation for scattering by an ellipse, κ = 10 by option (A),

p = 2 ray-traced basis functions per element, for a = 1.2, b = 1, K = 250. The real

part of the total field shown in (a), and the real part of the scattered field shown in (b).

For the second option, (B), of using the ray-traced basis as well as equi-spaced plane

wave directions on each element, we use the same positionings (5.3) as those for the

scattering by a circle: pk − 1 are equi-spaced around a circle of radius RPS = 6000,

including the incident field direction. For the final point source we use the centre of

curvature given by our ray tracing algorithm.

Figure 5.18 shows numerical results for the same ellipse with a = 1.2, b = 1, achieved

by p = 18 basis functions per element on the computational mesh as in Figure 5.15
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K RMSE Maximum Error L2 Relative Error

89 1.090×10−1 5.09×10−1 1.08×10−1

182 9.93×10−2 6.07×10−1 9.81×10−2

250 9.78×10−2 5.48×10−1 9.66×10−2

452 1.04×10−1 5.89×10−1 1.02×10−1

728 9.29×10−2 5.14×10−1 9.18×10−2

Table 5.3: Error in UWVF approximation for κ = 10 using 2 ray-traced basis functions

per element.

with k = 250 elements. This approximation has taken a much higher 4468 total degrees

of freedom, increasing the average degrees of freedom per wavelength to 3.69. This is

still much less than the standard 10 degrees of freedom per wavelength required in

conventional methods, and has achieved an L2 relative error of 8.93× 10−4.

(a) ReuN (b) log10|u− uN |

Figure 5.18: The real part of the total field in (a) and the absolute error plotted on

a log10 scale in (b) for κ = 20, by option (B), p = 18 ray-traced basis functions and

K = 250 elements.
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5.2.3 Conventional and Ray-Traced Basis Comparison

Figures 5.19-5.21 show the L2 relative error achieved using an equi-spaced plane wave

basis as done in existing literature, and those achieved by combining the ray tracing

and an equi-spaced plane wave basis, for κ = 10, 20, 40. Again the peaks in the equi-

spaced basis results correspond to the case where the incident field is not included in

the basis, and the to troughs where it is. As with the case of the circular scatterer,

the approximations using the 2 ray traced basis functions combined with n equi-spaced

wave directions leads to better results than using the traditional equi-spaced basis in

n + 2 directions. Overall a given level of accuracy is achieved using fewer degrees

of freedom when a ray tracing augmented basis is used, compared to the traditional

equi-spaced direction UWVF basis.
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Figure 5.19: Comparison of equispaced and ray-traced with equispaced point source

basis sets in UWVF approximation of total field for κ = 10 for an elliptical scatterer

with a = 1.2, b = 1, K = 250, p = [2, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18]. L2 relative error

against average degrees of freedom per wavelength.
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Figure 5.20: Comparison of equispaced and ray-traced with equispaced point source

basis sets in UWVF approximation of total field for κ = 20 for an elliptical scatterer

with a = 1.2, b = 1, K = 250, p = [2, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18]. L2 relative error

against average degrees of freedom per wavelength.
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Figure 5.21: Comparison of equispaced and ray-traced with equispaced point source

basis sets in UWVF approximation of total field for κ = 40 for an elliptical scatterer

with a = 1.2, b = 1, K = 250, p = [2, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 22, 24]. L2

relative error against average degrees of freedom per wavelength.
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5.3 Summary

This chapter is the first in which we investigate the enrichment of the UWVF basis using

ray tracing techniques. We considered the case of wave scattering by a smooth convex

obstacle in a domain of constant wavespeed, and use the ray tracing algorithm developed

in §4.1 to provide the local centre of curvature for the reflected wavefronts. The use of

the UWVF for approximating wave scattering by a circle was presented in §5.1 , and by

an ellipse in §5.2. Accurate results were achieved in both cases with the conventional

angularly equi-spaced basis, as used in existing literature. The UWVF basis was then

enriched with the ray-traced wave directions and centres of curvature computed in

§4.1. Results of the UWVF approximations show a reduction in the number of degrees

of freedom required for a given level of accuracy when using the ray enriched basis

compared to the original equi-spaced basis. In all cases, the approximations using the 2

ray traced basis functions combined with n equi-spaced wave directions leads to better

results than using the traditional equi-spaced basis in n+ 2 directions.



Chapter 6

Ray Tracing for Enriching the

UWVF Basis, with Seismic Imaging

Applications.

6.1 Introduction

In this chapter we now turn to the approximation of acoustic wave propagation in

a representative geophysical model: large domain of varying wavespeeds thoughout,

where the medium is layered horizontally and may include seismic faults. The sound

speed profile we use is the Marmousi model [46, 54, 71], a commonly used test case in

geophysics. In order to use the UWVF for seismic imaging applications, we must take

into consideration the representation of the sound speed profile by a finite element mesh

where the wave number is constant in each element. In seismics, acoustic waves are typ-

ically at low frequencies. However as the wavelength λ = 2π/κ is very small compared

to the size of the domain and the structures within, there are many wavelengths across

the domain and so it can be considered as a high frequency problem. Extending the

work in Chapter 5, we seek to augment the UWVF by using the ideas of ray tracing to

find a good a priori choice of basis function. The use of ray tracing techniques to aug-

ment numerical methods has been demonstrated in much literature, for example [2,11].

118
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We implement two types of ray tracing techniques, using the method of characteris-

tics [14,32] and the Fast Marching Method (FMM) [13,67] to solve the eikonal equation

(2.19). These methods are used to provide a high frequency asymptotic approximation

to the direction of wave propagation from a point source in our seismic model. We use

a point source in order to replicate a single explosive sound source, as used in seismic

data aquistition (see §2.3 for more details). We compare the ray paths obtained by

both methods with a reference solution achieved using the UWVF. Throughout this

chapter we use the notation x = (x, z), where x is the horizontal distance and z is the

vertical depth.

The structure of the chapter is as follows. In §6.2 we present the synthetic seismic

sound speed profile that we will be using for our numerical simulations, the Marmousi

model. The method of characteristics technique for ray tracing is detailed in §6.3, with
numerical results presented in §6.3.1 and compared with a reference solution obtained by

the UWVF in §6.3.2. In §6.4 we present an alternative method for finding ray directions,

using Fast Marching Methods. In §6.5 we then incorporate these ray directions into

the UWVF, with numerical results given comparing an equally spaced basis and the

ray enhanced basis. Although there is some improvement in accuracy for a low number

of degrees of freedom when using the ray enriched basis, as the number of degrees of

freedom increases and the UWVF solutions converge to a fixed state, the difference

between the solutions achieved by the two bases are minimal.

6.2 The Marmousi Model

The original Marmousi model, shown in the upper plot of Figure 6.1, is a complex 2D

synthetic acoustic velocity model based upon a composite of some typical geological

structures. The model was created in 1988 by the Institut Français du Petrole (IFP),

based upon the geology in the Kwanza Basin of Angola [46]. It is one of the most

widely published geophysical data sets, and has been used by researchers throughout

the world as a test case for seismic migration and calibration of travel time and velocity
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analysis [54].

The data was originally provided in metres per second for a domain of length 9.216

km and 3 km in depth; for work done here we have scaled the data to be in terms of

kilometres per second. It includes a 32 metre layer of water (the sea), under which the

different velocities are presented in clear layers, with faults and tilted blocks represen-

tative of the different substructures seen in the subsurface of the earth. These layers

correspond to different materials, such as sand, water, shale, and salt [54].

As detailed in [71], the computation of rays requires smoothness in the model, to

avoid inaccuracies in the numerical approximation of the derivatives of sharply varying

medium parameters. A smooth model also avoids the need for computing reflection and

transmission coefficients at interfaces for multiple reflections. The asymptotic derivation

of the eikonal equation relies upon both a high frequency and the velocity to be smoothly

varying, rather than having sharp discontinuities as in the original Marmousi model.

Accordingly, a smoothed Marmousi data set of the same data dimensions is instead

used for further work here, shown in the lower plot of Figure 6.1. The smoothing was

using an isotropic Gaussian smoother [1] on the true velocity model, so the original

Marmousi model is convolved pointwise with a Gaussian smoother with a 100 metre

smoothing length. Unfortunately the requirement of smoothness results in a loss of

detail in some of the structures in the model.
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Figure 6.1: The Marmousi model shown in the upper plot, and the smoothed Marmousi

model shown in the lower plot: sound speed shown in kilometres per second.
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6.3 The Method of Characteristics for Ray Tracing

As detailed in Chapter 2, we consider ray tracing techniques which require the solving of

the eikonal equation (2.19). We first of all solve the eikonal equation using the method

of characteristics; later in §6.4 we use an alternative method, the FMM.

We use the method of characteristics to obtain the characteristic curves: these are

the geometric trajectories of the rays travelling through the domain [12, 14]. This

method provides multiple ray paths from an original starting point, so giving the di-

rection of propagation of wavefronts propagating outwards from a point source. It

allows rays to cross, permitting multi-valued solutions at these points, rather than just

providing the path of quickest return to the surface for a point. The multi-valued solu-

tion corresponds to the wavefront folding, due to reflections in different directions [14].

However, this method provides directions only for points through which the rays pass,

and not for every point in the domain. Details of the amplitude are also given by the

rays: regions which are densely populated by rays are those in which the wave field has

a higher amplitude than those in which rays are sparse [14, §5.1].

We write the eikonal equation (2.19) in the form of a Hamilton-Jacobi equation,

H(x, s) = 0 with si =
∂τ

∂xi
. (6.1)

Here τ = τ(xi) is the generating function to be determined (the eikonal) and si are the

generalised momenta (the slowness in each direction), with i = 1, 2, representing the

two spatial dimensions (so x1 := x and x2 := z). The Hamilton-Jacobi equation (6.1)

is solved along characteristics which satisfy the canonical equations:

dxi
dν

=
∂H

∂si
,

dsi
dν

= −∂H
∂xi

,
dτ

dν
=
∑

i

si
∂H

∂si
, i = 1, 2 (6.2)

[14, Equation (3.31)], where ν is a flow parameter. Along these curves the eikonal equa-

tion is satisfied and the generating function τ can be computed. These characteristic

curves are the seismic rays.
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Note: these equations ensure that the Hamiltonian H= constant as

dH

dν
=

∂H

∂x

∂x

∂ν
+
∂H

∂s

∂s

∂ν
(6.3)

= −∂s

∂ν

∂x

∂ν
+
∂x

∂ν

∂s

∂ν
(6.4)

= 0 (6.5)

thus H = ĉ for some constant ĉ.

In isotropic structures, the eikonal equation is of the form (2.21),

∑
si(x)

2 =
1

c2
. (6.6)

Taking our eikonal equation in Hamilton-Jacobi form

H(x, s) =
∑

si(x)
2 − 1

c2
(6.7)

and applying the canonical equations (6.2), we obtain the system

∂

∂ν




x1

x2

s1

s2

τ




=




∂H
∂s1

∂H
∂s2

− ∂H
∂x1

− ∂H
∂x2

s · ∂H
∂s




=




2s1

2s2

−2c−3 ∂c
∂x1

−2c−3 ∂c
∂x2

2 ‖s‖22




. (6.8)

We chose an initial starting point x (where τ = 0) and initial direction for the trajectory,

and compute the slowness in that initial direction. By solving system (6.8) we get

updates for the travel times τ , the geometric trajectories (the updated point x), and

the slowness vector for points along the trajectory s.

The Hamilton-Jacobi system (6.8) is of the form

∂

∂ν
(X) = F (X)

and so can be solved numerically using a Runge-Kutta scheme, integrating for updates

of the vector X. We use the ode45 routine inbuilt in Matlab, which is an explicit Runge-

Kutta formula for fourth and fifth order accurate solutions. The inputs required for the

ode45 routine are: the functional form F , a time interval over which to integrate, and



CHAPTER 6. A RAY ENRICHED UWVF BASIS FOR SEISMIC IMAGING. 124

an initial state vector X. The output produced is the updates of the state vector X

over the time period, which gives the updates for our ray path x, the slowness s in each

direction at the points on the ray, and the eikonal along the ray. Options for ode45 are

set to assert that the initial point source is within the domain, and to stop the method

when rays travel out of the domain. For the spatial derivatives in (6.8) we use a central

derivative approximation of the form

∂c

∂x
=
ci+1,j − ci−1,j

2∆x
(6.9)

∂c

∂z
=
ci,j+1 − ci,j−1

2∆z
(6.10)

where ∆x and ∆z are the spatial step lengths in the x and z directions respectively.

Care must be taken at edges of the domain to not use points outside of the domain,

using the approximations
∂c

∂x
=
c2,j − c1,j

∆x
(6.11)

on the left-hand boundary and
∂c

∂z
=
ci,2 − ci,1

∆z
(6.12)

on the upper boundary, and similar approximations for the right and lower boundaries.

As the rays pass through points which are not grid points of our discretisation, we then

used 2D cubic interpolation to find the sound speed c and spatial derivatives for points

along the ray.

6.3.1 Example Numerical Results for Ray Tracing on Smoothed

Marmousi Data

Here we present example results of rays sent out at angles θ ∈ (0, π) from a point

source close to the surface, at the point (4.692, 0.02) in Figure 6.2. Results are shown

for 50 starting rays in equispaced directions in the upper plot, for 200 rays in the

centre plot, and for 400 rays in the lower plot. Clearly by using more initial starting

rays we can glean more information about the direction of wave propagation in the

domain. The rays travel through the domain, turning more in regions where there is a
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sharper increase in velocity of the model. We would predict higher amplitudes of waves

propagating through areas in which rays accumulate. In areas where rays are sparse,

ray theory predicts there to be lower amplitudes [14, §5.1].

The method of characteristics technique for ray tracing is widely used in the geo-

physics community, as the dominant ray directions can be found by considering multiple

ray paths from a source [2, 14]. However, for the use of implementing an initial guess

of wave directions in an enriched UWVF basis, this type of ray tracing method is not

optimal. The areas in which the rays are dense or crossing would have many possible

direction choices, whereas in the regions where rays are sparse the choice may be lim-

ited. An initial guess of directions could be taken by interpolating directions from the

closest rays to a point, however could potentially be erroneous as the velocity profile

may be highly varying in the region between neighbouring rays.
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Figure 6.2: Example of the method of characteristics for ray tracing on the smoothed

Marmousi model (km/s), from a source at (4.692, 0.02). Shown in the upper plot are

the trajectories of 50 equi-spaced ray directions, in the centre plot are the trajectories

of 200 equi-spaced ray directions, and in the lower plot are those of 400 equi-spaced ray

directions.
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6.3.2 Comparison of Ray Directions with Wave Propagation

Solution by the Ultra Weak Variational Formulation

We now use the UWVF to find an approximation of wave propagation through our geo-

physical domain, and compare these results with the ray directions given by the method

of characteristics. The Marmousi model is a highly complex domain, representative of

the complexities of the subsurface of the Earth. As such, we do not have an exact solu-

tion with which to compare our UWVF results to. Thus the ray tracing results supply

us with an alternative measure with which to compare our results. As the UWVF is

highly computationally expensive to run on a fine mesh, we instead use a section of

the smoothed Marmousi model for our domain Ω, rather than the entire model. This

allows us to maintain more of the detail of the variation in the velocity profile for a

given number of elements when the domain is discretised. We now take for our domain

the section Ω = [3.5131, 7.0022] × [0, 2.0565] km of the Marmousi model, as shown in

Figure 6.3. To obtain a piecewise-constant wavenumber, for each Ωk ∈ T E, κ|Ωk
= κk

is taken to be the average of the wavenumber of the smoothed Marmousi model at the

three vertices of the element. Examples of the resultant wavenumber discretisation are

shown in Figure 6.5.

As we only have the sound speed profile from the Marmousi data set, we use a

constant density ρ ≡ 1 throughout. The UWVF has difficulty representing a point

source on the interior of the domain (see Chapter 7). To avoid this difficulty, we use

an exterior point source and so solve the homogeneous Helmholtz equation (3.1a) with

f = 0. Specifically, we solve

∇2u+ κ2u = 0, in Ω. (6.13)

We use impedance boundary conditions with Q = 0 in (3.1b) giving

∂u

∂n
− iσu = g on Γ. (6.14)

We use the radiating solution from an external source to impose g on Γ. For the sound

source we use a point source incident field ui = H1
0 (κsea|x−xs|) imposed only on the top
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Figure 6.3: Section of Smoothed Marmousi Velocity Model

boundary Γsurface for which z = 0. We take the point source xs /∈ Ω as a point exterior

to the domain on the z < 0 side. We use the value κsea in our incident field equal to the

wavenumber corresponding to the sound speed in the upper two rows of the discrete

Marmousi data set, representing water. This simulates the sea being extended and the

incident field originating at a point within this extended sea, which should minimise

any reflections when the incident field reaches the domain. Thus for the source term in

(6.14) we take g = ∂ui

∂n
− iσui, resulting in

g =





∇H1
0 (κsea|x− xs|) · n− iσH1

0 (κsea|x− xs|) on Γsurface

0 in Γ/Γsurface.
(6.15)

The impedance boundary condition (6.14) ensures that the incident field is out going

from the domain, however we are unable to force this to hold for the scattered field, as it

is unknown. A more accurate method would be to use a Perfectly Matched Layer around

the domain, which adds exponential decay to waves leaving the domain ensuring any

reflections are negligible [27, 41]. Here we use the conventional equi-spaced plane wave

basis, by using (3.49) with point sources (3.50) in the far field (RPS = 600). An initial

maximum of p = 20 directions per element is set, and then reduced if cond(Dk) ≥ 1010,

following the method of [44] detailed in §3.5.
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The method of characteristics requires the initial starting point source for rays to

be on the interior of the domain, whereas for our UWVF implementation we require an

exterior source (difficulties in the implementation of an interior source in the UWVF will

be discussed in the following Chapter 7). For the ray tracing algorithm it was therefore

necessary to use an artificially extended domain, Ω+, so that the point source is on the

interior xs ∈ Ω+\Ω. For Ω+ we deepen the region of the sea, corresponding to the first

two rows of data of the discrete Marmousi model. This was done by adding rows of data

with the same velocity of the former upper rows. The extended smoothed Marmousi

model in Ω+ is shown in Figure 6.4, as well as 50 equi-spaced (in the half-plane) rays

generated by the method of characteristics from a point source at xs = (4.69,−0.10).

For the UWVF we consider the solution only in the original domain Ω, but with the

point source exterior, in the same location xs as for the ray tracing. As the velocity is a

constant in the extended region, rays are straight lines and so it is permissable to match

up with the UWVF solution of the original grid lower down. This is also acceptable

practically, as in real world implementation the signal may come from a seismic source

on the surface of the sea, being towed by a boat. Some rays reflect back upon entering

Ω, this represents wave energy being reflected back off the sea bed.

Following are the numerical results for the point source at xs = (4.69,−0.10). For

the UWVF approximation we test two frequencies, fr = 5, 10 Hz. Three levels of

discretisation are compared: the first with K = 85 elements, the second with K = 367

elements, and the finest discretisation with K = 1569 elements. The discretisations

and wavenumber per element are shown in Figure 6.5 for fr = 5 Hz; for fr = 10 Hz

the pattern is the same but with the wavenumbers doubled throughout. For fr = 5 Hz:

in Figure 6.6 the number of basis functions on each element (reduced depending upon

cond(Dk)) is shown for the three discretisations; in Figure 6.7 the UWVF approximation

is shown; in Figure 6.8 the UWVF approximation is shown with the ray traced directions

superimposed, for comparison of directions. Similarly for fr = 10 Hz: in Figure 6.9

we have the number of basis functions on each element for the two finer discretisations

(for K = 85 and pk = 20 throughout); in Figure 6.10 is the UWVF approximation; in

Figure 6.11 we have the UWVF approximation and ray traced directions superimposed.
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Figure 6.4: The extended smoothed Marmousi sound speed profile (km/s) in Ω+, with

50 ray paths from xs = (4.69,−0.10) obtained by the method of characteristics.

When comparing the UWVF approximations in Figures 6.7 and 6.10 there are sim-

ilarities but also clear differences in the approximations provided by the different dis-

cretisations. However we do not have an exact or comparison solution with which to

gauge the accuracy of the UWVF solution. If we consider the representation of the ve-

locity profile by the discretised domain, shown in Figure 6.5, the coarsest discretisation

loses much of the detail, whilst the finest discretisation keeps a good representation

of the background velocity profile (here colours are inverse to the smoothed Marmousi

model, due to the inverse relationship between frequency and wavenumber). However,

we must question the accuracy that can be achieved using such a fine discretisation: as

the element size becomes smaller, fewer basis functions can be used in each element (as

can be seen in Figures 6.6 and 6.9) before we have problems with ill-conditioning, and

so the resultant directions in the basis may not be sufficient to represent the directions

of the solution. For the frequency fr = 5 Hz it could be concluded that the central dis-

cretisation with K = 367 elements might be the most accurate representation, as there

is still the detail of the velocity profile, the element size and variation in wavenumber in

comparison to the wavelength is sufficiently small, and there is still a moderate number
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of directions being tested throughout the domain. For the higher frequency fr = 10

Hz, as the wavelength is shorter the conditioning improves, and so the finer discreti-

sation of K = 1569 elements does still permit a moderate number of directions per

element. In this case the variation in the profile is small compared to the element size,

and so much of the detail of the smoothed Marmousi model is maintained. However,

the literature [31] suggests to improve accuracy through increasing the number of basis

function per element rather than through mesh refinement, subject to the mesh size

being ’sufficiently small’ -of order of the wavelength. The central discretisation with

K = 367 does still provide a fairly small element size compared to the wavelength, and

a much higher number of basis functions per element can be used. By comparing with

the ray traced directions in Figure 6.11 it is still ambiguous as to which may be the

more accurate solution. Nevertheless, the ray directions and the UWVF solutions do

coincide well: rays travel perpendicular to wavefronts, are sparse in the areas of low

amplitude, and are dense in the areas of higher amplitudes.
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Figure 6.5: Wavenumber in a discretised section of the Smoothed Marmousi model,

for fr = 5 Hz, with K = 85 elements in the upper plot, K = 367 in the center, and

K = 1569 in the lower plot.
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Figure 6.6: Number of basis functions per element in UWVF approximation of wave

propagation in a section of the Smoothed Marmousi model, for fr = 5 Hz, with K = 85

elements in the upper plot, K = 367 in the center, and K = 1569 in the lower plot.



CHAPTER 6. A RAY ENRICHED UWVF BASIS FOR SEISMIC IMAGING. 134

Figure 6.7: Real part of UWVF approximation of wave propagation in a section of the

Smoothed Marmousi model, for fr = 5 Hz, with K = 85 elements and maxk(pk) = 20

in the upper plot, K = 367 and maxk(pk) = 17 in the center, and K = 1569 and

maxk(pk) = 10 in the lower plot.
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Figure 6.8: Real part of UWVF approximation of wave propagation and ray tracing

in a section of the Smoothed Marmousi model, for fr = 5 Hz, with K = 85 elements

and maxk(pk) = 20 in the upper plot, K = 367 and maxk(pk) = 17 in the center, and

K = 1569 and maxk(pk) = 10 in the lower plot.
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Figure 6.9: Number of basis functions per element in UWVF approximation of wave

propagation in a section of the Smoothed Marmousi model, for fr = 10 Hz, with

K = 367 elements in the upper plot, and K = 1569 in the lower plot.
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Figure 6.10: Real part of UWVF approximation of wave propagation in a section of the

Smoothed Marmousi model, for fr = 10 Hz, with K = 85 elements and maxk(pk) = 20

in the upper plot, K = 367 and maxk(pk) = 20 in the center, and K = 1569 and

maxk(pk) = 17 in the lower plot.
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Figure 6.11: Real part of UWVF approximation of wave propagation and ray tracing

in a section of the Smoothed Marmousi model, for fr = 10 Hz, with K = 85 elements

and maxk(pk) = 20 in the upper plot, K = 367 and maxk(pk) = 20 in the center, and

K = 1569 and maxk(pk) = 17 in the lower plot.
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6.4 Ray Tracing using Fast Marching Methods

As we have promising ray tracing results using the method of characteristics that sup-

port our UWVF solutions, we now seek to augment the UWVF basis with the ray

traced directions, similar to the techniques used in Chapter 5. By enriching the basis

of the UWVF with these directions, we aim to converge to a solution requiring fewer

degrees of freedom than using the standard equi-spaced basis. The ray directions pro-

vided by the method of characteristics are dense in the regions where amplitudes are

highest, and so here can provide valuable information. However, there are also large

regions in the domain in which the rays generated are sparse. Due to this disparity, ray

directions obtained by the method of characteristics are not sufficient to be practically

implemented in a ray enriched basis for the UWVF. In this section we now use an

alternative method for solving the eikonal equation, the FMM [13, 67]. This method

gives ray directions for the path of quickest return at any point in the domain, rather

than multi travel timed crossing rays as provided by the method of characteristics (see

§6.3).

The FMM is a direct grid based method for solving the eikonal equation (2.19)

|∇τ(x)|c(x) = 1 in Ω

with

τ = gFMM(x) on ΓFMM (6.16)

for the travel time function τ given a positive speed function c. The method computes

the evolution of an expanding wavefront from an initial boundary ΓFMM . The initial

data is given by the function gFMM on ΓFMM , from where the curve propagates out-

wards. The speed function c first must be defined on a Cartesian grid. Using upwind

finite difference operators, travel times τ to reach the neighbouring grid points are cal-

culated given the velocity profile. The path of shortest travel time is then selected for

the expanding wavefront. As the arrival time must be uniquely determined, the method

can only compute uniformly expanding wavefronts [13], and not those that contract.

The FMM is considered similar to Dijkstra’s method for computing the shortest path
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on a network [67], in that for any given time and wavefront position, the method com-

putes the shortest time to reach the next point, and then the wavefront moves forward

to include this point. The process is then continually repeated, the wavefront moving

forward at the quickest rate possible given the speed profile of the domain.

As the FMM is a widely used method there are many resources available online.

For work in this thesis we use the Toolbox Fast Marching on Matlab Central File

Exchange, written by G. Peyre [63]. To use this Toolbox the inputs required are: the

starting points that make up ΓFMM , and the velocity profile c of our domain, given on

a Cartesian grid. The output produced is the results of the FMM: the travel time τ

for all points on the cartesian grid (xi, zj), i = 1, . . . , Nx, j = 1, . . . , Nz. These values

of τ are the shortest time taken for a wavefront to reach each point given the starting

points and velocity profile of the domain. Wavefronts are given by the curves for which

τ is constant. However we require the direction of propagation of the waves, given by

rays perpendicular to the wavefront. Thus to find the ray directions for the points in

our domain, we take a FD approximation of the partial derivatives of τ in the x and z

direction:
∂τ

∂x
=
τi+1,j − τi−1,j

2∆x
(6.17)

∂τ

∂z
=
τi,j+1 − τi,j−1

2∆z
, (6.18)

where τi,j is defined as the value of τ at the point (xi, zj) in the discretsation of the

domain. Care is taken around the edges of the domain to approximate the derivatives

using values inside the domain, so for example we instead take

∂τ

∂x
=
τ1,j − τ2,j

∆x
(6.19)

to calculate values on the left hand edge of the domain, and similar for the remaining

edges.
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6.5 Ray Directions in the UWVF

Work in current literature for the UWVF finds an approximate solution using equally

spaced plane wave basis functions [16, 17, 31, 36, 41, 44]. When the form of the solution

is unknown this is an appropriate method for finding accurate solutions. However,

when more information is known about the form of the solution, by incorporating these

details into our numerical method it may be possible to save computational time and

expense. We aim to use ray directions gained from the FMM to enrich the basis for the

UWVF.

We use the Hankel basis in the UWVF, which still allows a plane wave representation

by taking the point sources in the far field. To enrich the basis by ray directions gained

from the FMM, we take the ray direction as dray = ∇τ at the centroid of each element

xCk . However, as we have the travel times on the cartesian grid, it was neccessary to

use cubic interpolation of ∇τ to find the direction at the centroid. We take for the first

of the basis functions of each element the centre of curvature to be

yk,1 = xC −RPSdray (6.20)

with RPS = 6000. For the remaining basis functions, we take the centres of curvature

as equally spaced around a circle of radius RPS centred at the centroid of the element,

starting from the ray traced direction. This replicates an equi-spaced plane wave basis,

but with the ray traced direction included in the set.

We use the same set up for the UWVF as in §6.3.2, with impedance boundary

conditions (6.14), constant density ρ ≡ 1, and an exterior point source to solve the

homogeneous form of the Helmholtz equation (6.13). For our source term g we again

apply the boundary condition to an incident wave ui = H1
0 (κ(x − xs)) propagating

outwards from a point source at xs /∈ Ω, resulting in the form (6.15).

Results were gathered for the frequencies fr = 5, 20 Hz of wave propagation from a

point source at xs = (6.0157,−0.024194). We use one of the same discretisations used

in §6.3.2, that of K = 367 elements; the discretisation and the wavenumber in each

element is shown in the central plot of Figure 6.5 for fr = 5 Hz, with wavenumbers



CHAPTER 6. A RAY ENRICHED UWVF BASIS FOR SEISMIC IMAGING. 142

quadrupled for fr = 20 Hz. The background wavespeed profile and FMM ray directions

dray at the centroid of each element are shown in Figure 6.12. Sample UWVF solutions

for K = 367 with the ray enhanced basis are shown in Figure 6.13 for fr = 5 Hz, and

Figure 6.14 for fr = 20 Hz.

Figure 6.12: FMM ray directions from a source at xs = (6.0157,−0.024194) for wave

propagation in a section of the smoothed Marmousi model.

As we do not have an exact solution or reference solutions for this model to compare

the results to, we instead take as an reference solution the solution produced using the

highest number of degrees of freedom tested for each frequency, and so we can see the

rate of convergence to a final estimation state. We now consider the rate of convergence

of the relative L2 error (5.1), produced comparing approximations using an increasing

number of degrees of freedom (an increased maximum number of basis functions tested

per element) to this reference solution. For fr = 5 Hz we use p = 6, 8, 10, 12, 14, 16,

and use the solution with p = 16 as the reference solution. For fr = 20 Hz we use

p = 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and use the solution with p = 24 as the reference

solution. Figure 6.15 shows that for the low frequency wave using the ray directions

in the basis does not make a significant amount of difference to the convergence of the

solution. For the higher frequency, where we would expect our solution to behave more
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Figure 6.13: Real part of approximate solution for wave propagation from a point source

at (6.0157,−0.024194) with fr = 5 Hz through a section of the Marmousi model.

like the ray model, the use of the ray directions does bring the relative L2 norm of the

error towards its final convergant state quicker than the equally spaced basis, as shown

in Figure 6.16, however only marginally and these gains are lost as we reach the final

state.

It may be that the ray directions provided by the FMM are not the optimal directions

to use in the UWVF either. The directions provided are those for the fastest expanding

wavefront, which does not necessarily mean that they are the dominant direction or

that reflections are included. An equi-spaced basis may not be the best here either:

perhaps ray directions that are a slight modification of dray could be used. However,

for this set-up consideration would need to be given to keeping the basis functions in

each element sufficiently distinct, to avoid the issues of ill-conditioning that arise when

the basis is close to linear dependance.
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Figure 6.14: Real part of approximate solution for wave propagation from a point source

at (6.0157,−0.024194) with fr = 20 Hz through a section of the Marmousi model.

6.6 Summary

In this chapter we have tested the use of the UWVF for forward seismic imaging, by

simulating wave propagation in a synthetic sound speed profile, the Marmousi model. In

order to implement the UWVF, the domain requires discretisation into finite elements,

and a constant wave number taken within each element. For a highly variable sound

speed profile, this has meant that the domain must be finely discretised in order to

maintain the details of the internal structures. However, as the element sizes get smaller

in comparison to the wavelength, a reduced number of basis functions can be used in

each element before problems of ill conditioning arise. When using an equi-spaced basis,

this could mean that key wave directions are excluded. Therefore consideration must

be given as to how much detail it is necessary to represent in the domain at the cost of

the wave directions being well represented in the basis.

We have also considered two types of ray tracing techniques, the method of char-

acteristics and using the Fast Marching Method, to provide ray directions for wave

propagation from a point source through the seismic domain. Results of the UWVF
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Figure 6.15: L2 norm of relative error of solutions with and without ray directions in

the UWVF basis, for fr = 5 Hz, K = 367.

concur with the ray directions obtained by the method of characteristics. We have

included ray directions obtained by the FMM in a ray enhanced basis for the UWVF.

However when compared with the standard equi-spaced basis, although there is ini-

tially some improvement in accuracy in representing the solution for a given number of

degrees of freedom, these gains are lost as the solution converges to a final fixed state.

The initial results are promising however, as including the ray traced solution in the

approximation space has made some improvement when compared to the standard equi-

spaced basis without ray directions. This suggests that further work is required: here

we have only tried one strategy for finding ray directions. The question arises: could

one find a better strategy to improve the results more significantly? Perhaps instead

ray directions obtained by the method of characteristics in the regions available, or

through a combination of the two methods as done in [2], would be more effective.
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Figure 6.16: L2 norm of relative error of solutions with and without ray directions in

the UWVF basis, for fr = 20 Hz, K = 367.



Chapter 7

An Extension of the Ultra Weak

Variational Formulation for

Modelling an Interior Point Source

So far in this thesis the use of UWVF has only been considered for the solution of the

homogeneous form of the Helmholtz equation. We now progress to the use of the UWVF

to simulate 2D acoustic wave propagation from an interior point source, as modelled by

the inhomogeneous Helmholtz equation. As explained in §3.1, the use of Trefftz type

basis functions incorporates the known wave-like behaviour of the solution allowing large

reductions in the required number of degrees of freedom for a given level of accuracy

when compared to standard FEM. However, when solving the inhomogeneous form of

the Helmholtz equation, the UWVF is not well disposed to the accurate approximation

of sources on the interior of the domain of approximation. This is because the UWVF

approximation takes the form of a linear combination of solutions of the homogeneous

Helmholtz equation, and as such cannot well represent the inhomogeneity. The use of

interior sources is indispensable in many problem set-ups in the seismic industry, as we

saw in Chapter 6, and so this handicap will need to be overcome if the UWVF is to be

useful for widespread seismic imaging applications.

Here, we investigate the applicability of the UWVF to seismic imaging by considering

147



CHAPTER 7. EXTENSION OF THE UWVF FOR AN INTERIOR SOURCE. 148

the typical situation of an interior point source. We present a simple yet accurate

method to augment the UWVF in the case of a localised non-zero source term f ,

which we call the Source Extraction UWVF. Although we are primarily concerned with

seismic imaging, the technique is applicable to other problem types the UWVF may be

used for. In this approach, the domain Ω is split into two regions: an inner region ΩS

containing the source, and an outer region ΩE which is the remainder of the domain, i.e.

ΩE = Ω\ΩS. In the inner region, a particular radiating solution of the inhomogeneous

Helmholtz equation with source f is subtracted from the field, so that the remainder of

the wavefield is amenable to a Trefftz approximation in the interior (this remainder is

the wavefield which is back-scattered from the outer region into the inner region). In the

outer region we solve for the total field. The solutions in the two regions are matched

by prescribing the jumps of the impedance and the conjugate-impedance traces. We

consider a point source (a Dirac delta) and subtract a fundamental solution in the

source region, however the augmentation can be easily generalised to other forms of

sources and related analytic solutions, such as a dipole source. We first consider a

domain of constant wave speed, and then extend our investigations to the simulation

of wave propagation through a layered velocity profile. This work has been published

seperately in [38]. A related approach based on splitting of outgoing and back-scattered

fields is used in [6,59] for finite difference methods in time domain. A similar approach

for the UWVF has been derived separately by Gabard in [29, §5.1] for a system of linear

hyperbolic equations, applied with accurate results to the linearised Euler equations.

Details of the UWVF are given in §7.1, with explanation given as to why solving

the inhomogeneous form of the Helmholtz equation poses challenges for the numerical

method. In §7.2 we present the new adjustment of the UWVF for the representation

of an interior point source. Accurate results for a domain with constant wavenumber

are presented in §7.3, followed by results for a domain with a smoothly varying sound

speed profile. The sound speed profile for the later case is taken from a synthetic 2D

acoustic model often used as a test case in seismic inversion, the Marmousi model (see

Chapter 6 or [2, 54] for example).
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7.1 The Ultra Weak Variational Formulation of the

Inhomogeneous Helmholtz Problem

In seismic wave simulation, the use of point sources (monopoles or dipoles) in the

interior of the domain is typically required, representing the case of an explosive sound

source. To model this situation requires solving the inhomogeneous Helmholtz equation

(3.1a) for a non-zero and singular source term f , for example a Dirac delta function.

The use of the UWVF to solve the inhomogeneous form of the Helmholtz equation is an

area that has not received a great deal of attention. In much of the literature, sources

in the exterior of the domain are used, allowing the homogeneous form of the Helmholtz

equation ((3.1a) with f = 0) to be solved, where the superior approximation properties

of Trefftz methods can be exploited at their best.

In [16, 17, 31], the UWVF with non-zero source term f has been investigated, both

a priori analysis and numerical experiments are presented. In [50], Loeser and Witzig-

mann use the UWVF to solve the Helmholtz equation (3.1a) with source term f = 1 in

ΩS and f = 0 elsewhere, for an active region ΩS ⊂ Ω. However, the use of the UWVF on

regions where the equation is inhomogeneous is avoided. The UWVF solution is found

in the source free region Ω\ΩS only, after which, in an additional post-processing step,

a standard FEM is used in the active region where f is non-zero. Little detail is given

in [50] on how the solutions and flow were matched on the inter-element edges of the

active and source free regions. Loeser and Witzigmann suggest that in practice the

FEM mesh size in the active region should be no larger than λ/30, where λ is the

problem wavelength, leading to a potentially computationally expensive scheme. This

high computational expense is minimised by the fact that the active region is small,

in their case, only one element of the UWVF mesh. One of the main benefits of the

UWVF is the ability to find accurate solutions on a fairly coarse mesh; to use a λ/30

mesh size for a FEM simulation in the domain of a larger element used in the UWVF

solution could still potentially be computationally expensive, especially in the case of

high frequencies.
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When solving the homogeneous Helmholtz equation, all of the integrals in the

UWVF weak form (3.7) are defined on the element boundaries (as f ≡ 0 the only

volume integral in (3.7) vanishes). In the general case the right-hand side of (3.7) in-

cludes an integral over all the elements where the source term f is non zero (or point

evaluations if f is a linear combination of point sources).

A standard choice of the Trefftz basis functions φk,l, i.e. equispaced plane waves

(3.13) or circular waves (3.49), allows high orders of approximation in the elements

where f = 0; see [58]. On the contrary, when f 6= 0 inside Ωk, Trefftz functions lose their

approximation properties, as they are complementary rather than particular solutions.

Numerical results in [17, 31] suggest that the use of plane waves in the inhomogeneous

case can provide the same approximation of u as piecewise-linear polynomials only;

moderately high orders of convergence were achieved for the approximation of u on

the skeleton of the mesh but only linear order in the meshsize h for the volume error

measured in the L2(Ω)-norm, see [17, Tables 3.3 and 3.4] and [31, Section 5].

These two reasons, the desire to integrate only on the mesh skeleton without the need

for volume integrals, and the desire to achieve higher orders of approximation, motivated

the investigation of the UWVF in the homogeneous case, while not much effort has been

devoted to the source case. If the UWVF is to be used in more general problems that

may practically arise in seismic imaging, this situation needs to be tackled. In the next

section we propose a modified formulation to extend the advantages of the UWVF to

the special case of point sources.

7.2 The Source Extraction UWVF

We wish to solve the inhomogeneous Helmholtz BVP (3.1) in the domain Ω, when the

source term f is a point source:

f(x) = −δ(x− x0), x ∈ Ω, (7.1)

where δ is the Dirac delta function and x0 ∈ Ω. In this case, the right-hand side of the

UWVF formulation (3.7) becomes
∫
Ωk
fvk dV = −vk(x0); f /∈ L2(Ω) and u /∈ H1(Ω).
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As it might be expected, numerical tests using the formulation (3.7) proved extremely

inaccurate at representing the source, with high errors in the element containing x0;

numerical experiments for this case are provided in §7.3.1.

In order to introduce a modified formulation, we now fix some notation. We split

the domain in two open regions ΩS and ΩE, Ω = ΩS ∪ ΩE ∪ ΓS where ΓS = ∂ΩS (as

illustrated in Figure 7.1) such that the two regions correspond to a partition of the

mesh: T = T S ∪ T E with Ωk ∈ T S if Ωk ⊂ ΩS and Ωk′ ∈ TE if Ωk′ ⊂ ΩE. On ΓS, we

denote by nS the unit normal vector pointing outward from ΩS, and set nE = −nS.

Moreover, we require: x0 ∈ Ωk for some Ωk ∈ T S (thus the source is located in ΩS and

it does not lie on the mesh skeleton); the physical parameters to be constant in ΩS,

i.e. ρk(x) = ρS and κ(x) = κS for all x ∈ ΩS; and ΩS to lie in the interior of Ω, i.e.

ΓS ∩ Γ = ∅.

Γ
Ω

S

Γ
S

Ω
E

Figure 7.1: Subdivision of the domain and the mesh. ΓS is in bold red.

In ΩS, we write the field u as the sum of the known field uI generated by the source
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term in free space (i.e., with constant parameters ρS and κS in the whole plane and

without any boundary conditions) and the unknown remainder uS, i.e.

u = uI + uS in ΩS, where uI(x) := ρS
i

4
H1

0 (κ
S|x− x0|).

By separating out the total field u into the sum of the unknown field and the known

local particular solution of the inhomogeneous Helmholtz equation, we can remove the

known part, and so are left with the homogeneous form of the equation. We can then

use the UWVF to approximate uS alone, and add in the known uI in a post-processing

step. In the remainder of the domain ΩE we approximate the total field, which we now

denote uE for clarity.

Since uI is solution of

∇ ·
(
1

ρ
∇uI

)
+
κ2

ρ
uI = f in ΩS,

and the traces of (uS + uI) and uE agree on ΓS, we are left with two homogeneous

Helmholtz equations for uS and uE, posed in ΩS and ΩE respectively, coupled via the

impedance traces of uI :

∇ ·
(
1

ρ
∇uS

)
+
κ2

ρ
uS = 0 in ΩS,

∇ ·
(
1

ρ
∇uE

)
+
κ2

ρ
uE = 0 in ΩE,

(1 +Q)
1

ρ

∂u

∂n
− (1−Q)iσu = g on Γ,

(
1

ρS
∂

∂nS
− iσ

)
uS =

(
− 1

ρE
∂

∂nE
− iσ

)
uE −

(
1

ρS
∂

∂nS
− iσ

)
uI on ΓS,

(
1

ρE
∂

∂nE
− iσ

)
uE =

(
− 1

ρS
∂

∂nS
− iσ

)
uS +

(
− 1

ρS
∂

∂nS
− iσ

)
uI on ΓS, (7.2)

where ρE is the trace of ρ on ΓS taken from ΩE (which does not need to be constant

along ΓS, differently from ρS). Recall that on ΓS we defined nE = −nS, thus the last

two conditions in (7.2) correspond to the continuity of u and ρ−1∇u across ΓS.

The benefit of using the UWVF to approximate uS alone in ΩS is threefold: (i) the

fields to be approximated are much smoother than the solution of the original problem;

(ii) they are solutions of the homogeneous Helmholtz equation, thus the approximation
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by Trefftz functions can deliver great accuracy; and (iii) all the terms that will appear

at the right-hand side of the UWVF are integrals on some part of the mesh skeleton

(see equation (7.4) below).

In the case of a domain of constant wavenumber it would be possible to approximate

uS only on the whole domain (i.e., to choose ΩS = Ω, ΩE = ∅, and solve a BVP whose

trace source g is modified by subtracting a trace of uI). However, if the wavenumber is

varying in the domain, it is unlikely that a special solution uI would be known in the

whole of Ω.

As in Chapter 3, if we follow the proof of [17, Theorem 1.3] and insert the last two

conditions of (7.2) in (3.20), we obtain the ultra weak variational formulation of the

BVP (7.2) as

seek u∗ ∈ H such that d(u∗, w)− c(u∗, w) = β̂(w) ∀w ∈ H, (7.3)

where u∗ stands for uS and uE in ΩS and ΩE respectively. The Trefftz space H is as

defined in §3.1 by H :=
∏K

k=1Hk, where Hk is given by (3.4). The sesquilinear forms

d(·, ·) and c(·, ·) were defined in (3.5) and the antilinear functional β̂ : H → C is defined

as

β̂(w) :=
K∑

k=1

∫

Γk

g

σ

(
1

ρk

∂

∂nk
− iσ

)
wk dS (7.4)

−
∑

ΩK∈T S

∫

∂Ωk∩ΓS

1

σ

(
1

ρS

∂

∂nS
− iσ

)
uI
(

1

ρS

∂

∂nS
− iσ

)
wk dS

+
∑

ΩK∈T E

∫

∂Ωk∩ΓS

1

σ

(
− 1

ρS

∂

∂nS
− iσ

)
uI
(

1

ρE

∂

∂nE
− iσ

)
wk dS ∀w ∈ H.

The new augmented discrete version of the UWVF reads as follows: given a finite

dimensional subspace Hh ⊂ H,

seek u∗h ∈ Hh s.t. d(u∗h, wh)− c(u∗h, wh) = β̂(wh) ∀wh ∈ Hh. (7.5)

The corresponding linear system of equations reads (D − C)X = b̂, where X is the

coefficient vector of u∗h in a given basis of Hh. As the extra terms of the impedance

traces of uI are known, the resulting extra integrals in the formulation can be brought
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to the right hand side, so that the matrices D and C of (3.43) remain the same as in

the standard formulation (3.7), and the only changes are in the vector b̂. Entries for b

are now given by

blk =

∫

Γk

g

σ

(
1

ρk

∂φk,l
∂n

− iσφk,l

)
(7.6)

−
∫

Σk,j∩ΓS∩ΩS

1

σ

(
1

ρk

∂

∂nk
− iσ

)
i

4
H1

0 (κk|x− x0|)
(

1

ρm

∂φk,l
∂nk

− iσφk,l

)

+

∫

Σj,k∩ΓS∩ΩE

1

σ

(
− 1

ρj

∂

∂nj
− iσ

)
i

4
H1

0 (κj|x− x0|)
(

1

ρk

∂φk,l
∂nm

− iσφk,l

)

for k = 1, ..., K, l = 1, ..., pk. We solve the linear system (3.43) to find the unknown

weights X and use this to approximate the solution u over the whole domain as in

(3.11), using

u =

pk∑

l=1

χk,lφk,l in Ωk ∩ ΩE (7.7)

for elements in ΩE, and

u =

pk∑

l=1

χk,lφk,l + ρS
i

4
H1

0 (κ|x− x0|) in Ωk ∩ ΩS. (7.8)

7.2.1 Well-posedness and coercivity of the Source Extraction

UWVF

We define the trace space V :=
∏

k∈K L
2(∂Ωk), equipped with the norm

‖X‖2X :=
K∑

k=1

∫

∂Ωk

1

σ
|Xk|2 dS ∀X = (X1, . . .XK) ∈ V.

In the space X we define the impedance and the “adjoint impedance” trace operators

I : H → V, F : I(H) → V

as

I(v) :=
(
I1(v), . . . , IK(v)

)
, Ik(v) := − 1

ρk

∂vk
∂n

− iσvk and

F
(
I(v)

)
:=
(
F1

(
I1(v)

)
, . . . , FK

(
IK(v)

))
, Fk

(
Ik(v)

)
:=

1

ρk

∂vk
∂n

− iσvk.
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Then the UWVF sesquilinear form may immediately be rewritten as

d(u, v)− c(u, v) =
K∑

k=1

[ ∫

∂Ωk

1

σ
Ik(u)Ik(v) dS

−
K∑

j=1
j 6=k

∫

Σj,k

1

σ
Ij(u)Fk

(
Ik(v)

)
dS −

∫

Γk

Q

σ
Ik(u)Fk

(
Ik(v)

)
dS

]
.

Buffa and Monk defined in [15, (2.16)] the sesquilinear form a : V × V → C

a(X ,Y) :=
1

2

(
d(u, v)− c(u, v)

)
for u, v ∈ H such that I(u) = X , I(v) = Y

in the case Q = 0. The form a(·, ·) is well-defined, as there exists a unique u ∈
H satisfying I(u) = X ∈ V by the well-posedness of the corresponding Helmholtz

impedance BVPs posed in the mesh elements. In other words I : H → V is invertible.

Note that in [15] κ is taken constant, ρ = 1, σ corresponds to η and the relationship

between X and u (and similarly between Y and v) follows a different sign convention

as a consequence of a different impedance boundary condition.

Lemma 3.4 of [15] provides the coercivity of a(·, ·) when Q = 0. This can be verified

by defining v := (−iρ)−1∇u, Xk := (−iσuk + ivk ·nk) ∈ L2(∂Ωk) and repeating exactly

the same proofs of [15] with a different sign convention; the discontinuous coefficients

do not affect this result. From this, both the continuous and the discrete problems

(7.3) and (7.5) are well-posed. The following error bound for the discretisation of the

UWVF was proved in [15, Theorem 3.5]:

K∑

j,k=1

∫

Σj,k

(
σ

2

∣∣Ju∗ − u∗hK
∣∣2 + 1

2σ

∣∣∣∣
r1
ρ
∇u∗ −∇u∗h

z
· n
∣∣∣∣
2
)

dS

+
∑

k

∫

Γk

1

2σ

(∣∣∣Fk
(
Ik(u∗)

)
− Fk

(
Ik(u∗h)

)∣∣∣
2

+
∣∣∣Ik(u∗)− Ik(u∗h)

∣∣∣
2)

dS

≤4 inf
vh∈Hh

‖I(u∗)− I(vh)‖2V , (7.9)

where J·K denotes the jumps across the mesh faces.

This bound allows us to control the traces of the error on the mesh skeleton only.

Theorem 4.1 of [15] gives an error estimate in the volume, i.e. in L2(Ω)-norm, but holds

for UWVF solutions with H2(Ω)-regularity only: since ΩE is non-convex and here we
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consider discontinuous coefficients, it is not directly applicable in our case. In order to

obtain estimates in L2(Ω), a new duality result similar to Lemma 4.4 of [37] (which

improves on [15, Theorem 4.1] in requiring weaker regularity than H2(Ω)) would be

required.

Given a particular discrete Trefftz space, in order to obtain orders of convergence

from the quasi-optimality bound (7.9), only best-approximation estimates are needed.

In the case of plane wave or Fourier–Bessel (i.e. circular waves) basis, these approxima-

tion bounds are proved and discussed in [58].

7.3 Numerical examples

We now present two numerical examples of the Source Extraction UWVF described in

§7.2 for solving the inhomogeneous Helmholtz equation (3.1a). In the first we consider

the approximation of a point source in a domain of constant wave speed, and compare

the accuracy with that of the original formulation. In the second example we consider

the suitability of the Source Extraction UWVF for seismic imaging applications, testing

on a wave speed profile given by a synthetic seismic model.

We solve the inhomogeneous Helmholtz problem (3.1) with a point source as in

(7.1). In both examples we use a constant density ρ = 1 over the domain, while we take

the wavenumber κ to be constant in the first example and discontinuous in the second

one. We fix Q = 0 in the impedance boundary condition (3.1b). The source region ΩS

is defined to comprise four triangular elements: that containing the point source and

its three neighbours (see Figure 7.1). The region ΩS was extended to be larger than

just the single element containing the point source in order to reduce numerical errors

in imposing the impedance traces of uI on ΓS; close to the centre of the point source

the gradient of the source field will be steep. By moving the boundary ΓS away from

the source the impedance traces will have to pass less steep changes in the particular

solution into and out of the different subdomains.

The Trefftz basis functions φk,l ∈ Hk used are circular wave functions, as defined
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by (3.49) with their equispaced sources given by (3.50), located externally to their

respective elements. In each simulation, an initial maximum number p = maxk(pk) of

basis functions per element is set, and then pk reduced if the condition number of the

submatrix Dk is above a set tolerance level of 1010; the scheme for reducing pk first

introduced in [44] and detailed in §3.5.

7.3.1 Interior point source in a domain with constant param-

eters

For the first example we consider a square domain Ω = (0, 3) × (0, 3) in which the

wavenumber is constant throughout. In order to focus just on the accuracy of the Source

Extraction UWVF, the boundary condition (3.1b) (with Q = 0) was set to impose as

exact solution of the BVP the fundamental solution of the Helmholtz equation,

u(x) =
i

4
H1

0 (κ|x− x0|), (7.10)

with x0 = (1.40, 1.60) ∈ Ω. Thus the boundary source term is given by

g =

(
1

ρ

∂u

∂n
− iσu

)
.

We approximate this solution using both the classical UWVF (3.7) and the Source

Extraction UWVF described in §7.2.

An example solution of the Source Extraction UWVF is shown in Figure 7.2 for

κ = 10, along with the computational mesh of K = 116 elements; this approximation

was achieved using p = 15 basis functions on each element. Table 7.1 shows the relative

error, measured in the L2(Ω)-norm, for the two methods, together with the average

number Nλ of degrees of freedom per wavelength in each direction, computed as

Nλ = λ

√∑K
k=1 pk
|Ω| ,

where |Ω| is the area of the domain. The Source Extraction UWVF provides much

higher accuracy than the classical formulation for the same approximation parameters
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Figure 7.2: The real part of the inhomogeneous Helmholtz problem with constant co-

efficients for κ = 10, approximated using the Source Extraction UWVF on K = 116

elements by p = 15 basis functions per element. The computational mesh is superim-

posed.

K and p. In all cases it was not necessary to reduce pk to maintain the condition

number bound, so pk = p for k = 1, ..., K.

The accuracy obtained by the Source Extraction UWVF for this BVP is comparable

to that achieved by the classical formulation of the UWVF when solving the homoge-

neous Helmholtz equation (f = 0) for a BVP whose exact solution is a fundamental

solution centred outside the domain Ω (i.e. u as in (7.10) with x0 /∈ Ω); see Table 7.2

for the UWVF error in this setting.
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p L2(Ω) relative error, L2(Ω) relative error, Nλ

classical UWVF Source Extraction UWVF

9 4.6148× 10−1 9.8941× 10−3 6.7672

10 4.6138× 10−1 5.2901× 10−3 7.1332

11 4.6087× 10−1 1.5578× 10−3 7.4814

12 4.6159× 10−1 8.2696× 10−4 7.8140

13 4.6154× 10−1 3.3895× 10−4 8.1331

14 4.6151× 10−1 2.2961× 10−4 8.4401

15 4.6145× 10−1 8.5399× 10−5 8.7364

16 4.6145× 10−1 6.5757× 10−5 9.0229

Table 7.1: Errors of the classical and the Source Extraction UWVF measured in L2(Ω)-

norm for a point source in the interior of a homogeneous domain. Approximation by p

equally spaced point sources per element, K = 116, κ = 10, Ω = (0, 3)× (0, 3).

p L2(Ω) relative error, Nλ

classical UWVF

10 5.6961× 10−3 7.1332

11 1.1964× 10−3 7.4814

12 8.6834× 10−4 7.8140

13 1.7065× 10−4 8.1331

14 9.6792× 10−5 8.4401

15 1.8955× 10−5 8.7364

Table 7.2: Errors of the classical formulation measured in L2(Ω)-norm for the homo-

geneous Helmholtz equation: the exact solution is a fundamental solution centred at

(−0.5, 1.5), exterior to the domain. Approximation by p equally spaced point sources

per element, K = 116, κ = 10, Ω = (0, 3)× (0, 3).
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Figure 7.3: Relative L2(Ω) errors against total number of degrees of freedom for the

inhomogeneous Helmholtz problem with constant coefficients, approximated using the

Source Extraction UWVF on K = 116 elements in Ω = (0, 3)× (0, 3). For κ = 5 we use

p = 9, . . . , 13, for κ = 10 we use p = 10, . . . , 15, and for κ = 20 we use p = 13, . . . , 19.

The plot in Figure 7.3 shows that accurate results can be achieved for various wave-

numbers using the Source Extraction UWVF for approximating an interior point source

problem. In separate computations where a Hankel function centred at x0 was used

as one of the basis functions, results were accurate to machine precision, as expected,

even when using elements several wavelengths in size.

7.3.2 Interior point source in a section of a smoothed Mar-

mousi model

As the results of the Source Extraction UWVF approximation of an interior point

source in the constant wavenumber case were highly accurate compared to those of the

original formulation, we now progress to testing the method on a domain more relevant



CHAPTER 7. EXTENSION OF THE UWVF FOR AN INTERIOR SOURCE. 161

to seismic imaging, where the sound speed is a non-constant representation of typical

geophysical structures in the subsurface of the Earth. We use the same sound speed

profile as first introduced in §6.3.2: the domain Ω is taken as a section of a smoothed

Marmousi model, that of x ∈ [3.5131, 7.0022] km, z ∈ [0, 2.0565] km, as shown in the

upper plot of Figure 7.4. As we use a constant density ρ = 1 throughout, the only

discontinuous parameter in the discretisation of the domain is the wavenumber κ.

For the Source Extraction UWVF approximation, two levels of mesh refinements

are used, resulting in K = 485 and K = 771 triangular elements. The point source

is located in x0 = (6.018, 0.5768) and lies in the interior of an element, thus we avoid

the case of the solution singularity coinciding with element edges or vertices. In order

to explore just the accuracy associated with source extraction, a simple homogeneous

impedance condition is imposed on the boundary (3.1b with Q = 0 and g = 0).

To obtain a piecewise-constant wavenumber, for each Ωk ∈ T E, κ|Ωk
= κk is taken

to be the average of the wavenumber of the smoothed Marmousi model at the three

vertices of the element. In ΩS the wavenumber is constant, taken as the average of

values interpolated at the centre of each Ωk ∈ T S. The centre and lower plots of Figure

7.4 show the two meshes used, the discretised (piecewise constant) wavenumber for

a frequency of 5 Hz and the position of the point source. The same discretisations

are used for the frequency 10 Hz, resulting in the wavenumber in each element being

doubled. Note that these figures are very similar to those in Figure 6.5 in Chapter 6.

The angularly equi-spaced basis (3.49) is used, with RPS = 100 in (3.50) to replicate

the conventional plane wave basis. An initial maximum number p = 15 of basis func-

tions per element is set, and then pk reduced if the condition number of the submatrix

Dk is above the tolerance level of 10
10. The range of values taken by pk across the mesh

and the total number of degrees of freedom obtained for the frequencies 5 and 10 Hz

and for the two meshes is summarised in Table 7.3.

The upper and centre plots of Figure 7.5 show the real part of the Source Extraction

UWVF solution for the frequency fr = 5 Hz and for the discretisations with K = 485

and K = 771 elements, respectively. The lower plot shows the real part of a reference
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Figure 7.4: Upper plot: the wave speed (km/s) in a section of the smoothed Marmousi

model. Centre and lower plots: for the frequency fr = 5 Hz, the wavenumber κk in

each element of the discretisation of the above velocity profile, using K = 485 elements

(centre plot) and K = 771 elements (lower plot). The point source is marked by a red

dot.
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Frequency K Range of pK Total number of degrees of freedom

5 Hz 485 [8,. . . ,15] 5,162

5 Hz 771 [8,. . . ,13] 6,636

10 Hz 485 [11,. . . ,15] 7,417

10 Hz 771 [10,. . . ,15] 9,749

Table 7.3: The range of the values taken by the local number of degrees of freedom

pk and the total number of degrees of freedom
∑K

k=1 pk obtained with the adaptive

procedure for the frequencies fr = 5 and fr = 10 Hz and for the two meshes with 485

and 771 triangles shown in Figure 7.4.

solution provided by Dr Paul Childs of Schlumberger Gould Research, computed with

a FD scheme, for comparison. This was obtained on a regular structured grid with 180

points per wavelength using the method described in [35]. Figure 7.6 shows results in

the same setup for the frequency fr = 10 Hz. In both cases, the general pattern and

areas of heightened or dampened amplitudes do coincide.

7.4 Summary

In this chapter we present work that has been published seperately in [38]. We have

considered the use of the UWVF for the solving of the inhomogeneous Helmholtz equa-

tion. The UWVF typically has problems when the Trefftz basis functions do not well

represent the inhomogeneity of the equation, such as the singularity of a point source.

To avoid the use of alternative numerical methods in the region of inhomogeneity, we

propose an augmentation of the UWVF equations called the Source Extraction UWVF.

This technique requires only a homogeneous equation to be solved, with inhomogene-

ity introduced in a post-processing step, thus it better exploits the Trefftz property

of the discrete space. For an incident point source, we approximate the unknown

back-scattered field in a region surrounding the source, and match this to the total

field approximated in the remainder of the domain. We use a monopole Hankel point

source, however the augmentation of the method can be easily generalised to other
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Figure 7.5: Real part of the total field approximation in the smoothed Marmousi section

with frequency 5 Hz: UWVF solution with K = 485 and p = 15 (upper plot), UWVF

solution with K = 771 and p = 13 (centre plot), finite difference solution (lower plot).
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Figure 7.6: Real part of the total field approximation in the smoothed Marmousi section

with frequency 10 Hz: UWVF solution with K = 485 and p = 15 (upper plot), UWVF

solution with K = 771 and p = 13 (centre plot), finite difference solution (lower plot).
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forms of source function, such as dipoles. Following on from work in [15], we show that

the Source Extraction UWVF is well-posed and satisfies the error bound (7.9) on the

mesh skeleton in the case of impedance boundary conditions and sufficiently smooth

solution. Numerical simulation has shown that the Source Extraction UWVF is a much

more accurate method than the classical UWVF for the approximation of interior point

sources. The method is also used to provide simulation of wave scattering in a sound

speed profile typical of seismic imaging applications. Results presented concur with

those of a high resolution finite difference method.



Chapter 8

Conclusions

We now summarise this thesis, present the conclusions found, and give suggestions for

further expansion of the work.

8.1 Summary

In Chapter 2 we provided the context for the research in the subsequent chapters. We

gave some background of acoustic wave propagation in two dimensions, and introduced

the equation governing time harmonic wave motion, the Helmholtz equation. Expla-

nation was given of factors that need to be taken into consideration for the accurate

numerical simulation of acoustic wave propagation, such as boundary conditions, com-

putational time, and storage costs. Details of two methods for understanding wave

propagation were given: the Method of Fundamental Solutions (MFS), and ray trac-

ing. The motivation for this research from the seismic industry was explained, as well

as background about the numerical methods currently used and the practicalities of

real world seismic data aquisition.

The main numerical method used in this thesis, the Ultra Weak Variational For-

mulation (UWVF), was introduced in Chapter 3. The specific problem set up for

the Helmholtz equation and the UWVF approximation form was given, as well as the

167
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derivation of the UWVF in the original variational and the more recently shown Discon-

tinuous Galerkin framework. Key theoretical results of the UWVF from the literature

were explained, as well as computational aspects such as the linear system of equations,

ill-conditioning issues that arise, and the difficulties in approximating the inhomoge-

neous form of the governing equation. A new Hankel basis was introduced, allowing

more flexibility in the set than the traditional plane wave basis.

In Chapter 4 we considered the case of high frequency wave scattering by a smooth

convex obstacle, with examples given of circular and elliptical scatterers. We consid-

ered a domain of constant wavespeed, and used ray tracing techniques to develop an

algorithm that gives the wave direction and local centre of curvature for the reflected

wavefronts. Initial studies were presented considering the best approximation by vari-

ous bases in an individual element, and regions of the domain in which the ray traced

basis is most accurate. The results were promising, with the wavefield representation

by two ray traced basis functions per element achieving high accuracy in large regions

of the domain.

Chapter 5 was the first in which we investigated ways of enriching the UWVF

basis for specific problem types. The UWVF approximations for both scattering by a

circle and by an ellipse were presented, initially using the traditional equi-spaced basis,

followed by the those achieved by a basis including the ray traced centres of curvature

derived in Chapter 4. Results show a reduction in the number of degrees of freedom

required for a given level of accuracy when using the ray traced augmented basis.

The use of the UWVF for seismic imaging was then applied in Chapter 6, testing on

the smoothed Marmousi sound speed profile, a synthetic model of the subsurface of the

Earth widely used as a test case in the seismic industry. The idea of using ray tracing to

enhance the UWVF basis was then extended, with two ray tracing methods presented.

Ray directions obtained via the Fast Marching Method were implemented into the

UWVF basis, and compared with results of the standard equi-spaced plane wave basis.

In this case numerical results suggest that an alternative method of implementing ray

directions may be more effective. With the directions obtained by the FMM, although
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accuracy is improved by using the ray traced basis when using a low number of degrees

of freedom, these initial gains are lost as the solution converges to a fixed final state.

In Chapter 7 another problem highly relevant to seismic imaging was considered,

that of wave propagation from a point source on the interior of the domain. This

set-up is common place in the seismic industry, representative of an explosive sound

source positioned in a well at a significant depth below ground level. Due to the

Trefftz basis, the UWVF is not well disposed to solving the inhomogenous Helmholtz

equation. An augmentation to the UWVF called the Source Extraction UWVF was

presented, in which the inhomogeneity of the equation was effectively removed, allowing

the superior approximation properties of the Trefftz basis to be maintained. Accurate

results were presented for a domain of constant sound speed. Results for differing

discretisations and frequencies were also presented for wave propagation in a section of

a smoothed Marmousi velocity profile, which concur with those using a high order FD

approximation.

8.2 Conclusions

In this thesis we considered the use of the UWVF for forward seismic imaging, by

simulating wave propagation in a synthetic sound speed profile, the Marmousi model.

Due to the requirement of the UWVF of a constant wave number in each element,

the domain had to be finely discretised in order to maintain the details of the seismic

structures. However, as the element sizes get smaller in comparison to the wavelength,

a reduced number of basis functions can be used in each element before problems of ill

conditioning arise. When using an equi-spaced basis, this could mean that key wave

directions are excluded. Therefore consideration must be given as to how much detail

it is necessary to represent in the domain at the cost of the wave directions being well

represented in the basis. In [31,36] it is recommended that accuracy is improved in the

UWVF not through mesh refinement but through using an increased number of basis

functions in each element. For the frequencies and length scales applicable in seismic
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imaging, this limitation on element size may well affect the level of accuracy achievable.

However that said, numerical results of the UWVF in this thesis do concur with those

of alternate methods already used by the seismic community.

We also considered ways of enriching the UWVF basis, in the hope of reducing the

number of degrees of freedom required for a given level of accuracy. For a domain of

constant wave speed, ray tracing techniques were able to provide a good representa-

tion of wave directions, and when incorporated into the UWVF basis gave accurate

results. Using less than one degree of freedom per wavelength an L2 relative error of

less than 10% was achievable for the high frequency scattering by a unit circle solution

for wavenumber κ = 80. Thus the ray tracing techniques are highly valuable in terms

of low computational cost if a general representation of state is needed. For higher

levels of accuracy, numerical results shown here found that the ray enhanced basis did

provide a reduction in the number of degrees of freedom required. Attempts to further

reduce the computational cost by using the ray traced basis alone in sections of the do-

main found that limited levels of accuracy could be achieved. Overall, a ray enhanced

basis in the case of a domain of constant sound speed was highly effective, and could

be used for further work in similar set-ups. For wave propagation in the non-constant

sound speed profile, the inclusion of ray directions in the basis found some minimal

effects. This suggests that there is some influence of the ray enhanced basis: further

investigation may find it to be more effective to either implement FMM ray directions

through a different strategy, or use ray directions obtained via alternative ray tracing

techniques.

Finally, we also considered the use of the UWVF for the solving of the inhomoge-

neous Helmholtz equation, proposing an augmentation of the UWVF equations called

the Source Extraction UWVF. This work has been published seperately in [38]. We

used an incident point source on the interior of the domain, which is a highly relevant

scenario in seismic imaging, representing an explosive sound source in a well. How-

ever the augmentation of the method can be easily generalised to other forms of source

function used in alternative situations the UWVF may be used in. As the matrices
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of the formulation are unchanged in the Source Extraction UWVF, some theoretical

results from the original UWVF still hold and can be generalised. Numerical results

in a domain of constant wavenumber proved to be of much higher accuracy than the

standard formulation, and those of a varying sound speed profile concured with a high

order FD solution.

8.3 Future Work

For the work on the domain of constant wavenumber, there are various extensions and

improvements that can be made. Although the ray traced basis did work well in the

illuminated region, the basis did not make any consideration for the creeping waves

generated at the shadow boundary, caused by diffraction of waves that hit tangent

to the obstacle boundary. One could extend the basis to include wavefronts which

better represent these creeping waves. Here we only consider a smooth obstacle for the

scatterer, one could extend the use of ray directions to the case of non-smooth obstacles

such as polygons. In this case there would also be diffracted waves off corners to be

considered. At shadow boundaries the amplitude of the solution is highly varying,

which the UWVF basis of constant wave height did not cope with well. One could

investigate alternative basis functions which may be better suited, such as wavelets.

In this work for the seismic imaging applications we have used a smoothed sound

speed profile in order to meet the requirements for the ray tracing to be applicable. As

a futher test of the suitability of the UWVF for seimic imaging, one could use a non-

smoothed profile, such as the original Marmousi model, where the layers and faults are

kept distinct. However in order to maintain the detail of the domain it would require

a much more careful meshing, where element edges are lined up with the faults and

layers in the domain. This could possibly lead to highly obtuse triangular elements,

which in turn may cause issues with the conditioning of the system. In this case it

may be preferable to use other polygonal elements as investigated in [52]. Further

experimentation could also be done for the suitability of the Hankel basis for seismic
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imaging applications, incorporating not just the wave direction but also a higher level

of curvature of wavefronts suited to the domain shape, in a similar fashion to the

techniques used in Chapters 4 and 5.

The current version of the UWVF requires the wavenumber to be constant in each

element, requiring the wavenumber throughout the domain to be discretised into piece-

wise constants. A significant development would be to extend the UWVF formulation

to the case where the wavespeed is varying within each element. For a linear variation

in the wavespeed in each element, a plane wave basis could possibly be replaced by an

Airy function basis. The derivation of the UWVF would need to be reconsidered, as

with this type of basis there may be extra domain based integrals arising in the formu-

lation. A development of this nature would be highly advantageous for seismic imaging

and other applications, as it may permit more detail of the variation in the wavenum-

ber to be maintained. Work on similar techniques has been done for the Discontinuous

Enrichment Method (DEM): in [69] a basis combining plane waves and Airy functions

approximates solutions of the Helmholtz equation obtained by successive Taylor series

expansions of the wavenumber around a reference point. An alternative method is de-

tailed in [60], where the values of the local wavenumber are interpolated in the standard

nodal-based-FEM manner, while the oscillatory behaviour of the solution is treated by

a polynomial modulated plane wave basis.
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