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“Apri la mente a quel ch’io ti paleso
e fermalvi entro; ché non fa scienza,
sanza lo ritenere, avere inteso. ”

Open thy mind to what I now reveal,
and fix it therewithin; for having heard
without retaining doth not knowledge make.

Dante Alighieri, Canto V, Paradiso.

“The great mathematician and explorer of nature Andrei Nikolaevich Kolmogorov used to say
to his disciples: before making a mathematical picture of a certain geophysical phenomenon try
always to find a person who knows how it occurs in reality. ”

Ellis Horwood
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Information gain that convective-scale models bring to probabilistic weather
forecasts

by Carlo CAFARO

Ensemble prediction systems, run nowadays at convective-scale by several operational
and research forecasting centres, undoubtedly provide a large amount of data. Whether
and how the utilisation of these data can lead to additional valuable information for the
probabilistic prediction of specific weather phenomena is an open challenge.
Here, the information gain of the Met Office convective-scale ensemble relative to its
lower resolution global model counterpart (33 km) is quantified for the sea breeze phe-
nomenon. It occurs on small spatio-temporal scale but influenced by the large-scale con-
ditions, well represented by the global ensembles. Sea breeze is also an atmospheric
counterpart of the so called density currents and could lead to high impact weather, es-
pecially when colliding with other sea breezes or mesoscale flows.
In the first part of the thesis, a new set of numerical simulations of colliding density cur-
rents is presented, with the aim of understanding the dynamics of collision.
A novel parametric formula for predicting the collision angle is shown to agree well with
numerical data. This can be useful for future parametrizations of these processes.

Probabilistic forecasts of the occurrence of sea breezes have been then produced, com-
pared and verified over an extended period.
This motivated the development of a novel method for the automatic identification of
the sea breeze from convective-scale ensembles. This method can be in principle applied
to every coastline. A Bayesian approach is instead used to extract information from the
coarser resolution ensemble. It is trained on paired high/low resolution ensemble mem-
ber, but it can be trained also on observations. This method creates a statistical forecast
of the high-resolution ensemble member, given the knowledge of the global ensemble
predictors alone.
In the last part of the thesis, the same methodology has been applied to the prediction of
wind gusts. Comparison of the two forecasting methods, using a variety of well estab-
lished verification metrics all lead to the same conclusion: although the Bayesian fore-
casts have potential skill for the prediction of event occurrence, the convective-scale en-
semble is shown to be more skillful.
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Chapter 1

Introduction

1.1 Convection-permitting ensemble prediction systems (CP-EPSs)

In the last decade, increased computer power (e.g. https://www.metoffice.gov.uk/

research/technology/supercomputer1) has allowed several operational and research
forecasting centres to introduce ensemble prediction systems at convection-permitting
resolutions. Weisman et al. (1997) found that a grid spacing of ∼ 4 km are sufficient to
reproduce much of the mesoscale structure of the squall-line type convective systems.
The first experiments with convective-scale ensembles date back to 2007 when the Center
for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma generated
storm-scale ensemble forecasts (SSEFs) over a near-CONUS (continental United States)
domain during the National Oceanic and Atmospheric Administration Hazardous Weather
Testbed (NOAA HWT) Spring Experiments (Xue et al., 2007).
At a later time, on 22 May 2012, at the German Weather Service (DWD), a convection-
permitting ensemble (COSMO-DE EPS) became operational (Gebhardt et al., 2011). Some
months later, during the 2012 London Olympic Games, the UK Met Office introduced the
convective-scale version of the Met Office Global and Regional Ensemble Prediction Sys-
tem (MOGREPS-UK) (Golding et al., 2014; Tennant, 2015; Hagelin et al., 2017). Meteo-
France has been running first experimentally (during the HyMex campaign) and then
operationally since mid-October 2016 its CP-EPS (AROME-EPS: Raynaud and Bouttier,
2016; Bouttier et al., 2016). Other examples include ALADIN-LAEF (Wang et al., 2011;
Horányi et al., 2011) and COSMO-LEPS (Montani et al., 2011). More recently, other exper-
iments using CP-EPSs have been conducted by Schwartz et al. (2015) at National Centre
for Atmospheric Research (NCAR) in a domain covering the whole United States.
In table 1.1 a more detailed list of CP-EPSs is presented. Many of them are part of the
TIGGE-LAM project (https://confluence.ecmwf.int/display/TIGL/Project2), which
is an extension of the TIGGE project (Swinbank et al., 2016), with the aim of coordinating
and supporting the generation of limited area high resolution ensemble models among
European countries.
The implementation of CP-EPSs was motivated by the fact that many of high impact
hazardous weather are associated with small meso- and convective-scale weather phe-
nomena, the prediction of which can be uncertain even at few hours ahead (Lorenz, 1969;

1Accessed online on 28 November 2018
2Accessed online on 28 November 2016

https://www.metoffice.gov.uk/research/technology/supercomputer
https://www.metoffice.gov.uk/research/technology/supercomputer
https://confluence.ecmwf.int/display/TIGL/Project


2 Chapter 1. Introduction

Hohenegger and Schar, 2007). Therefore, a probabilistic approach would seem more suit-
able for quantifying uncertainty associated with short-range small-scale weather events.
However, despite being an exciting new forecasting technology, CP-EPSs place a heavy
burden on the computational resources of forecasting centres.3 They also produce large
amounts of data which needs to be rapidly digested and utilized by operational fore-
casters. Knowing when and how the high resolution ensemble is likely to provide use-
ful additional information is key to successful real-time utilisation of this data. Simi-
larly, knowing where equivalent information can be gained (even if partially) from the
global ensemble using statistical/dynamical post-processing both extends lead time (due
to faster production time) and also potentially provides information in regions where no
high resolution ensemble is available. There is therefore a good reason to assess these
systems, against the “truth” (usually represented by observations), comparing them with
lower-resolution (and thus cheaper) ensemble prediction systems (LR-EPS) to assess any
gain in the skill.
The extent to which CP-EPSs are able to provide better probabilistic forecasts is still not
clear for some parameters. Therefore, CP-EPS should be assessed in a way that is rel-
evant to the purpose for which they have been constructed, which is the prediction of
small-scale weather phenomena (Clark et al., 2016; Bowler et al., 2008).
The meaning of “better” forecast should be defined in advance for the particular small-
scale phenomenon being examined. In order to have a statistically significant answer to
the question “are CP-EPSs better than LR-EPSs ?”, a long enough period to obtain robust
results is needed. Obviously these datasets cannot be longer than 10 years (unless they
are comprised of re-forecasts). Also, since the real driving motivation for running CP-
EPS, is to detect the possibility of small-scale high impact (therefore locally rare) weather
events, the dataset becomes even more sparse.

Since their introduction there have been many studies on CP-EPSs. Figure 1.1 shows
the percentage of publications per year, in four meteorological journals, containing the
phrase “convection-permitting (allowing) ensemble”, somewhere in the article. It can be
seen the topic of convection-permitting ensembles has received more and more attention
over the past years. However, to the best of our knowledge, there is no study focussing
on quantification of the added value of CP-EPS: for specific weather phenomena, rep-
resented across multiple grid squares by multiple variables; compared to their coarser
resolution version and for an extended evaluation period.
Among these studies, some of them have dealt with the verification of CP-EPSs (Gille-
land, 2017; Ebert et al., 2013), among the others, but these have not focussed on informa-
tion gain when compared to statistically enhanced coarser resolution ensembles. Also,
most studies have focussed on conventional variables that are directly represented on
model grid squares (e.g. surface temperature) and most of the emphasis has been on pre-
cipitation accumulation. This is because it can be evaluated against high resolution radar
data, but more importantly because it can be used as a proxy for convective storms and
their associated hazards for people.

3For instance, at the UK Met Office one ensemble member, for one day of forecast for a convective-scale
limited area model at grid size of 2.2 km would use 7 node-hours, whereas one global model at grid size of
33 km would use 3 node-hours (Warren Tennant, personal communication, date: 28 November 2018).
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FIGURE 1.1: Percentage of publications per year since 2007 (up to 18 De-
cember 2018) including the phrase “convection-permitting ensemble” or
“convection-allowing ensemble” for four journals (JAS, MWR, QJRMS,
WAF) , according to Google Scholar. The idea of the graph was taken by
Guarino M. V. (2018), PhD thesis, accessible at this link: http://centaur.

reading.ac.uk/75850/1/22835919_Guarino_thesis.pdf.

Clark et al. (2016) reviewed the state-of-art convection-permitting models for forecasting
rainfall and demonstrated their benefit by presenting a few cases studies with a qualita-
tive comparison against radar images.
Among the studies focussing on precipitation, Schellander-Gorgas et al. (2017) showed
the benefit of using CP-EPSs for predicting convective precipitation over only 3-month
summer period with respect to a coarser resolution model. Dey et al. (2016) looked at
the spatial agreement of the precipitation field over the UK. Also, Schwartz et al. (2010)
showed the benefit of CP-EPSs for quantitative precipitation forecasts over 35 days of
Spring 2007, stating that “there is much to be learnt about what type of information can
be extracted from convection-allowing model output and how this information might
best be used by operational weather forecasters.”
In regard to studies comparing CP-EPSs with global coarser resolution model, Marsigli
et al. (2008) compared the skill of COSMO-LEPS to Global EPS for precipitation, conclud-
ing that the extent to which COSMO-LEPS is more skillful is still not known and in Mar-
sigli et al. (2005) the added value of COSMO-LEPS with respect to ECMWF-EPS for 24 h
precipitation accumulation is quantified. This has been quantified both in terms of Brier
Score and ROC (relative operating characteristic) area. It was found that COSMO-LEPS
performs better than ECMWF-EPS when comparing maximum precipitation values over
boxes of 1.5◦ × 1.5◦, while the reverse is true when considering the average precipitation
values.

http://centaur.reading.ac.uk/75850/1/22835919_Guarino_thesis.pdf.
http://centaur.reading.ac.uk/75850/1/22835919_Guarino_thesis.pdf.
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Beck et al. (2016) showed the benefit of combining CP-EPSs from multiple forecast cen-
tres for conventional variables (wind, temperature, relative humidity, and precipitation).
Gowan et al. (2018) showed the benefit of the NCAR-EPS system ((Schwartz et al., 2015))
for orographic precipitation over West USA for one season (October 2016 - March 2017). ?
focussed on convective precipitation on a sub-daily timescale (rainfall accumulation and
rain rate), but on the tropical regions and for an extended period (2 years). They showed
the added value provided by a convection-permitting model with respect to a coarser
resolution global model, although not in a probabilistic framework.
Finally, Klasa et al. (2018) show the superiority of a CP-EPS run by MeteoSwiss for three
precipitating events with respect to ECMWF-EPS, in terms of spatial distribution of the
precipitation and spread-skill relationship. Among the few studies that attempted to in-
vestigate specific weather phenomena using CP-EPSs, Barrett et al. (2016) investigated
four cases of quasi-stationary convective events, but still used precipitation accumula-
tion as model variable to verify against radar observations. Other interesting studies
using CP-EPSs to investigate specific weather phenomena are by Gallo et al. (2016) (tor-
nadoes), Munsell et al. (2015) (hurricanes) and Trier et al. (2015) (convection initiation
near the dry line). In particular, Gallo et al. (2016) use a CP-EPS to derive tornado prob-
abilities based on thresholding updraft helicity and other environmental factors, finding
that the higher-resolution environmental information benefits the probabilities, Munsell
et al. (2015) examine the performance of a 60 members CP-EPS for a 5-day forecast of the
hurricane Nadine. The track forecast was found to be satisfying, with 50 out of 60 mem-
bers correctly predicting the trajectory, whereas the intensity forecast was not as skillful
and Trier et al. (2015) use a 10-member ensemble of convection-permitting simulations
with 3-km horizontal grid spacing to examine afternoon convection initiation (CI) along
a central Oklahoma dryline in a case that produced tornadic supercells. They found that a
subset of the ensemble members accurately reproduced both the timing and approximate
location of CI, while, in others, it was both delayed and less widespread than observed.
Also Sobash et al. (2016) used updraft helicity variable to produce skillful “surrogate” se-
vere weather probabilistic forecasts for day 1 and day 2 (e.g. strong wind gusts, large hail
and tornadoes, as this is a surrogate for rotating thunderstorms). These were produced
using 30-member convection-permitting ensemble forecasts initialized by an ensemble
Kalman filter data assimilation. Ensembles have been shown to be more skillful than two
deterministic forecasts, especially on the mesoscale.

1.2 Aims and motivations

It is useful to know what can be learnt from running convective-scale ensembles that
would not otherwise be known from running cheaper global lower resolution ensembles
(LR-EPSs), especially given the cost.
To what extent increasing the resolution of ensemble forecasts to convective scales al-
low one to make better quantitative probabilistic predictions about future weather events
than the coarse resolution ensemble forecasts in which they are embedded ?
An interesting concept introduced to quantify any additional information provided by
the convective-scale ensemble is that of information gain. Smith (2006) pointed out that
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6 Chapter 1. Introduction

“There is no doubt that the current operational ensemble systems have value beyond
that recognised in industry; this is an opportunity. The question should be seen as one
of how to exploit this information content, not as to whether or not it exists". This fits in
well with the aim of this thesis, the quantification of the information gain that convective-
scale ensembles bring to probabilistic weather forecasts.
There are mainly three reasons why high resolution forecasts could contain more infor-
mation about the future state of the atmosphere than a low resolution forecast:

1. Because a greater amount of information is extracted from observations at initial
time due to the use of high resolution data assimilation.

2. Because the degree of approximation of the physical equations reduces as resolu-
tion increases, so less information about the physical processes of the atmosphere
is neglected.

3. Because finer scale structure of the orography and topography is resolved, mean-
ing that several local wind phenomena can be resolved (e.g. downslope wind, sea
breezes).

When initial conditions for CP-EPSs are generated with a dynamical downscaling method,
there is no additional assimilation of high resolution observation. Therefore, in this case,
only the second and third type of information gain can exist.
Quantifying this type of information gain is a subtle issue and this is related to the extent
to which the synoptic scale flow “controls” sub-synoptic scale dynamical phenomena. It
is therefore sensible to compare a CP-EPS with its lower resolution counterpart, on the
prediction of that type of sub-synoptic scale phenomena, which may benefit from the
better representation of fine-scale structures (e.g. topography, coastline), but still slaved
to the advection of large-scale flow. Some past studies (e.g.

In this thesis two weather phenomena have been chosen for the quantification of any
information gain by the convective-scale ensembles: sea breezes and convective wind
gusts. This choice has been mainly motivated by the following reasons:

• As mentioned earlier, there are only few studies concerning the quantification of
specific weather phenomena, rather than simply grid-point variables.

• Sea breezes and wind gusts both lead to high-impact weather. Giving timely and
accurate warning of severe weather was the fundamental reason to introduce en-
semble models at convective-scale.

• Both the phenomena occur at small spatio-temporal scales. Nonetheless their oc-
currence is influenced by large-scale conditions. This allows to assess whether the
information gain can stem from the dynamical downscaling of the coarser resolu-
tion ensemble or the latter is sufficient to provide valuable information.

The research questions of this thesis are:

1. How can the information about different weather events be extracted for an au-
tomated forecast production from both the convection-permitting model and its
lower resolution counterpart ?
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2. How do forecast probabilities calculated from both the ensembles differ ?

3. What is the forecast skill of the convection-permitting ensemble relative to a coarser
resolution ensemble ? How does it depend on the predicted variable ? How does
the skill evolves with forecast lead time ? Is any gain in the skill significant ?

4. Can be the potential information gain be predicted from the synoptic-scale flow ?

Furthermore, since sea breezes are atmospheric forms of the so called density currents and
could lead to high-impact weather especially when interacting with other sea breezes or
other mesoscale flows, this thesis also includes a study on the theory and simulations of
colliding density currents, in an idealized framework. The general aim of this study was
to understand the dynamics of collision and in particular the role exerted by the vorticity.
The following questions are thus related to this study:

(a) Is a two-dimensional vorticity model able to capture the essential features of the col-
lision dynamics, in an idealized framework similar to the laboratory experiments
?

(b) What is the role of baroclinically generated vorticity in determining and explaining
some characteristics of the collision dynamics ?

(c) Can these characteristics be predicted using only the initial conditions, prior to the
running of the numerical model ?

In the following chapters each of these questions will be addressed and discussed and
possible explanations and insights about the results obtained will be given. Details about
the structure of the thesis are described in the next section.

1.3 Outline of the thesis

This thesis is structured as follows into 7 chapters.
Chapter 2 deals with the research project on numerical simulations and theoretical con-
siderations of colliding density currents. This is based on Cafaro and Rooney (2018).
In Chapter 3 the methodology and the ensemble models used in this thesis are described.
Chapter 4 and 5 are based on Cafaro et al. (2019). Chapter 4 investigates how the en-
semble data (both at convective-scale and lower resolution) have been post-processed in
order to extract useful information about the sea breeze prediction and then to produce
probabilistic forecasts. A brief description of the sea breeze phenomenology is also pre-
sented, focussing on the relevant characteristics to be predicted.
In chapter 5 the verification of the sea breeze probabilistic forecasts is performed against
surface station observations. Other sea breeze characteristics (propagation speed and on-
set timing) are investigated and verified against the same set of observations.
In chapter 6 the same research questions and methodology are applied to a severe weather
case, wind gusts in convective and non convective situations.
Finally, in chapter 7 the general conclusions, limitations of this study and suggestions for
how to extend it and directions for future research are discussed.
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Chapter 2

Density currents in an idealized
framework

This chapter presents a new set of numerical simulations of two colliding density currents
in a idealized framework, integrating the Boussinesq vorticity equation in a rectangular
bounded domain, using a suite of contour-advection Lagrangian numerical models.
These simulations are used to examine the dynamical features of the collision, in the
light of recent laboratory experiments. The collision dynamics present various interesting
features. Here the interface slope at the front of the two unequal density currents and the
maximum height reached by the fluid after the collision have been investigated. For the
secondary triggering of atmospheric convection by colliding cold pools from previous
convective events, these may affect the positioning and the momentum of the collision
uplift, respectively. The aim is to verify the effect of the buoyancy ratio of the fluids on
the two collision characteristics. Also, there is need of a theoretical model that could give
us more insight about the collision dynamics and also predict the interface slope prior to
the running of the numerical model.

The work presented in this chapter was published in the Quarterly Journal of the Royal
Meteorological Society, with the reference:
Cafaro C. and Rooney G. G., (2018). Characteristics of colliding density currents: a nu-
merical and theoretical study. Q. J. R. Meteorol. Soc.,144, 1761-1771.
The research was carried out by the lead author during the Met Office Training and Re-
search Summer School in Summer 2017, under the supervision of G. G. Rooney. The
author wrote the first draft of the paper and then discussions took place via e-mail and
also in person three times, when the paper was under review. After the first draft, G. G.
Rooney commented on the whole draft and re-wrote 30% of the article.

2.1 Introduction

Density currents are primarily horizontal flows generated by a horizontal density gradi-
ent. Since they are of practical application to several atmospheric and industrial prob-
lems there has been extensive experimental, observational, theoretical and numerical re-
search on density currents, following the early works of von Kármán (1940) and Ben-
jamin (1968). Much of this has been summarised and reviewed by Simpson (1997) and
Linden (2012). Cold pool outflows from thunderstorms and sea breezes have been shown
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to resemble density currents, by laboratory experiments (Simpson, 1969), field observa-
tions (Mueller and Carbone, 1987) and numerical models (Droegemeier and Wilhelmson,
1985).

Many theoretical models, based on energy conservation theory, have considered only
irrotational flows. However it is well-known that horizontal density gradients lead to
baroclinic vorticity generation (Simpson and Linden, 1989), and density currents may
also be modelled using a vorticity formulation (e.g. Kay, 1992; Liu et al., 2003). Rotunno
et al. (1988) used the vorticity formulation to model the phenomenon of cold pools in
shear flows. Xu and Moncrieff (1994) also recognized the “importance of vorticity dy-
namics for the local flow in the vicinity of a density current”. Furthermore Nasr-Azadani
and Meiburg (2016) have developed a vorticity-based model of quasi-steady and super-
critical (Fr > 1) gravity currents. Finally Rooney (2018) discussed the role of the vorticity
in defining the flow direction.
The interaction between density currents has also received some interest because, for in-
stance, in the atmosphere the collision between mesoscale fronts can be an important trig-
ger for atmospheric convection (Findlater, 1964). Intrieri et al. (1990) used lidar field ob-
servations to examine aspects of three different colliding thunderstorm outflows. These
revealed large vortex rolls and smaller instabilities in the leading edge of the outflows.
In addition, in all cases the colder, more dense outflow passed under the warmer out-
flow, making the warmer air mass the primary source of the updraft. All these collisions
initiated new convection. The collision of sea breezes has been observed by Lapworth
(2005) among others, and convective initiation due to colliding land breezes has been
modelled by Wapler and Lane (2012). More recently, van der Wiel et al. (2017) have per-
formed laboratory experiments on colliding density currents with different densities and
depths. These parameters have an important influence on the characteristics of the colli-
sion (see also Shin et al., 2004; Warren, 2014). Laboratory experiments of equal colliding
density currents have been performed more recently by Zhong et al. (2018) with the aim
of understanding the turbulent mixing, especially in the collision stage.

As discussed by van der Wiel et al. (2017), even the simple case of (quasi) two-
dimensional collision in a uniform environment has proved difficult to parametrise with
an analytical model. Hence, this basic case is examined here. In the lower atmosphere,
wind shear (Xu, 1992; Parker, 1996; Liu and Moncrieff, 1996; Xue et al., 1997; Lee and
Wilhelmson, 1997; Bryan and Rotunno, 2014), ambient stratification (Liu and Moncrieff,
2000; Seigel and van den Heever, 2012) and three-dimensional front structure (Droege-
meier and Wilhelmson, 1985; Orf et al., 1996; Vermeire et al., 2011) may all modify the
cold-pool collision process and effects. These additional processes may begin to be in-
cluded in the simulations once the basic collision dynamics are described.

Here it will be shown that the dynamics of two colliding density currents can be
reproduced with an idealized two-dimensional, vorticity-based model. In section 2.2 nu-
merical simulations in similar situations to those of the laboratory experiments of van der
Wiel et al. (2017) are performed. In particular the pre-collision and collision stages are in-
vestigated. In section 2.3 some theoretical approaches to predict and explain the shape
and orientation of the frontal interface are discussed, and predictions are compared with
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the numerical simulations. In section 2.4 some preliminary simulations in a stratified en-
vironment are presented. Finally, section 2.5 contains conclusions from this study and
ideas to extend it.

2.2 Numerical simulations

The laboratory experiments have been reproduced numerically using the numerical soft-
ware package Hydra (http://www-vortex.mcs.st-and.ac.uk/software.html1) Hydra
solves the Boussinesq-Euler equations for the flow of an incompressible fluid in two di-
mensions, vertical and horizontal. Buoyancy (also known as reduced gravity in a Boussi-
nesq fluid) is approximately conserved following the flow, up to the action of numerical
diffusion. The distribution of buoyancy governs the creation of baroclinic vorticity,
and the vorticity redistributes the buoyancy. Numerical solution is by the combined La-
grangian advection method, (CLAM, see Dritschel and Fontane, 2010, for more details),
which preserves the small-scale flow structures at high accuracy. This allows the prob-
lem of density-current collision to be recreated in an idealized framework, with minimal
diffusion and no possibility of along-front variation. Hence, the basic processes may be
isolated and quantified.

The dynamics produce entrainment and mixing as would be expected, so that fluid
elements of different densities can mix quite thoroughly. There is no parametrised diffu-
sion to homogenize the densities at the grid scale following this mixing, although numer-
ical diffusion will act in this manner to some extent. Despite these simplifications, over
the relatively short timescales of these simulations, the resultant dynamics are expected
to still represent the significant features of the flow, and the numerical results closely re-
semble the flows in the laboratory experiments of van der Wiel et al. (2017), as shown in
the following. Results from the numerical model have also been compared previously
with experiments on billows in stratified flow by Carr et al. (2017).

2.2.1 Model description and initial configuration

The governing equations for an incompressible, inviscid, adiabatic fluid with velocity u
are:

ρ
Du
Dt

= −∇p + ρg (2.1)

Dρ

Dt
= 0 (2.2)

∇ · u = 0, (2.3)

where g=-gk is the acceleration due to gravity, ρ and p re the background density and
pressure respectively. Then assuming small variations of density (Boussinesq approxima-
tion), ρ is replaced by ρ0 a constant, except for the term dealing with vertical motions (the
term multiplied by g). Then the buoyancy is defined as:

b = g(ρ0 − ρ)/ρ0, (2.4)

1Accessed online on 24 February 2017.

http://www-vortex.mcs.st-and.ac.uk/software.html
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and also a reference pressure, p0 = −gρ0z in hydrostatic balance with the reference den-
sity and then the pressure perturbation is introduced p′ = p− p0. Then substituting into
equations (2.1-2.3):

Du
Dt

= − 1
ρ0
∇p′ + bk (2.5)

Db
Dt

= 0 (2.6)

∇ · u = 0. (2.7)

These are the Boussinesq-Euler equations for an incompressibile fluid. The correspond-
ing equation for vorticity ω = ∇× u is:

Dω

Dt
= −∇× (

1
ρ0
∇p′) +∇× (bk). (2.8)

Provided that the density is uniform, the first term on the r.h.s. vanishes. In a two dimen-
sional plane in the x− z plane, the vorticity has only the component of the normal to the
plane of the flow, all other components being zero. Therefore the corresponding vorticity
equations are:

Dη̄

Dτ
=

∂b̄
∂x̄

(2.9)

Db̄
Dτ

= 0 (2.10)

∇̄ · ū = 0, (2.11)

where overbars denote dimensionless variables, u = (u, 0, w) is the velocity field in two
dimensions. η is the vorticity component normal to the plane of the flow. The dimen-
sionless time, horizontal coordinate and vertical coordinate are denoted τ, x̄ and z̄ re-
spectively. Their relationships to the equivalent dimensional variables t, x and z, and the
non-dimensionalization of the flow variables, will be set out below. There is a free-slip
boundary condition at all the boundaries of the rectangular domain. The domain is of
height H and length L. Initially, the two patches of fluid denser than the background
occupy regions in the lower corners at either side of the domain, of length l and depth D
(i.e. the same for each current), see for example figure 2.1.

The current on the l.h.s. is denoted current 1 and the other is denoted current 2.
The initial density scales are in proportion ρ0 ≤ ρ1 ≤ ρ2, ρ0 is the ambient fluid density.
That is, current 2 is the more dense.

A uniform ambient density reduces the complexity of the system, since there is no
influence of ambient stratification to consider. Its counterpart in the real atmosphere is
the deep, well-mixed atmospheric boundary layer, such as occurs in the afternoon on
days prone to convective activity. It is therefore also a suitable background state for
idealisations of convective cold-pool collisions.
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FIGURE 2.1: Initial (τ = 0) distribution of the absolute value of the buoy-
ancy, |b̄(x̄, z̄)|, for simulation 6 as in table 2.1.

The precise initial distribution of the buoyancy (see figure 2.1) is specified as follows:

b(x̄, z̄) =
[
−1

2
b1 · erfc{(x̄− l)/ε} − 1

2
· b2 erf{(x̄− L + l)/ε} − 1

2
b2

]
· φ(z̄), (2.12)

where
φ(z̄) =

1
2

erfc{(z̄− D)/ε}, (2.13)

describes the variation in height of the buoyancy (to perform partial-depth simulations)
and ε = 0.02 l describes the thickness of a transition zone between the current and the
background flow. b1 and b2 are the buoyancies for current 1 and 2 respectively and l
the width of each box occupied by the two currents at the two sides of the rectangular
domain. Moreover

erf(x) =
1√
π

∫ x

−x
e−s2

ds, erfc(x) = 1− erf(x), (2.14)

are the error function and its complementary, respectively.
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D H rg
0.99 0.75 0.49 0.33 0.25 0.20 0.15 0.05

1 1 1 2 3 4 5
1/2 1 6* 7* 8* 9 10* 11* 12*

1 2 13 14 15 16 17 18 19 20
1 4 21 22 23 24
1 8 25 26 27

TABLE 2.1: The numerical simulations and their dimensionless parame-
ters. The domain is of height H and length L, and each current has initial
depth D and length l. The buoyancy ratio of the currents is given by rg.
The simulations are numbered as shown in the table body. Simulations
marked with an asterisk (*) were repeated with the l.h.s. current only to

generate the single-current data.

The variables are non-dimensionalized relative to the denser current,

x̄ = x/l, z̄ = z/l (2.15)

τ = t/
√

l/|b2| (2.16)

η̄ = η/
√
|b2|/l (2.17)

b̄ = b/|b2| (2.18)

ū = u/
√
|b2|l (2.19)

The numerical solution will depend on the dimensionless parameters D/H, l/L, H/L
and rg = b1/b2. Here, simulations for different D/H, H/L and rg are conducted, varying
D and H while l = 1 and L = 8 are fixed, see table 2.1. As will be seen, variation in rg

was achieved by keeping b2 fixed and varying b1.
Simulations 25–27 on the square domain had a horizontal resolution of 256 points,

and all others had a horizontal resolution of 512 points. The vertical resolution was in
proportion, according to the domain aspect ratio H/L, so as to obtain square grid cells;
thus 256 points for simulations 25–27, 64 points for simulations 1–5, etc. The numerical
Reynolds number may be estimated from the grid resolution to be Renum & 106 (Carr
et al., 2017, § 4.2.2), bearing in mind that these simulations are two-dimensional.

2.2.2 Results

In this section the numerical simulation results are presented for the pre-collision (see
figure 2.2) and collision phases. Animations of some of the simulations are available as
supplementary material of (Cafaro and Rooney, 2018). For quantitative analysis, only
the partial-depth simulations are examined, since these will be more representative of
cold-pool type flows in the lower atmospheric boundary layer.

Pre-collision propagation speed

The pre-collision phase is investigated by considering the horizontal propagation speed
of current 1 for different rg. One way to describe this is via the dimensionless horizontal
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FIGURE 2.2: Snapshot of buoyancy distribution before the collision for sim-
ulation 9 at time τ = 8.

propagation speed given by the Froude number (Fr):

Fr =
U√
bD

, (2.20)

where U is the current propagation speed.
Several theoretical predictions of Fr based on the initial fractional depth of the current
have been developed (Benjamin (1968), Rottman and Simpson (1983), Shin et al. (2004)).
In particular in Shin et al. (2004), for Boussinesq currents, Fr is expressed as follows:

Fr = FS =

√
2− D/H

2
, (2.21)

where D and H represent the fluid depth and the tank height respectively. Equation
2.21 has been compared by van der Wiel et al. (2017) with values given by laboratory
experiments.

Fr was calculated from the numerical simulations using (2.20). For this, b and D are
given from the initial state. The speed U was calculated by tracking the leading edge of
the density-current front for several timesteps 2, using the buoyancy field as a tracer, and
then taking the mean value. The leading edge is tracked at each time step by calculating
the buoyancy difference between adjacent grid boxes at the lowest vertical level. The
location of the leading edge is where this difference exceeds a threshold, which is 0.1(b1−

2The model timestep was not chosen by the user. As written in Carr et al. (2017) ”Temporal integration
was performed using an adaptive fourth-order Runge–Kutta integration scheme.” Further details of the
method can be found in Dritschel and Fontane (2010).
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b0), where b1 and b0 are the buoyancies of the denser current and the background fluid
respectively.

The results of the comparison between (2.20) and (2.21) are shown in figure 2.3. Equa-
tion 2.21 is shown to be a good predictor for the magnitude of the propagation speed
in the constant-velocity phase3, especially for rg ≥ 0.49 although the agreement for
D/H = 1/2 is better than that for D/H = 1/4.

FIGURE 2.3: Froude numbers versus rg. Error bars show one standard
deviation with respect to the mean of density current speeds for different
time steps. Continuous lines are theoretical values based on (2.21). The

simulations are a subset of those listed in table 2.1.

(2.20) has been calculated also for the single density current case, for H = 1 and
D = 1/2, as also shown in figure 2.3. The single-current simulations are initialised as the
two-current simulations but omitting the dense fluid on the r.h.s. In the single-current
case the current propagates faster than if there is a current on the other side, as is shown
by the Froude number being greater by up to approx. 16% in these experiments. This
means that in the two-current case, the presence of the second current exerts a small
influence on the propagation of the first current, even before collision. It is expected that
this effect is greater here, in a purely two-dimensional domain of limited extent, than it
would be in the atmospheric boundary layer.

Given that the single-current speeds appear to be more uniform with rg, the slight
fall-off of the speed of current 1 at lower rg values seems to be an effect of having an on-
coming density current of significantly greater momentum, therefore presumably driving
a relatively stronger opposing flow in the ambient.

3The constant-velocity phase is the initial phase of the density current propagation as opposed to the
subsequent so-called similarity phase
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Collision characteristics

In this section the numerical results for the collision of two density currents are described.
The numerical simulations presented here are able to reproduce the main features of
the collisions observed in the laboratory experiments of van der Wiel et al. (2017). For
direct comparison between the numerical simulations and laboratory experiments, see
the supplementary videos S1 and S3 of (Cafaro and Rooney, 2018), to be compared with
with videos S1 and S2 of van der Wiel et al. (2017).

Figure 2.4 shows Hovmöller diagrams based on the lowest level of the gridded model
output for simulations 13 and 16. Before the collision the two currents propagate at
certain speed (which was found different from the single current case, as shown in the
previous section). After the collision the denser current propagates at slightly slower rate
than before the collision, for the non symmetric case (rg = 0.33). Also, there is mixing
occurring in the collision zone. This is in agreement with van der Wiel et al. (2017), fig. 8.

For comparison with the Hovmöller plots, and with the experiments of van der Wiel
et al. (2017), examples of the buoyancy and vorticity fields during symmetric and asym-
metric collisions are shown in figure 2.5. The vorticity distributions in these cases show
a significant difference at the interface. Namely, in the symmetric case (figure 2.5b)
the frontal vortex sheets combine into a vortex pair that propagates vertically upward,
whereas in the asymmetric case (figure 2.5d) the stronger vortex sheet at the front of the
more dense (r.h.s.) current remains spanning the depth of the interface while the weaker
vortex sheet is deflected upward along it.

Interface shape

The interface shape may be characterized to some extent by its angle γ to the horizon-
tal. Figure 2.5 indicates that the angle is not constant with respect to time, and figure
2.6 shows that the interface shape becomes more complex at later times. Nonetheless,
the measured angle at a particular dimensionless time post collision indicates how the
interface varies from one simulation to another.
The angle between the two fluids, with respect to the horizontal line is given by:

γ = arctan
(

∆z
∆x

)
(2.22)

The algorithm to calculate the angle is based on finding the coordinates of discontinu-
ities at two different vertical levels in the buoyancy profiles (i.e. where the two fluids
meet).The vertical levels were taken from the interface, identified by the buoyancy dis-
continuity, in the height range between 0 < z̄ < D/2. Three points in the upper part of
this range were considered along with two points in the lower part, to generate six values
of the interface angle. From these, a mean and standard deviation were calculated. The
angle has been calculated at time τ = 0.5 after the collision. The collision time is defined
as the time at which the lowest levels of the two fluid meet, i.e. when there is not any
grid point occupied by the ambient fluid between the two fluids (see, for instance, the
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FIGURE 2.4: Hovmöller diagrams of the buoyancy field for simulation 13
(left) and simulation 16 (right) at height z̄ = 0

first panel of figure 2.5a). The results are shown in figure 2.7, for different rg and for dif-
ferent H and D. It can be seen that the angle does not have a clear dependence on D/H,
although generally increases with increasing rg.

Collision maximum height

Another important feature of the collision is the maximum height reached by the two
fluids. In an atmospheric context, this may be a significant factor in whether colliding
cold-pool fronts are able to initiate new convective cells.

In the symmetric case rg = 0.99, the front is almost vertical (figures 2.5c, 2.7), while
in the asymmetric cases (rg < 0.99) the front is tilted. For later time steps in the non-
symmetric case the denser fluid propagates underneath the less dense fluid, compare
figures 2.5a and 2.5c. Recall that this type overlapping was also observed by Intrieri
et al. (1990), and while it means that the perturbation height may be insensitive to rg,
it has a possible bearing on the properties at the source of the updraft. To illustrate
this interaction, figure 2.6 shows the simulation evolution after the collision. It can be
seen that the maximum height reached by the fluid in the symmetric case (figure 2.6a) is
comparable to the maximum height in the asymmetric case (figure 2.6b).

This figure also shows the spatio-temporal domain over which the maximum height
has been calculated.

This is done by counting the number of gridboxes G at each level where the the ab-
solute value of the buoyancy is above a threshold of 0.8rg, which takes into account that
different buoyancies may be present. In general G decreases with height. Then the maxi-
mum height is defined as the height at which the last non-zero value of G occurs.
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(A) Buoyancy rg = 0.33 (B) Vorticity rg = 0.33

(C) Buoyancy rg = 0.99. (D) Vorticity rg = 0.99.

FIGURE 2.5: Time sequence of buoyancy and vorticity profiles for two dif-
ferent rg near the moment of collision for simulations 13 and 16.
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(A) Buoyancy rg = 0.99. (B) Buoyancy rg = 0.33.

FIGURE 2.6: Evolution of buoyancy profile after the collision for simula-
tions 13 and 16.

FIGURE 2.7: The collision angle γ calculated from numerical simulations
for different values of H and D. Error bars represent one standard devia-
tion with respect to the mean of the different angles measured at different
heights of the buoyancy profile. The figure also shows the collision angle
values calculated from theory. The dashed and solid lines represent (2.26)

for different values of the coefficient k.
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The results of this calculation are shown in figure 2.8. Since both D/H and H/L vary
in these simulations, the results are plotted in two ways. Figure 2.8a shows the height
normalized by the domain height H when D/H < 1 is fixed but H/L varies. Figure
2.8b shows the height normalized by the initial current height D when D/H < 1 varies.
Figure 2.8c shows the height normalized by the domain height when D/H = 1. This last
case represents the only direct correspondence in parameter space between the numerical
simulations and the laboratory experiments of van der Wiel et al. (2017), whose results
are also plotted for comparison.

As previously found by van der Wiel et al. (2017), it is not possible to infer any strong
relationship between the maximum collision height and rg. Figures 2.8a and 2.8b show
that, for these data, the collision height seems to scale primarily with D. Figure 2.8b
shows that, for D/H ≤ 1/2, increasing the relative height of the domain does not greatly
affect the collision height, relative to the initial current depth. Any effect due to the finite
vertical extent of the domain would therefore seem to be quite small, and these simula-
tions all produce maximum heights approximately in the range 1.2D–1.4D, i.e. higher
than the initial height of the dense fluid. This contrasts with the D/H = 1 simulations
and experiments, in which the maximum height is of necessity restricted to be less than
or equal to D, and the results shown in figure 2.8c indicate typical values of 0.87D–0.98D.
The domain would therefore seem to be restricting the collision effects in this configura-
tion. Zhong et al. (2018) investigated the maximum height after the collision in a full-
depth (H = D) laboratory experiment of two equal counterflowing density currents. The
maximum height was first predicted to be 0.75 H, based on a formula involving frontal
vertical velocities. However the observations of the experiments suggested a maximum
height of 0.9 H, which is comparable with the range of values in our numerical experi-
ments. Nevertheless figure 2.8c shows that the full-depth simulations generally produce
a slightly higher collision height than the laboratory experiments. This could be due to
dissipation in laboratory experiments, different boundary conditions (on 3 sides, and in-
terface movement on the 4th), and also 3-dimensional effects in the experiments, which
might assist in lowering the height if there is a possibility of sideways movement. There-
fore, results of Zhong et al. (2018) are very similar to van der Wiel et al. (2017)’s, despite
of the different measurement techniques used.

2.3 Theoretical considerations

In the previous sections the output of the numerical model solving (2.9–2.11) has been
presented. In particular in figure (2.7) the variation of the collision angle with the density
ratio rg of the two density currents. In this section two different models of the collision
angle are presented, based on the properties of the two incoming density currents. This
will aid the future parametrization of these processes in large-scale models which are
unable to resolve the details of such flows.

The similarity between the numerical results presented here and the experiments of
van der Wiel et al. (2017) indicates that the idealized equations capture the essential fea-
tures of the flow. Since the numerical model has buoyancy and vorticity as its dynamic
prognostic variables, this indicates that the baroclinic vorticity plays a crucial role in the
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(A) Numerical simulations D/H = 1/2. (B) Numerical simulations D = 1, H = {2, 4, 8}.

(C) Full-depth numerical simulations compared with
the full-depth laboratory experiments of van der Wiel

et al. (2017).

FIGURE 2.8: Comparison of maximum collision heights: (a) numerical
simulations with D/H = 1/2 for two values of H, (b) numerical simu-
lations with the same D but different H, and (c) comparison of full-depth
(H = D = 1) maximum collision heights between numerical simulations
and laboratory experiments. The maximum collision height is scaled with

H in (a) and (c) and with D in (b).
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front and collision dynamics. Thus the flow has been modelled in terms of the vortex
dynamics.

For a steadily translating density current, the vorticity generation is balanced to first
order by the horizontal current motion. It is conjectured that during a density-current
collision, this balance is lost, and takes some time to be recovered. This implies that the
dynamics during the collision are controlled by the motion of the current-head vortices
which are already established.

Note that in the rest of this section the main concern is with the collision and its
aftermath, hence time is taken as relative to the moment of collision. That is, τ = 0 is
re-defined as the collision moment, identified as the first contact of the density currents
at the lowest level.

2.3.1 Vortex-pair model

It is well-known (e.g. Lamb, 1945, Article 155) that two isolated line vortices rotate around
the centre of their system with angular velocity

Ω =
Γ

2πδ2 (2.23)

where Γ is the sum of the vortex circulations and δ is the distance between them. For
vortices with different-signed circulations, the centre of the system is on the far side of
the stronger vortex compared to the position of the weaker vortex. Here, if the heads of
the density currents are likened to regions of two-dimensional vorticity, considering the
shear across the current indicates that the magnitude of the circulation is proportional to
the product of the current speed and head height, Γi ∝ Uih. When equal-height currents
interact in a collision, therefore, the net angular velocity of fluid in the collision zone may
be approximated by

Ω ∝
U2 −U1

h
(2.24)

assuming that the separation of the centres of circulation is also proportional to the head
height, i.e. δ ∼ h. For two vortices, the net circulation sets the direction of rotation of
the pair. Likewise, the direction of the circulation here will be in the same sense as the
circulation in the faster i.e. denser current. This implies that the relatively less-dense
current will move over the top of the denser current, as is observed.

The currents have very similar front shapes and heights prior to collision so it is as-
sumed that the collision interface starts from the vertical, and that the angle will evolve
simply as the product of Ω and time. This gives the front angle β to the vertical at time t
after collision as

β = k0
U2 −U1

h
t

= k1Fr
√

b2

(
1−

√
b1/b2

) t√
h

= k1Fr
(

1− r1/2
g

)
τ

(
l
h

)1/2

(2.25)



24 Chapter 2. Density currents in an idealized framework

where Fr is the Froude number defined in (2.20) and k0 is an unknown proportionality
constant and k1 =

√
2k0 which absorbs the ratio h/D ≈ 0.5 in the Fr definition. It has

been assumed that, with the Boussinesq approximation, the Froude numbers of the two
currents are approximately equal, which is a common assumption, see for example (2.21).
(Here they have small differences in the range 0–0.1.)

This model is approximate, and is only expected to apply for a short interval during
the collision. Nonetheless, it has two implications. The first, from (2.23), is that, at a given
dimensionless time after collision, the angle is proportional to the net circulation in the
collision zone. This follows fairly immediately from the application of this type of model.
The second, from (2.25), is a parabolic dependence of the measured angle on the density

ratio, with a vertical interface in the case rg = 1.
The first of these relationships may be tested by considering the total, or net, vorticity

in a region of the simulation domain (always of the same area) at a particular time after
the collision, and covering the point of collision. An example of the vorticity evolution in
such a region is shown in figure 2.9.

Figure 2.10 shows how this net vorticity, taken to be equivalent to the circulation per
unit (constant) area of the box over which the vorticity is summed, varies with the mean
interface angle measured at the same time. In this plot the net vorticity is multiplied by
the time interval since the collision to correspond more closely to (2.25). It can be seen
that the data appear to follow a general linear trend with increasing net vorticity, which
is in agreement with the model prediction.

For the second, the angle to the vertical at any particular time τ is given by (2.25).
Taking τ = 0.5 the angle to the horizontal is then

γ =
π

2
− β =

(π

2
− k
)
+ k r1/2

g . (2.26)

The coefficient

k =
k0

2
Fr
(

l
h

)1/2

. (2.27)

may be determined from the numerical results at τ = 0.5.
Figure 2.7 shows the comparison of the theory with the numerical values. The rel-

atively small range of 3/2 ≤ k ≤ 5/2 covers most of the spread of angles calculated
numerically, hence a value of k = 2 may be taken as representative. Hence

k0 ≈ 4 Fr−1
(

l
h

)−1/2

. (2.28)

This simple model of the angle dependence obtained from approximating the vor-
ticity dynamics would not seem to be derivable from considerations of conservation of
energy or momentum alone, but despite its simplicity and approximate nature it fits the
data reasonably well. Also, as has been shown, the present results from a numerical
model in which the main variables are vorticity and buoyancy reproduce many of the
features of the experiments of van der Wiel et al. (2017) (see also the supplementary flow
animations). This demonstrates that the consideration of vorticity is crucial in fully un-
derstanding the dynamics of colliding density currents.
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FIGURE 2.9: Snapshot of the vorticity field 2τ after the collision for differ-
ent rg (simulations 13-20 in order from right to left), in the two dimensional
domain where η has been integrated as in figure 2.10. The width of the do-

main is the same for all rg, and equal to 0.2L.

2.3.2 An alternative approach for the interface shape

Consider (2.9). First note that:
Dη̄

Dτ
≈ η̄

τ
(2.29)

Remembering that η̄ = ω · j = ∂ū
∂z̄
− ∂w̄

∂x̄
and discretizing the (2.9):

∆ū
∆z̄
− ∆w̄

∆x̄
= τ

∆b̄
∆x̄

(2.30)
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FIGURE 2.10: Relationship between the integral of the vorticity in the 2D
box as described in figure 2.9 at τ∗ = 0.5 post-collision and the collision
angle γ measured for simulations 13-20 as in table 2.1, with a colorbar rep-

resenting rg.

In order to calculate γ the angle formed by the two fluids with the horizontal line, it can
be seen that

tan γ =
∆z̄
∆x̄

.

Rearranging (2.30):

tan γ =
∆z̄
∆x̄

=
∆ū

τ∆b̄ + ∆w̄
, (2.31)

where ∆b̄ = b̄2 − b̄1 is the buoyancy difference across the interface, ∆ū = ūC − ūB the
difference in the horizontal velocity along the vertical line and ∆w̄ = w̄B − w̄A, the dif-
ference of the vertical velocity along the horizontal line (see figure 2.3.2 for a schematic
representation of the terms involved) and τ the moment at which the angle is calculated.

Since the main focus of this study is in the collision moment, as initial condition the
situation at time τ = 0.5 after the collision is considered.

In regard to ∆ū = ūC − ūB, it can be simply noticed that

ūC = U1 (2.32)

ūB = −U2, (2.33)

where U1 and U2 are the propagation speed of the light and dense current respectively
with the sign indicating the direction of propagation.
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FIGURE 2.11: Schematic diagram at the collision moment of the two cur-
rents (in blue the less dense current on the left side and in purple the denser

current on the rigth side). The line AC separates the two currents.

For ∆w the following assumptions are made:

wB = kw|U2|, (2.34)

wA = kw|U1| (2.35)

which is a direct consequence of the continuity equation 2.11, where kw is a factor to be
determined. 4

Finally τ = 0.5 will be used, since this time step has been used to calculate the angle
from numerical simulations with which the predictive formula (2.31) will be compared.

Therefore substituting (2.35), (2.32), (2.33) into (2.31):

γ = arctan
(

U1 + U2

τ∆b + kw(|U2| − |U1|)

)
(2.36)

where the propagation speed ui is predicted using the Froude number Fr as follows:

Ui = Fr
√

biD (2.37)

kw has been varied in the interval [0, 1], calculated γ for each value of kw and then the
mean of the different values of γ calculated for different kw has been considered. The
maximum standard deviation with respect to the mean value, calculated for different
values of rg, D, H is found to be ∼ 2.70◦. The comparison between (2.36) and the exper-
iments are shown in figure 2.12. It is clear that also this formula is able to predict the

4Please note that if the denser current is put on the left then the sign of propagation would change ac-
cordingly and this will change also the angle formed with the horizontal.



28 Chapter 2. Density currents in an idealized framework

relation the collision angle and rg.

FIGURE 2.12: Collision angle γ measured to the horizontal as calculated
in the experiments. The error bar describes one standard deviation with
respect to the mean of the different angles measured at different heights of
the buoyancy profile. The dashed lines show (2.36) the mean value of the

angle for 0 ≤ kw ≤ 1.

2.4 Simulation in a stratified environment

In the numerical simulations presented in the previous sections, a uniform ambient fluid
with density ρ0 has been considered. Here a non uniform ambient fluid is considered.
Only a visualization of the fluid features is presented, without performing any quantifi-
cation of the fluid characteristics (e.g. propagation speed, maximum height, interface
angle).
This is in order to provide evidence that, for the future work, stratification effects can be
included also in the Hydra numerical simulations.
The initial configuration is shown in figure 2.13. In this case the ambient fluid has
two layers: one in between the two symmetric density currents (H < 1 with density
ρs =

1
2 (ρ1 + ρ2) and another layer for H > 1 with the same density ρ0 as in the previous

simulations.
The evolution of the buoyancy profile before and after collision is shown in figure 2.14.
The most interesting feature to note is the evolution of the heights reached by the am-

bient fluid and by the colliding currents. It can be noticed that the ambient stratified
fluid reaches its maximum height before or at the moment of collision, whereas when
the colliding fluids reach their maximum height, the height of the ambient fluid is lower.
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FIGURE 2.13: Initial (τ = 0) distribution of the absolute value of the buoy-
ancy, |b̄(x̄, z̄)|, with rg = 0.99, H = 4, D = 1.

This could offer an insight when considering onset time of collision-induced convection
triggering.

2.5 Conclusions and future work

In this study, numerical simulations of two colliding density currents in a limited rectan-
gular domain for different buoyancy ratios rg were performed. These were based around
the recent laboratory experiments performed by van der Wiel et al. (2017). Beside the
buoyancy ratios, also the height of the domain and the relative current depth have been
varied, to investigate the effect of the rigid top lid and also to make the simulation closer
to a realistic atmospheric situation. Only currents of equal initial depth have been consid-
ered, and of one initial length relative to the domain length, to keep the parameter space
to manageable proportions, and to simplify the modelling requirement. Investigating the
other parameters could be the subject of future work.

Two main characteristics have been analysed: the slope of the collision front that
forms since the denser current deflects the other fluid upward, and the maximum height
reached by the fluid raised after the collision. While a large variation in the initial angle
of collision with rghas been found, this is not the case for the maximum collision height.
This is consistent with an interpretation of the front collision being governed by the inter-
action of the vortex sheets at the current heads, which leads to unequal currents tending
to circulate around one another rather than to “splash” upward. It is worth to remark
that this has possible relevance in determining which current interacts with the source of
any resulting convective updraft.



30 Chapter 2. Density currents in an idealized framework

(A) Before collision (B) After collision

FIGURE 2.14: Time sequence of buoyancy profile for rg = 0.99 in a strati-
fied environment. Colour scale as in figure 2.1.

As noted in the introduction however, while the collision height is insensitive to rg in
the basic case, other factors may produce secondary effects. For instance, the position or
maximum of collision height may vary if the fronts have appreciable curvature (Droege-
meier and Wilhelmson, 1985), and the height perturbation may be transmitted vertically
and horizontally by gravity waves in a stratified environment (Liu and Moncrieff, 2000).
Further work in this area could involve the investigation of stratification effects (also pos-
sible with Hydra), or wind-shear and front-curvature effects (perhaps with a large-eddy
model). More realistic simulations, including the effect of topography or Earth’s rota-
tion, are encouraged. A theoretical model, based on a vortex-pair argument, has been
proposed to predict the interface slope at the front, taking as input either the buoyancy
ratio or the relative propagation speeds of the currents. This has been shown to agree
well with the results of the simulations.
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In the wider context of convection parametrization, increasing model resolution (in
time and space) produces a requirement for better understanding of the dynamics, rather
than merely the thermodynamics, of atmospheric convection. Hence, triggering by con-
vective cold pools has become an area of current interest (e.g. Grandpeix and Lafore,
2010; Rio et al., 2013), since it represents one means by which a dynamical “memory”
prolongs the convective state. One proposed mechanism for cold pools overcoming con-
vective inhibition is kinematic uplift, either at the front of an advancing cold pool or
where cold pools collide. It has been suggested recently (Torri et al., 2015, see also refer-
ences therein) that this is the most important process for initiating parcel ascent from the
surface layer, with thermodynamic processes reinforcing the convective motion at higher
levels. The insights into collision dynamics obtained here will be useful in designing the
future parametrization of the distribution, in position and strength, of collision-induced
convective triggering.
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Chapter 3

Ensemble forecasting methodology

In this chapter the ensemble prediction systems and the methodologies to extract infor-
mation from them are described. Furthermore, the method to verify this information
against observations is presented.

3.1 Met Office Global and Regional Ensemble Prediction Sys-
tem (MOGREPS)

The forecast data used in this thesis come from the Met Office Global and Regional En-
semble Prediction System (MOGREPS), which consists of a global ensemble prediction
system (MOGREPS-G) and a convection-permitting limited area version, nested into it
(MOGREPS-UK). It is one of the CP-EPSs introduced in the recent years, as mentioned in
chapter 1.
One of the key reasons for implementing CP-EPSs is the quantification of uncertainty at
small spatio-temporal scales. Three sources of uncertainty have to be take into account
when constructing a CP-EPS: lateral boundary conditions (LBCs); model formulation (i.e.
physics perturbations); initial condition uncertainty (ICs).
LBCs are necessary because, CP-EPSs are usually run on limited area domains, due to
computation constraints. Therefore they require LBCs to close the dynamical equations
and it is important to take into account uncertainty stemming from the boundaries. LBCs
are provided by the driving coarser resolution ensemble. The topic of the influence of
LBCs on forecast errors has been addressed in many studies. Davies (2014) conclude that
errors arising from LBCs are a tiny part of the overall error (due to ICs and model error).
However, particularly for longer lead times than 12 hours, LBC uncertainty can dominate
over ICs uncertainty, whereas for the first six forecast hours the impact of ICs is largest
and dominate the physics perturbations and LBCs. (e.g. Hohenegger et al., 2008; Kühn-
lein et al., 2014).
How to best represent the uncertainty in the ICs at convective-scale is an ongoing re-
search question. For coarser resolution global ensembles many techniques have been
proposed (e.g. singular vectors by Buizza et al., 2005; Leutbecher and Palmer, 2008).
However, the assumptions these techniques are based on are generally no longer valid at
convective-scale, due to reduced predictability and non-linear error growth (Hohenegger
and Schar, 2007).
One widely used simple technique to initialise CP-EPSs is to dynamically downscale the
information from the coarser resolution ensembles (e.g. Hohenegger et al. (2008); Peralta
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et al. (2012)). In this case, small-scale perturbations are initially missing and are cre-
ated by the high resolution model during the forecast integration. Kühnlein et al. (2014)
demonstrated the use of downscaled approach for IC perturbations leads to improved
results for convective-scale precipitation ensemble forecast with respect to a determinis-
tic model at same convection-permitting resolutions.
As described in Hagelin et al. (2017), MOGREPS became operational in 2005 and com-
prised a global model (MOGREPS-G) and a 24 km 24 member regional ensemble (MOGREPS-
R: Bowler, 2008; Bowler et al., 2009). Both were run every 12 hours, MOGREPS-G at
00UTC and 12UTC and MOGREPS-R 6 hours later.
When MOGREPS-UK was introduced in July 2012, it was decided to run it every 6 hours
(since focussed on short-range time scale) and to halve the number of members, to make it
affordable. It was originally nested into MOGREPS-R and was introduced with the main
aim to improve the prediction of the uncertainty associated with high-impact weather
events, especially convective precipitation and the resultant flooding at river basin level.
Since January 2013 MOGREPS-UK has been nested into MOGREPS-G. Both MOGREPS-
G and MOGREPS-UK models are configurations of the Met Office Unified Model (UM;
Wood et al. 2014; Davies et al. 2005), a non-hydrostatic grid-point model.
In the configuration used in this thesis, MOGREPS-G used a horizontal grid spacing of
33 km, 70 vertical levels, and was run 4 times a day, every 6 hours starting from 00 UTC,
with 12 members (1 control + 11 perturbed members) on each cycle run to T+174 (7 days,
6 hours). ICs perturbations for MOGREPS-G are generated using an Ensemble Transform
Kalman Filter (ETKF: Wang and Bishop, 2003; Bowler, 2008), whereas model uncertainty
is taken into account by using two stochastic physics schemes: random parameter (RP)
and stochastic convective vorticity (SCV) (Bowler, 2008).
MOGREPS-UK had a horizontal grid spacing of 2.2 km. The model domain consists of

532× 654 grid points east-west and north-south respectively, with Arakawa C stagger-
ing. The grid is set on a rotated latitude-longitude projection such that grid boxes are
roughly square in physical space. The area covered by MOGREPS-UK includes British
Isles and north-west France and extends up to North Sea up to the coast of Norway. The
relatively large jump between the two ensembles has been made possible by using a vari-
able resolution that adjusts smoothly from the inner domain with 2.2 km grid size to 4 km
at the edges (see figure 3.1 for the MOGREPS-UK inner domain.) This reduces the effects
of discontinuities at the boundaries and the need of an intermediate model between the
global and the convection-permitting one (Davies, 2014).
MOGREPS-UK was run every 6 h up to 36 h , by dynamically downscaling starting from
the 3 h forecast of the matching MOGREPS-G ensemble members ICs. The initial forecast
times are 0300, 0900, 1500 and 2100 UTC. This means that MOGREPS-UK was initialized
using the ICs and BCs from an interpolated 3 h forecast of the matching MOGREPS-G
member run. This also means that ICs and BCs are “taken from the most recent global
model run (3 hours after the nominal time)” (Tennant, 2015).
MOGREPS-UK used a set of 70 vertical levels with variable grid size, with a lid at 40 km.
These levels are terrain following near the surface. Vertical levels use Charney-Phillips
staggering. Primary field advection uses a semi-implicit Lagrangian scheme which al-
lows a longer time step to be used, so reducing the computational cost.
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FIGURE 3.1: MOGREPS-UK inner domain (2.2 km × 2.2 km), with eleva-
tion shaded. The dashed box indicate the sub-domain used to verify wind
gust forecasts, whereas the blue solid box is used for the sea-breeze fore-

casts.

Parametrized physical processes include long- and short-wave radiation, mixed-phase
cloud microphysics, a boundary-layer turbulence scheme (Hagelin et al., 2017).
MOGREPS-UK has stopped from being a pure dynamical downscaler of MOGREPS-G in
March 2016, when large-scale perturbations from MOGREPS-G were started being cen-
tered on the UKV analysis. This provided high resolution details in the assimilation cycle
and Tennant (2015) showed the benefit of the new configuration over the downscaling ap-
proach, especially in the first few hours of the integration cycle.
Another upgrade was the introduction of the RP stochastic physics scheme, with the
aim to perturb selected parameters in order to represent uncertainties in key physical
processes (e.g. fog, low cloud). Then, in November 2016, with the increased computer
capacity, the run length was increased from 36h to 54 hours and also the domain covered,
for a better spin-up of convective events originating outside the inner domain (Hagelin
et al., 2017).
In this thesis the data used for producing probabilistic forecast cover the period 2013-
2015, when MOGREPS-UK was purely a simple downscaler from MOGREPS-G. Also,
in the configuration used here there is no stochastic component in the MOGREPS-UK
model physics and it exactly follows the UKV physics.
Since in this configuration (i.e. using a dynamical downscaling approach), there is no
additional high resolution data assimilation, the information gain from CP-EPS could
come from a better representation of the dynamics and ancillary fields like coastline, to-
pography and land-use dataset. It is therefore constrained by observations only at scales
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greater than 33 km, through the global initial and boundary conditions.

3.2 How to identify weather phenomena in CP-EPSs ?

The post-processing of CP-EPSs is a crucial step in the chain of the weather forecasting
process to provide reliable probabilistic forecasts of the local weather event of interest.
An example of probabilistic products for an intense rainfall event is reported by Golding
et al. (2016).
Probabilistic forecasts from MOGREPS-UK are routinely generated for the Operational
Meteorologists via the Gridded Post-Processing system. Products include: probabilities
of exceeding, or being below, pre-defined thresholds for rainfall rates and accumulations,
visibility, temperature and wind gusts.
Since, as mentioned in chapter 1, CP-EPSs provide large amounts of data and represent
a heavy burden on forecasting centres’ computational resources, there is need to fully
exploit them in order to extract valuable information as fully as possible. There is also
need to assess whether these higher-resolution ensembles can provide better quantitative
probabilistic forecasts of key weather. The final aim is to provide early reliable indication
of severe weather for the emergency response in hazardous weather situations.
In this thesis the prediction of small-scale weather phenomena is investigated, in particu-
lar those whose occurrence is often strongly tied to large-scale environmental factors, yet
also locally generated.
Very fine gridded data (∼ 1− 3 km) allow, on one hand, to have a more realistic represen-
tation of small-scale structures (e.g. convection, sea-breezes, local fog and wind gusts),
therefore to more easily identify these phenomena in a more objective way.
Despite being localized both in space and in time, these phenomena reveal a certain
spatio-temporal coherence, which is key to separating them from the plethora of small-
scale structures, which are also represented by CP-EPSs.
Another factor is that knowing in advance the synoptic weather regime allows a more
successful identification of the weather event to predict.
It enables to reduce the number of false alarms, by excluding weather events that should
be not be expected with particular regimes (e.g. sea breezes in a cyclonic regime).
Although knowing a physical relationship with the larger scale environment helps, de-
tection of weather events such as fog, sea breezes, mesoscale-convective systems, banded
precipitation, is not straightforward. Therefore a combination of weather variables asso-
ciated with the event occurrence is suggested as a means of defining the weather event,
since usually there is a physical relationship between the local phenomenon and envi-
ronmental conditions. However, uncertainty in definition of a particular phenomenon is
still an issue that needs to be addressed.
This uncertainty stems from the fact that different events can resemble the same distinc-
tive features (e.g. sea breezes, cold fronts). For instance, sea breezes and cold fronts both
may have a wind speed increase, shift in the direction and a drop in temperature.
Therefore, the information coming from the synoptic weather regime is vital to be able
to help to discriminate one event from another. Not less important is the geographical
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information (e.g. coasts, high orography region, valley).
As these “ancillary” fields (e.g. land-sea mask, topography) are better represented by
CP-EPSs, then small-scale weather features, associated with local topography, are more
realistic than the ones represented on larger grid box sizes.

In this thesis sea breezes and wind gusts probabilistic predictions are performed and
analysed, to assess whether the convective-scale ensemble forecast can provide more in-
formation than a cheaper coarser resolution ensemble.
Also, in order to determine the statistical significance of information gain from the CP-
EPS, the approach used in this thesis is not based on individual case studies. A more
systematic and longer period of evaluation is considered. Thus, there is need for auto-
mated methods to identify the phenomena of interest and these algorithms can be used
in operational forecast, since it would be too time consuming to do it visually.
Therefore the analysis conducted in this thesis consist of four main steps:

1. Identification of weather phenomenon of interest, using an automatic algorithm, in
a convection-permitting ensemble forecast.

2. Extraction of the information about the event occurrence from a coarser resolution
model using a Bayesian approach, due to model’s inability to properly resolve the
small-scale weather event.

3. Generation of probabilistic forecasts of the event occurrence using both methodolo-
gies.

4. Comparison and verification of probabilistic forecasts against each other and ob-
servations, calculating proper scores and assessing any significance in the scores
differences.

The algorithms used to detect sea breezes and wind gusts will be presented in chapter
4 and 6 respectively.

3.3 From CP-EPSs to probabilistic forecasts

Once weather events have been defined for each ensemble member, the next step is to
translate the information contained in each member into a probability distribution func-
tion. For instance, Bröcker and Smith (2008) discuss different kernel methods to build
this distribution function, considering ensembles as a source of information and not as
the possible scenarios of the reality.
In this study the focus is on binary predictions, i.e. the full distribution function is not es-
timated. Instead, if the occurrence of the event is considered as a success, the probability
p of the success given N trials (i.e. the different ensemble members) has to be estimated.
This can be estimated by the Binomial distribution with parameters p and N1. p can be
estimated from the ensembles, calculating the maximum likelihood estimator (MLE) of

1It is worth to notice that the assumption of the Binomial distribution is that the different trials are inde-
pendent. This can be not true with ensemble members.
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the Binomial distribution, which is just the fraction of successes, i.e. the fraction of en-
semble members that satisfy the predetermined condition. In the Appendix A a modified
MLE to estimate p will be presented.

3.4 Bayesian model

In order to produce probabilistic forecasts from the coarser resolution model a Bayesian
approach based on environmental predictors is used, mainly for two reasons:

1. the grid box of the coarse resolution model is too large to properly directly represent
the small scale weather phenomenon to be predicted.

2. To assess to extent to which the small-scale phenomenon is predictable by using
only salient information from the large-scale conditions, which still exert an impor-
tant influence on the occurrence of the phenomenon. A Bayesian model based on a
few predictors is thus implemented and compared with the dynamical convection-
permitting model that represents directly the physical process.2

This Bayesian model is trained on CP-EPSs data for each forecast lead time. In particu-
lar the relationship between events as defined in CP-EPSs models and the parameters,
which are given by the coarser resolution models, is found. In this Bayesian framework
the prior probability distribution is represented by the high resolution model climatol-
ogy. This is then updated by the information given by the coarse resolution parameters
from the forecast.
The aim of this approach is then to model the conditional distribution, given a set of pre-
dictors.
The two most used statistical techniques to estimate the predictive probability density
function are the Bayesian model averaging (BMA; Raftery et al. (2005)) and non-homogeneous
regression, also referred as model output statistics (EMOS; Gneiting et al. (2005)).
For both the methods a parametric form of the functional relationship between the pre-
dictors and the predictand needs to be estimated. An advantage of this “data-driven”
method presented in this thesis is that such parametric equations of the predictive distri-
bution are not necessary.
Other “data-driven” methods are becoming popular in atmospheric science, such as neu-
ral networks. In this case functional relationship between the predictors and the predic-
tand are “learned in data-driven way rather than requiring prespecified link functions”
(Rasp and Lerch, 2018).

3.5 Observational data

Observations are taken from the UK land surface observing network, with information
available at this link (https://www.metoffice.gov.uk/guide/weather/observations-guide/
uk-observations-network). The average distance between the surface synoptic stations

2For certain weather phenomena the convection-permitting model may not fully resolve the physical
process either.

https://www.metoffice.gov.uk/guide/weather/observations-guide/uk-observations-network
https://www.metoffice.gov.uk/guide/weather/observations-guide/uk-observations-network
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is 40 km, which is approximately the size of the coarse resolution grid box (33 km). Pro-
vided that the distribution of the stations is reasonably uniform, this means that there
should be at least one station for each grid box.
Temperature and wind measurements are available at every hour. More precisely tem-
perature is the instantaneous value at every hour, whereas wind speed and direction are
a 10 minutes average between 20 and 10 minutes to the hour and the max gust speed is
the max wind speed in the same 10 minutes period.
In order to contruct verification datasets for the two phenomena, automatic algorithms
for detecting sea breezes and wind gusts are proposed and will be presented in the fol-
lowing chapters.
For the sea breeze case the synoptic stations data are aggregated, in order to verify sea
breeze occurrence for any point of the domain, whereas for the wind gust case the ver-
ification at each coarse resolution grid box is performed. This will be explained in the
following chapters.

3.6 Verification

After extracting the signal of the weather phenomenon from the observations in an au-
tomatic way, it is possible to build the verification dataset, against which to compare the
probabilistic forecasts calculated with two different methodologies, as explained in the
previous sections.
The general aim of our analysis is to calculate two scores from the probabilistic verifi-
cation, then calculate the differences and assess whether any difference in the scores is
significant. A null hypothesis of no difference between the two probabilistic forecasts is
used to test significance.
In regard to the scores Ignorance score, the Brier Score and the Area under the ROC
curve (AUC) are calculated. This provides information about reliability and resolution
(discussed in chapter 5) and focusses on additional useful information provided by the
convection-permitting ensemble forecast.
In order to calculate any significance in the verification scores difference (Information
gain, Brier score difference and AUC difference) two different techniques are considered.
For the probabilistic scores, the empirical bootstrap technique is used. Nboot sequences
of the forecast-observation pair are considered, each one obtained from the original by
sampling with replacement. Then the Information gain and Brier Score difference are
computed for each sequence and finally the 95% confidence interval.
In regard to the comparison of the area under the ROC curve, since in this case the areas
are correlated, the method described in (DeLong et al., 1988) to compute the variance is
used. Then, following (Zhou et al., 2008) a Z-test is used to compare the two areas under
the ROC curves and to test the null hypothesis the two probabilistic forecasts having the
same AUC.
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Chapter 4

Probabilistic forecasts of sea breezes

In this chapter the information about sea-breeze occurrence is first extracted from a dy-
namically downscaled convection-permitting ensemble forecast (CP-EPS) using a novel
automatic tracking algorithm and then compared with a Bayesian model, taking as input
coarser resolution data and trained on convective-scale data.
In essence the Bayesian method forecasts the high resolution member based on large-
scale variables from low resolution model (LR-EPS). The aim of this is twofold: -firstly
to develop a method to extract information from the low resolution prior to the running
of the convective-scale forecast for real time forecasting ; secondly to provide an estimate
of the information gained by running the convective-scale forecast beyond that which is
contained in the large-scale flow conditions.
The work presented in this chapter is part of a paper which is published in the Quarterly
Journal of the Royal Meteorological Society, with the reference:
Cafaro C, Frame THA, Methven J, Roberts N, Bröcker J, (2019). The added value of
convection-permitting ensemble forecasts compared to a Bayesian forecast driven by the
global ensemble. Q. J. R. Met. Soc., doi:10.1002/qj.3531
The research included in this paper was conducted by the main author under the super-
vision of T. H. A. Frame, J. Methven, N. Roberts and J. Bröcker via weekly meetings and
discussions. The lead author wrote the first draft of the paper, prepared all the figures
and had overall control of the submitted paper. The other authors commented on draft
version of the paper and the lead author updated the manuscript accordingly.

4.1 Introduction

The sea breeze is a phenomenon that has been known about long time, already docu-
mented by Aristotle (see Neumann (1973) and references therein). Yet it still raises inter-
esting open questions, in particular about how it is identified and predicted.
A sea breeze is a mesoscale circulation caused by the temperature contrast between the
land and the sea during the day, i.e. the differential heating due to different heat capacity
of the water and land. Land heats more quickly during the day and cools more quickly at
night. Sea breezes are an appealing choice of phenomena for model comparison because
they are geographically constrained to initiate at the coast and occur quite frequently in
summer months. Also, sea breeze forecasting is important for several reasons: its im-
pacts on air quality, , since it affects transports of pollutants e.g. (Loughner et al., 2014;
Kambezidis et al., 1998; Clappier et al., 2000). It is also important for health, being a relief



42 Chapter 4. Probabilistic forecasts of sea breezes

FIGURE 4.1: Percentage of publications every 10 years years since 1950
(up to 18 December 2018) including the phrase “sea breeze” according to
Google Scholar for four journals (BAMS, JAS , MWR, QJRMS). Each dot
represents the percentage in the following 10 years (except for year 2010).

from oppressive hot weather (e.g. Papanastasiou et al. (2010); Meir et al. (2013)) and as
a possible trigger for convective storms or enhancing rainfall totals from existing storms,
especially when interacting with other mesoscale flows (Warren, 2014; Birch et al., 2015).
Miller et al. (2003) stated that forecasting sea breezes consists of three main aspects: oc-
currence, propagation speed and direction and distance of penetration. In this study the
main focus is on the occurrence. Other sea breeze characteristics are examined in the sec-
tion 4.6.
Furthermore, this analysis can benefit from the fact there have been lots of studies on the
sea breeze, especially in the past 40 years (see figure 4.1), as more and more people are
living coastal urban areas. Among these studies, Azorin-Molina and Tijm (2011, Table 1)
include a list of studies on sea breeze forecasting and Crosman and Horel (2010, Table 1)
on sea breeze numerical studies). This has permitted to understand the phenomena, how
best to detect it and what drives it.
For instance, Miller et al. (2003, Table 3) presents a list of factors controlling the sea-breeze
occurrence and inland penetration. The correct representation of these factors in NWP
models depend on the model grid size. In particular, topography, shape of the coastline
require fine grid scale to be properly represented. This is crucial to reduce forecast errors
(e.g. Persson and Grazzini (2007) reports an “over-sized”1 sea breeze during the forecast
integration, due to the grid box size of 25 km of the ECMWF model).
Since sea breezes usually occur on a time scale of about 1 day and spatial scale between

1This is directly quoted from the authors’ document. Over-sized in this context could mean a sea-breeze
which extends too far inland.
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10 to 100 km (Lin, 2007), it is not expected that coarse resolution model (with grid spac-
ing larger than 20 km) are able to properly resolve the sea breeze circulation. The key
distinction being that the CP-EPSs can explicitly develop a sea breeze, whereas the global
ensemble can only predict the large-scale conditions that give rise to sea breeze.
In this study the degree to which CP-EPSs provide additional information about the oc-
currence of sea-breeze beyond that which could be determined from the larger-scale envi-
ronment is examined. This means to post-process direct model output variables to extract
information and create a “sea breeze occurrence” variable based on them.
The information extracted from a CP-EPS is compared with a Bayesian model based on
LR-EPS model variables. The Bayesian model should perform better than the LR-EPS
alone and is still cheap compared to running a CP-EPS, and therefore provides a much
more stringent test of the benefit of the CP-EPSs, compared with a more intelligent use of
the LR-EPSs than simply extracting raw model output.
Although the sea breeze is locally forced by the land-sea temperature contrast, the syn-
optic scale flow plays a fundamental role in controlling the initiation and the evolution of
the sea breeze itself. There are of course other geographical factors involved, like coast-
line topography, surface roughness, latitude, season. However Azorin-Molina and Chen
(2008) deem the impact of the large-flow to be greater than these, even than the thermal
gradient. This is related to question the source of sea-breeze predictability. More pre-
cisely it is assessed whether sea-breeze occurrence is due to better representation of local
factors and sea-breeze dynamics in CP-EPSs or if it can be instead derived solely from
the knowledge of the most influential large-scale conditions (synoptic wind and land-sea
temperature contrast) which are sufficiently well represented even on coarse grid boxes.
These are used as predictors in the Bayesian model.
In this context ensembles are used mainly for two reasons: they provide inherent uncer-
tainty in initiation and subsequent development because of dependence on environmen-
tal factors that are themselves open to uncertainty; they provide a larger sample to get
a more robust comparison between the two forecasting approaches. Therefore a more
appropriate question to answer is “how much more information is the CP-EPS bringing
compared to the LR-EPS and is this significant ?”. The null hypothesis is that the two
EPSs provide the same amount of information. Therefore sea breeze occurrence becomes
a test, by which this hypothesis can be either rejected or accepted.
The rest of the chapter is organized into five sections. In section 4.2 the forecast and ob-
servational data used are described, section 4.3 presents the method for identifying sea
breezes in observations and CP-EPSs and the Bayesian model, section 4.4 contains a first
qualitative comparison between the two probabilistic forecasts and subjective verifica-
tion against station observations. A summary of the results and conclusions is given in
section 4.7.

4.2 Data set

In this section forecasts and observational data sets are presented.
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4.2.1 Model data

The forecast data used in this paper come from the Met Office Global and Regional En-
semble Prediction System (MOGREPS), which consists of a global ensemble prediction
system (MOGREPS-G) and a nested convection-permitting limited-area version (MOGREPS-
UK). Both ensembles are constructed using the Met Office Unified Model (Wood et al.,
2014; Davies et al., 2005). Descriptions of both configurations, the initial condition per-
turbations and stochastic physics can be found in (Hagelin et al., 2017),(Tennant, 2015)
and (Bowler et al., 2008). These data also form part of the THORPEX Interactive Grand
Global Ensemble (TIGGE) database (Swinbank et al., 2016). This database of operational
ensemble forecasts from leading NWP centers was set up to enhance the development of
probabilistic forecasting of high-impact weather. In 2014 a TIGGE-Limited Area Model
(LAM) panel was also established to apply TIGGE concepts to limited-area model ensem-
bles. Both the datasets are available for research and education purposes at the following
link (https://www.ecmwf.int/en/research/projects/tigge2). The MOGREPS-G fore-
casts were produced 4 times a day, every 6 hours starting from 00 UTC, with 12 members
(1 control + 11 perturbed members) on each cycle run to T+174 (7 days, 6 hours), us-
ing a horizontal grid spacing of 33 km and 70 vertical levels. MOGREPS-UK has been
running routinely since 2012 and has a horizontal grid spacing of 2.2 km. It was run
every 6 h up to 36 h , by dynamically downscaling starting from the 3 h forecast of the
matching MOGREPS-G ensemble members. This means that the initial conditions for
each MOGREPS-UK member were simply interpolated to the high-resolution grid using
the 3 h MOGREPS-G forecast at 0300/0900/1500/2100 UTC. Note that this configuration
of MOGREPS-UK was operational from 16 January 2013 until 15 March 2016, after which
the MOGREPS-UK ensemble was generated by perturbing around the control forecast
intialised using a high resolution analysis (Hagelin et al., 2017). Since there was no ad-
ditional high resolution data assimilation in the period studied here (2013-2015), the in-
formation gain from CP-EPS can only come from better representation of the dynamics
and/or ancillary fields such as the coastline, topography and the land-use dataset. The
CP-EPS is therefore only constrained by observations at scales greater than 33 km through
the global initial and boundary conditions. Since we are focussing on sea breeze, we use
only summer (JJA) data for the years 2013-2015. Data from some months during this time
period were either partially or completely missing from the archive so are not included in
this analysis. These are June 2013, June 2014 and 1st-16th of July 2014. Probabilistic fore-
casts of sea breeze are made once a day, for each forecast lead time, at any time between
0900 and 2100 UTC, in which the sea breeze is expected to occur. In total 201 forecasts
are made across the three summer seasons. Figure 4.2 shows a schematic diagram of the
different lead times we have considered. For instance, the forecast labelled with “T+12”
is the MOGREPS-G forecast issued at 00 UTC (black dots) or the MOGREPS-UK fore-
cast initialised three hours later (red dots). The parameters for the Bayesian forecast are
computed at 12 UTC valid time (black squares). From MOGREPS-G we have data ev-
ery 3 hours from the initialization time. So the possible times are 0900UTC, 1200UTC,

2Accessed online on 22 February 2016

https://www.ecmwf.int/en/research/projects/tigge
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1500UTC, 1800UTC and 2100UTC within the 0900-2100 period. Since the aim is to pre-
dict the occurrence based solely on the daily atmospheric conditions, it has been chosen
a time which is believed to be the most representative of these conditions. Times after
12UTC were excluded since by that time sea-breeze will have already occurred. There-
fore 12UTC was preferred over 09UTC since in a typical summer day (which is the season
being investigated) land temperature is higher at that time, leading to a higher tempera-
ture contrast.
Note that the T+36h forecast lead time is excluded from our analysis since the valid “time
window” extends beyond it.

Time (UTC)
120012

Day nDay n− 1

T+6

T+12

T+18

T+24

T+30

FIGURE 4.2: Schematic diagram of the forecast lead times. The black (red)
dot indicates the MOGREPS-G (MOGREPS-UK) initialization time and the
red bar represents the sea-breeze detection window. The black square indi-
cates the valid time at which the MOGREPS-G parameters are computed,
for all the different initialization times. The solid black line with arrow

covers the total MOGREPS-UK forecast length (36 hours).

4.2.2 Observational data

The probabilistic forecasts for sea-breeze occurrence have been verified using the time
series from four synoptic stations (see table 4.1 for details), with station data from Met Of-
fice Integrated Data Archive System (MIDAS) and available at this link: http://archive.ceda.ac.uk/
3. Weather variables are recorded every hour. Table 4.1 shows the details of the stations
considered in this study for verification and figure 4.3 their location on the map, with the
rectangular box indicating the spatial domain where sea breeze has been detected and
verified and elevation shaded. This domain has been chosen because of the near straight
line shape of the coast and also for having been studied by Simpson et al. (1977), finding
that sea breeze can travel northwards inland up to 100 km.

4.3 Sea breeze identification and prediction

Before looking at the sea breeze occurrence prediction problem over a large sample it is
necessary to have a method to identify the sea breeze automatically.

3Accessed online on 25 September 2017
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FIGURE 4.3: A map showing the orography over the south UK domain.
Orography data are from MOGREPS-UK. The solid box encloses the sub-
domain used in this study with red dots indicating weather station obser-

vations.

WMO number Name Location Distance from the coast (km)
03876 Shoreham Airport 50.8356 N, 0.29194 W 1.3
03872 Thorney Island 50.8142 N, 0.92098 W 1.2
03882 Herstmonceux: West End 50.8904 N, 0.31818 E 9
03769 Charlwood 51.1435 N, 0.22786 W 35

TABLE 4.1: Location and beginning of the data record of the surface
weather stations used for verification. The shortest distance from the coast

has been considered. See figure 4.3 for their location on a map.

Many criteria have been developed for the sea breeze identification in observational data,
however these are not tailored to automatic detection in high resolution gridded forecast.
These criteria involve meteorological variables which are associated with the sea breeze
front passage. In (Azorin-Molina and Tijm, 2011, Table 1) there is a list of the past studies,
each with the objective criteria described. Some are directly involved with the sea breeze
passage (air humidity, air temperature, wind speed and direction), others are used as
predictors for the inhibition of sea breeze occurrence (total cloudiness, precipitation).
However, Azorin-Molina and Tijm (2011) pointed out that these techniques are clearly
dependent on the nature of test criteria adopted by each researcher and on the region
of interest. Also, they rely significantly on specifying thresholds for the meteorological
variables used. More recently, Coceal et al. (2018) proposed a new method for sea breeze
detection in stations observations using fuzzy-logic4, but still relying on thresholds of the
meteorological variables affected by sea breeze passage.
For the purpose of this study and to make effective general use of CP-EPSs, there is need
for a more general identification method that makes use of a few key variables that can in
principle be applied to any coastal region of the world, as long as a cross-coastal direction
can be found. Steele et al. (2014) implemented a novel identification filter method, based
on a combination of both model simulations and analysis. They claim that the method,
in principle, can be applied on any coastline of the world. However, again, the use of

4fuzzy-logic is a type of logic where the variable can take any real value between 0 and 1 and not just 0
or 1, as in the classical Boolean logic.
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the thresholds, like for the land-sea temperature contrast depend on the region being
considered.
In this study the focus is on the south coast of UK (see figure 4.3) and a new sea breeze
identification algorithm that does not rely significantly on the thresholds of the variables
involved is presented. It could be useful for the current state of the art CP-EPS data and
observations.

4.3.1 Sea breeze identification in observations

Sea breezes were identified using the weather station data described above. Three sta-
tions have been chosen as they are located within a few kilometers of the coast, where the
sea breeze phenomenon is found. The fourth station is inland by 35 km, approximately
matching the scale of the MOGREPS-G forecast grid box size. Hourly 10 m wind speed
and direction, station air pressure, 2 m dry bulb temperature, and 2 m dew point were
used to calculate hourly changes of wind speed and direction, specific humidity and dew
point depression. As an example of two cases of sea-breeze days detected in the station
observations, Figure 4.4 shows a clear signal of an early and a relatively late onset of sea
breeze front, in that there is a simultaneous shift in wind direction towards being more
normal to the coast, an increase in wind speed and specific humidity and a reduction in
dew-point depression. In order to construct the verification data set we developed an
automatic algorithm for detecting sea breeze in stations observations. The algorithm can
be summarized as follows:

1. We select wind direction, wind speed, specific humidity and dew point depression.
We then check that the wind changes from having an offshore component to have
an onshore component and at the same time the wind speed and specific humidity
increase and dew point depression decrease. This is done for each station indepen-
dently, for the three stations on the coast and the station inland.

2. If sea breeze is detected at least at one coastal station, then we check if it has also
been detected inland. Then we require that time of the arrival of the sea breeze front
inland is at least two hours after the onset time at the coast. Given that the station
inland is approximately 35 km from the coast (see table 4.1), a 1-hour interval would
allow propagation speeds that are too fast and therefore perhaps pick up spurious
signals; a 3-hour interval would make identification more difficult because the sea
breeze may have propagated well beyond the inland station at the time of measure-
ment, and also gives less guarantee the same feature is being identified. This would
imply an approximate propagation speed of 35/2 km/h ∼ 17 km/h ∼ 4.7m/s

3. Finally, in order to avoid spurious detections (e.g. cold fronts), we also require
that the sea breeze day is also a dry day at the coast, meaning that no rainfall ac-
cumulation is recorded in the time window relevant to the sea-breeze passage at
the stations near the coast only. Thus the possibility of having convective rain fur-
ther inland, maybe due to sea-breeze front interacting with other mesoscale and
synoptic-scale flow, is not excluded in this analysis. (e.g. the case reported by Ped-
gley (2003).
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FIGURE 4.4: Shoreham airport station observation time series on a) 27 June
2015 and b) 23 June 2015. Wind direction is defined such that values of
0, 90 and 180◦ correspond to onshore, along the shore and offshore flow,
respectively. The horizontal solid line indicates the separation between the
northerly and southerly direction. Sea breeze onset time is indicated by

the vertical dotted red line.

4.3.2 Sea breeze identification in MOGREPS-UK

In this subsection we will describe the sea breeze identification algorithm using CP-EPS
data. The method is designed to identify, at each time step, the position of the leading
edge of sea breeze front. Due to the different grid spacing of the observational network
(∼ 40 km, see again Figure 4.3), and the CP-EPS (2.2 km), we have developed a different
algorithm, with the same aim to detect the sea-breeze initiation and its propagation in-
land.
The passage of the sea breeze front is typically marked by a drop in the air temperature,
an increase in wind speed, a shift in the wind direction and increase in specific humid-
ity. In Figure 4.5 the hourly rate of change of air temperature, wind direction and wind
speed are shown for all ensemble members from an example T+12 forecast. A sea breeze
front is clear in several of the panels (see members 0, 4, 7, 9 in particular) where one can
see the extrema of the hourly rate of change of all three variables in an elongated "strip"
approximately parallel to the coast. Note also that the changes with respect to the dif-
ferent variables occur in the same location. The sea-breeze signal is less clear in other
members, for instance members 1 and 11. Figure 4.6 shows the same variables at two dif-
ferent time steps for member 0 (the control member). It is clear that two hours later the
sea breeze front has progressed further inland. The algorithm for sea-breeze detection in
the MOGREPS-UK data is based on an analysis of the spatial patterns of the hourly rate
of change in the 2 metre temperature and 10 metre windspeed and direction and then
on the tracking of their propagation. A formal mathematical description is contained in
supplementary material, but the method can be summarized as follows. We first define
an along-coast and cross-coast coordinate. Since we are looking at the south-coast of
England, these are taken to be zonal and meridional coordinates of the model’s rotated
equatorial grid, respectively. At each along-coast point in turn the sea breeze detection is
performed as follows:
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FIGURE 4.5: Hourly differences of the three variables (2 m temperature, 10
m wind speed and direction) of the 12 ensemble members on 27/06/2015
for the T+12 forecast, calculated between 1100UTC and 1200UTC. More
precisely the values at 1100UTC are subtracted from the ones at 1200UTC.
The rectangles correspond to the black box in Figure 4.3. The ticks on the
y-axis are every 10 km (from 10 up to 60 km), whereas tick on the x-axis is

at 60 km from the left edge of the domain.

• We find the location of the minimum in the hourly change of the cosine of wind
speed occurring within 30 grid points (66 km) from the coast in the cross-coast
direction to identify the wind shift. If this occurs within four grid points (8.8km),
and the minimum hourly change in temperature and maximum hourly change in
wind speed are also found to be within four grid points of the coast at that time or
one hour later, the time is flagged as a potential sea-breeze onset at that along-coast
point.

• The next step is to test for propagation of the sea breeze. This done by checking that
one hour later the minimum in cosine wind direction, the minimum in temperature
change and maximum in wind speed change have moved between 1 and 10 grid
points (up to 22 km) further inland. This is equivalent to express that sea breeze
does not propagate faster than 22 km/h ∼ 6.1m/s. This threshold is different from
the one based on observations (17 km/h ∼ 4.7m/s). This is because the model grid
spacing is ∆x= 2.2 km and therefore the location of a sharp front at any snapshot
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is uncertain to at least ∆x. The distance travelled between any two time frames
is therefore uncertain to 2∆x and this motivates a model threshold that is larger by
2∆x. Also, we check that the minimum of cosine of wind direction and temperature
and maximum in wind speed move coherently in space inland, by requiring that
their position is not further than 6 grid points apart. If this is satisfied for at least the
subsequent two time steps from the onset time then it is confirmed that the potential
sea breeze front propagates inland in a manner consistent with a sea breeze. If it is
not satisfied then no sea breeze is detected. In Figure 4.7 the positions of the extrema
hourly rate of change with respect to time are shown for a particular along-coast
grid point.

• The final step is to test that the potential sea breeze is spatio-temporally coherent
in the along-coast direction. This is done by requiring that the potential sea breeze
occurs at least four adjacent along coast points, meaning that it has an extent of at
least 8.8km and that the range of the onset times of these coastal points is small
(by requiring the standard deviation has to be less than 2 hours). If these criteria
are satisfied then the detection of a sea breeze is confirmed. If it is not then no sea
breeze is detected.

FIGURE 4.6: Snapshots map of hourly changes of temperature (temp),
cosine of wind direction (wind dir) and wind speed for member 0 on
27/06/2015 for a) 11-12 UTC and b) 13-14 UTC. The dashed lines indicate
approximately the position of the sea-breeze front for the along the coast
grid points where the conditions of the sea-breeze detection algorithm are
satisfied. The rectangles, as in Figure 4.5, correspond to the black box in

Figure 4.3.

Sea breeze tracking algorithm: mathematical description Herewith the mathematical
description of the sea breeze algorithm using convection-permitting model data is pre-
sented:

1. Three variables output from MOGREPS-UK have been selected: 2 metres dry bulb
temperature (T(xj, ỹk, ti)), 10 metres wind speed (|v|(xj, ỹk, ti)) and direction (φ(xj, ỹk, ti)),
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FIGURE 4.7: Postage stamp plot of the maxima hourly rate of change loca-
tion against time for temperature (black), wind direction (blue) and wind
speed(red) for T+12 MOGREPS-UK forecast on 27/06/2015 and for a par-
ticular coastal grid point. The vertical dotted line identifies the members
satisfying the sea-breeze conditions and represents the onset time identi-

fied from the model .

where ti is the forecast leadtime, xj the along coast direction and ỹk = yk − y0k the
latitude on the model grid relative to y0k, the latitude of the coast, for 1 ≤ i ≤ N,
0 ≤ j ≤ L, 0 ≤ k ≤ P, where N is the time dimension and L, P are spatial dimension
of our domain of interest. Then the temporal change is calculated:

∆T(xj, ỹk, ti+1) = T(xj, ỹk, ti+1)− T(xj, ỹk, ti), (4.1)

∆φ(xj, ỹk, ti+1) = cos(φ(xj, ỹk, ti+1))− cos(φ(xj, ỹk, ti)), (4.2)

∆|v|(xj, ỹk, ti+1) = |v|(xj, ỹk, ti+1)− |v|(xj, ỹk, ti) (4.3)

∀ 1 ≤ i ≤ N, 1 ≤ j ≤ L, 1 ≤ k ≤ P, and ti+1 = ti + ∆t, with ∆t = 1 hour for
MOGREPS-UK.

Then calculate 5:

Y|v|max(x, t) = argmax
y

∆|v|(x, y, t) (4.4)

Yφ(x,t)min
= argmin

y
∆φ(x, y, t), (4.5)

Y∆T(x,t)min
= argmin

y
∆T(x, y, t). (4.6)

5This is where the assumption of the orientation of the coast is used. In the case of north-south oriented
coast argmin and argmax are calculated with respect to x. In the more general case of slantwise oriented
coast argmin and argmax should be calculated both with respect to x and y. Alternatively, new along-coast
and cross-coast directions need to be defined and the algorithm can be applied as in the case described here.
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a. Let A := {t ∈ [t0, tn] : Yφ(x,t)min
≤ G}, where [t0, tn] is the time interval between

two different forecast leadtimes and G a selected threshold on the number of
grid points the feature has to be found within. G = 4 in this case.
If A = ∅, then it is stated that sea breeze signal is not detected and the algo-
rithm is stopped. Otherwise, since |A| < ∞, t∗ = min A can be defined.
Similarly B := {t ∈ [t0, tn] : 0 ≤ YT(t,x)min

≤ G} and C are defined for the
wind speed. Then t∗1 and t∗2 are defined for B and C respectively. Since the
sea-breeze signal is anticipated by the change in wind direction, it is required
that t∗1 − t∗ ≤ 1 and t∗2 − t∗ ≤ 1.

b. Once selected t∗ as described above, the following condition is checked:

YT(x,t∗)min
< YT(x,t)min

< M for t = t∗ + h∆t, h ∈ {1, 2} (4.7)

and similarly for the other variables. M = 10 is the upper threshold on the
maximum propagation speed, mentioned in the main text.
Also, it is required that:

|YT(t,x)min
−Yφ(t,x)min

| < R (4.8)

|Yφ(t,x)min
−Yv|max(t,x)| < R (4.9)

|Y|v|max(t,x) −Yφ(t,x)|max | < R, (4.10)

where R = 6 is a threshold on the maximum number of grid boxes separating wind
and temperature hourly changes. If the conditions 4.7 and 4.8-4.10 are not satisfied,
no sea breeze is detected.

2. Let X := {(xj, ỹk) : ỹk = 0 , ∀k, j}, i.e. the set of coastal grid boxes. Then the
previous steps are repeated ∀x ∈ X.

3. Then the sea breeze diagnostic variable based on (4.7) is defined.

• Let D := {xl ∈ X : (4.7)is satisfied for some l}. Let also E := {xj ∈ D : xj+1 =

xj + 1 , ∀ 1 ≤ j ≤ |X|}. Clearly E ⊆ D. Ej is the set of the adjacent coastal grid
boxes. Then the following variables are defined:

S2 := max
j
|Ej|+ 1 (4.11)

It is required that S2 > 4, i.e. the number of the adjacent coastal grid boxes
where the sea breeze is detected is at least four. If this condition is not satisfied
then no sea breeze is detected.
Let O = {t∗(xj), xj ∈ E} the set of onset times of sea breeze along the adjacent
grid points for each coastal grid box xj. Finally, it is required that√√√√√√

N

∑
j=1

(t∗(xj)− t∗(xj))
2

N − 1
< β, (4.12)
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where N = |O| and β a variable threshold. In this case β = 2.

These tuning parameters G, M, R and β have been chosen based on the following ratio-
nale:

• G represents the maximum number of grid boxes far from the coast that sea breeze
can be detected at its onset time. The choice was motivated by the fact only hourly
data are available. Therefore at each time step model output sea breeze at certain
speed. Looking at figure 4.7 it can be seen that near the coast sea breeze is slower
than further from the coast, with a propagation speed in the range of 3− 5 km/h ∼
0.83− 1.4 m/s. Therefore a value of G = 4∆x = 8.8 km is chosen, also to account
for hourly data leading to underestimation of the sea-breeze propagation speed.

• M is motivated by the maximum propagation speed observed for sea breezes. This
corresponds to a propagation speed of 22 km/h ∼ 6m/s. This value is chosen to be
above the maximum propagation speed observed in the south of England (Simpson
et al., 1977) to take into account the uncertainty derived from having hourly data as
for the choice of G.

• R measures how many grid boxes apart can be the kinematic and thermodynamic
fronts during the penetration inland. Ideally R should not be very large, since it is
not physically expected that changes in temperature and wind are too far apart. R
was chosen in the interval [5, 11].
β measures how different are the onset times between adjacent coastal grid boxes
where sea breeze is detected. This difference should be, since the front is a coherent
phenomenon, so it is expected that adjacent grid boxes have a similar time when
sea breeze initiates. β was chosen in the interval [0.5, 2].
Then a score for the probabilistic forecasts generated 6 for all the combination of R
and β have been computed. The difference between the minimum and the maxi-
mum value of this score is ∼ 10−2. Also, the score is found to be more sensitive to
β than to R. A value of R = 6 was chosen since, given hourly data are available, it
corresponds to a propagation speed of 6∆x/h = 13.6km/h ∼ 3.6m/s, which is in
the range of typical sea breeze propagation speed (Simpson et al., 1977). Therefore,
since sea breeze arrival is anticipated by waves (Miller et al., 2003), it means that
wind changes are usually ahead of the temperature change. It is therefore reason-
able to assume that the distance between them corresponds to the distance travelled
by the sea breeze at each model time step output (e.g. one hour).

Sea breeze probabilistic forecast The sea breeze detection method described in the
subsection § 4.3.2 provides a definition of sea breeze occurrence which is used to create a
daily forecast of sea breeze. The detection algorithm is applied to each CP-EPS member
over the twelve hour period starting at 9UTC valid time. This defines a binary predictand

X(m, n) :=

1 if sea breeze occurs,

0 otherwise
,

6The area under the ROC curve to be explained in the next chapter.
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where m the ensemble member and n the valid day of the forecast. Using the standard
formula for calculating probabilities from ensembles, the forecast probability of a sea
breeze occurring is

HR-DYN(n) :=
1
M

M

∑
m=1

X(m, n), (4.13)

where M is the ensemble size (12 in the case of MOGREPS-UK). Due to the small ensem-
ble size, events with very small or very large probability of occurrence are likely to result
in forecast probabilities of zero or one. This can be problematic for information-based
skill measures. Therefore, as in (Bröcker and Smith, 2008), the vanishing value of prob-
ability is substituted with a value of 1/(3M). An alternative method will be proposed in
the appendix A. This alternative approach has not been used in this thesis.

4.3.3 Sea breeze prediction using MOGREPS-G

In this subsection the methodology used to produce the Bayesian forecast of sea breeze
occurrence using MOGREPS-G variables as input is described. Due to the coarser grid
box size and inability to properly represent sea breezes explicitly, the method applied to
MOGREPS-UK, described in the previous section, is not appropriate.
Therefore large-scale predictors of sea breeze are sought. These have to be related directly
to the underlying dynamics and resolvable in the global model.
Two candidates, as mentioned in section 4.1, are the synoptic wind and the temperature
contrast between the land and the sea. The temperature contrast is the driving mecha-
nism of the sea breeze, whereas the synoptic wind exerts an important influence on its
occurrence and evolution.
The temperature contrast between the land and the sea is needed to create the density and
pressure gradient in the direction perpendicular to the shoreline. This is the same mech-
anism driving the so called density or gravity currents. There have been many studies
showing sea breezes behave like atmospheric density currents (Simpson, 1969; Simpson
and Britter, 1980). The comparison between sea breezes and density currents is based on
calculating the ratio between the sea breeze propagation speed and the density current
speed, which is referred to in the literature as the Froude number. In (Simpson and Britter,
1980) laboratory experiments have been carried out considering the effect of head/tail
ambient wind. The effect of the head wind is to reduce the rate of advance of the sea
breeze front by about three fifths of the value of the opposing flow.
Arritt (1993) examined the effect of the ambient wind on the development of character-
istic features of the sea breeze using a two dimensional numerical model. He found that
both the direction with respect to the coast (offshore or onshore) and the magnitude of the
ambient wind exert a strong influence on the sea breeze behaviour. The synoptic regime
associated with the inland penetration of the sea breeze consists of either calm conditions
or weak (i.e. up to 6 ms−1) opposing (offshore) synoptic flow . With strong (6− 11 ms−1)
or very strong (> 11ms−1) opposing flow the sea breeze does not penetrate inland (re-
maining on the shoreline) or does not occur at all. More subtle is the case with onshore
synoptic flow. In (Crosman and Horel, 2010, Table 4), a review of the studies investigat-
ing the effect of onshore synoptic flow on sea-breeze circulation is offered. Generally, an
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onshore flow tends to weaken the sea-breeze circulation, since it leads to frontolysis. For
onshore geostrophic wind of 2− 4 ms−1 sea breezes becomes almost indistinguishable
from the large-scale flow.
More recently, Porson et al. (2007) investigated the effect of opposing wind on the sea-
breeze inland propagation speed and occurrence. They developed an index for the sea-
breeze occurrence, using time-integrated surface heat flux instead of land-sea tempera-
ture contrast. There are two different threshold values of this index for the sea-breeze
occurrence, depending on the existence or not of an opposing geostrophic wind.
Other indices had been developed by Biggs and Graves (1962), Walsh (1974) and Frysinger
et al. (2003), amongst the others. Biggs and Graves (1962) derived, using the Bucking-
hams’ π theorem, different dimensionless ratios useful for understanding the sea-breeze
behaviour. They claim the ratio U2/cp∆T to be the dominant one and they called it “lake-
breeze index”. U2 is the square of the the large-scale wind, cp is the specific heat capacity
of the air and ∆T the land-water temperature difference. They also claim the ratio to
be the ratio of the inertial force and the buoyancy force, which is actually not. 7 Later,
Frysinger et al. (2003), derived the ratio U2/∆T, from the Bernoulli’s equation. They
included also a sign to discriminate the synoptic wind direction (positive for offshore
winds, negative otherwise). Here, U|U| and c2 = α

gH∆T
T are used as predictors. |U| is

the cross-coast offshore magnitude of the synoptic wind and U
|U| its sign (positive for off-

shore direction and negative for onshore). c8 represents the density current propagation
speed, g∆T

T is the reduced gravity (von Kármán, 1940; Keulegan, 1957; Benjamin, 1968),
∆T = Tland − Tsea, H the fluid depth, in this case the height of sea breeze front head and
α a density current coefficient to be calculated experimentally. For instance, Atkins and
Wakimoto (1997) calculated α for offshore ambient winds cases, finding an average value
of 0.7. The results of this chapter do not depend on the specific value chosen because the
predictors are rescaled by the covariance matrix as part of the calculation used to create
the forecast, as explained later. 9 Therefore, for simplicity, here α = 1 is assumed.
In static ambient conditions, c gives directly the speed of inland propagation of the sea
breeze (once it has initiated). However, in the presence of offshore winds sea breeze
progress is slowed. The effect of the ambient wind is taken into account by the other
predictor U|U|. Another factor leading to sea breezes propagating slower than the pre-
dicted c has been investigated by Robinson et al. (2013). They found, by means of 2D
numerical simulations, that a gradual input of heat from a continental surface, rather
than an initially specified density contrast as typical in laboratory analogs, can explain
real sea breezes propagating at slower rate than the one predicted by the formula. How-
ever, their simulations did not consider other factors that could help to simulate real sea
breezes, namely topography or surface roughness.
The two predictors are computed from MOGREPS-G at 12 UTC valid time for each fore-
cast initialised at different times. To find ∆T, the 2 m temperature from the model is used,

7Both the numerator and denominator have units of m2s−2, which are not the units of the force. Further-
more, an expression for the specific buoyancy is given in the Equation 2.4.

8It should be noted that c is defined only if ∆T ≥ 0. If ∆T < 0, c is not defined. In this case c2 should not
be interpreted mathematically as the square of c, but as another variable f := −c2. For the sake of notation,
the same symbol has been used when ∆T < 0.

9Only the 1:1 line shown for reference in Figure 4.8 is affected by the choice of scaling.
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above the land and the sea at a fixed distance from the coast, averaged along the coast
direction. For H and T standard values (H = 1000 m and T = 300 K) are used, i.e. they
are not output of the model. Note, as with the choice of α the results do not depend on the
specific values chosen for H and T, however values are chosen to be physically realistic
to aid physical interpretation of Figure 4.8. H = 1000 has been used for instance used by
Miller et al. (2003), whereas Simpson and Britter (1980) used H=700, an empirical mean
value over 54 cases. Also, Zhong and Takle (1993) show the sea breeze depth starting
at 500-600 m, increasing to 1000 m and then decreasing to 800 m later. For U, the model
wind output at 850 hPa pressure level (above the boundary layer height) is used, with the
magnitude being averaged over the area of interest and taken with positive or negative
sign if the mean direction is offshore or onshore respectively.
These two predictors define a two dimensional parameter space. The aim is to calculate
the conditional probability of sea breeze occurrence given these predictors. It is therefore
natural to apply a Bayesian framework.
Firstly the distributions of the occurrences and non occurrences of sea breeze in this space
have to be estimated. This has been done in the past studies using mainly observational
data (e.g. Frysinger et al. (2003)).
In this study, in order to train the Bayesian model, MOGREPS-UK data are used. This is
because the main aim of this study is not to produce the most skillful Bayesian forecast,
but to examine whether, with only few predictors, it is possible to retrieve the information
content of a much higher resolution model. Also training on model data permits to have a
larger sample size. In particular, given X(m, n) from MOGREPS-UK, let f (x|θsb) the dis-
tribution of {X(m, n) = 1} (occurrences) and f (x|θnsb) the distribution of {X(m, n) = 0}
(non occurrences), where x = (c2, U|U|) the vector of the two MOGREPS-G predictors
defining the parameter space.
To estimate the two distributions, a Gaussian kernel density estimation is performed. It is a
statistical method to estimate the probability density functions based based on the data
(Parzen, 1962; Rosenblatt, 1956). The kernel is a smoothing non-negative function which
is evaluated on the data points. A parameter called bandwidth regulates the level of
smoothness of the function , with bandwidth calculated using Scott’s rule (Scott, 1992),
for both the occurrences and non occurrences categories, applied to the training dataset.
The Scott’s bandwidth is adaptive in the sense that it is dependent on the data den-
sity in the parameter space. In the next chapter it will be shown that the factor cho-
sen corresponds to the highest value of a metric used to verify probabilistic forecasts.
The Gaussian kernel density estimation has been implemented using the Python SciPy
library (Jones et al., 2001), where the user can specify the rule to estimate the bandwidth
(e.g. Scott in this case). As part of the standard kernel density estimation procedure
the data are rescaled by their covariance matrix which eliminates any dependence of the
smoothed PDF on the choice of scaling applied to the physical parameters (i.e. the values
chosen for α, H and T). 10

10The whole dataset is partitioned into the training dataset, which consist of the data used to build up
model parameters (in this case of the Gaussian kernel). The rest of the data is used only to assess the perfor-
mance of the model.
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In order to test the differences between the two distributions a two dimensional Kolmogorov-
Smirnov test (Justel et al., 1997) has been implemented. The null hypothesis is that two
dimensional samples (occurrences and non-occurrences) are drawn from the same dis-
tribution. Also, to validate the Bayesian model the leave-p-out cross validation technique
is adopted, with p =1 year (Shao, 1993; Celisse and Robin, 2008). More precisely the
whole dataset comprises the years 2013, 2014 and 2015. A three-fold cross-validation is
performed with training on two years and validation on the third year, in each cross-
validation run. For instance if the year 2013 is validated, the training dataset consists of
the years 2014 and 2015. In figure 4.8 the distributions of occurrences and non occur-
rences are shown with their respective density estimations.
Figure 4.8f shows the density estimations of all the data together, occurrences and non
occurrences. The peak of the this PDF is located in the subregion corresponding to posi-
tive ∆T, which is expected as the summer seasons are considered, when land is warmer
than the sea during the day.
Then, looking at distributions of occurrences (figure 4.8d) and non occurrences (figure
4.8e), it is clear that these two PDFs are different. This means that these parameters can
provide some information about the sea breeze occurrence. The Kolmogorov-Smirnov
test gives a p-value of 2.72 · 10−72, which implies that the null hypothesis can be rejected at
1% level of significance. This means the two samples (occurrences and non-occurrences)
are drawn from different distributions. The diagonal line in figure 4.8 is the 1:1 line, di-
viding the parameter space in subregions. The peak of the distribution of the occurrences
is in the subregion of the space (0 < U|U| < c2) (hereafter called the wedge) where the sea
breeze is expected to occur, consistent with dynamical mechanisms, where the tempera-
ture contrast is positive and the opposing ambient wind not strong enough to prevent its
initiation. On the other hand, the peak of the non occurrences distribution is shifted to-
wards higher magnitudes of the opposing wind and lower temperature contrast values.
In order to establish whether there is a relationship between the two distributions (oc-

Inside Outside
Occurrences 260 93

Non-occurrences 509 1544

TABLE 4.2: Number of data points used in the figure 4.8 according to the
sea-breeze definition and the position in the parameter space. Inside and

outside are relative to the wedge.

currences and non-occurrences) and their position in the parameter space, a χ2-test of
independence is performed based on the contingency table 4.2. The null hypothesis is
that the rows and columns of the table are independent, implying that being inside or
outside the wedge is not related to the sea-breeze condition. The test gives a p-value of
2.098 · 10−73, implying there is enough evidence to reject the null hypothesis of indepen-
dence. It can be therefore concluded, from the two statistical tests performed, that the two
samples of occurrences and non-occurrences are drawn from two different distributions
and this difference is not due to the different sample size, but to the different meteoro-
logical conditions leading (preventing) to the occurrence (non-occurence) of sea breezes.
The 1:1 slope is not calculated empirically from the data, was added as a visualization
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tool to highlight the region where the peak of the distribution of occurrences is and to il-
lustrate the relationship between the parameters and sea-breeze occurence. Other slopes,
or equivalently other values of the ratio U|U|

c2 which can discriminate better between the
occurrences and non-occurrences, can be tested to see how they affect the entries of the
table 4.2 and the alternative forecast which will be presented later in the chapter. Anyway
such sensitivity tests are beyond the aim of this thesis and can be considered for future
work.
These two distributions can be used to calculate the probabilistic forecast of sea breeze
conditioned on the information given by x = (c2, U|U|). Let θsb be a discrete binary
variable, representing the event X(m, n) = 1, i.e. the sea breeze has occurred in the
MOGREPS-UK forecast. As prior knowledge also π(θsb), the climatological probability
of sea breeze occurring in the MOGREPS-UK forecasts is also available. The aim is then
to update this information, after observing x.
Therefore it is natural to calculate the posterior distribution using Bayes’ formula:

π(θsb|x) =
f (x|θsb)π(θsb)

f (x)
, (4.14)

where
f (x) = f (x|θsb)π(θsb) + f (x|θnsb)π(θnsb), (4.15)

where π(θnsb) = 1− π(θsb).
f (x|θsb) and f (x|θnsb) are the probability distribution functions (PDFs) of the occurrences
and non occurrence respectively calculated using a Gaussian kernel density estimation,
mentioned beforehand. In particular f (x|θsb) is the so called likelihood function.
The distribution of π(θsb|x) in the parameter space is shown in figure 4.8c. It can be seen
the higher values of probability are in correspondence of high values of c2 (and so, high
values of ∆T) and low values of U|U|.
The use of Bayesian model and/or kernel density estimation to calculate conditional
probabilities is not new. For instance Hamill and Church (2000) used the Bayesian frame-
work to calculate conditional probabilities of tornadic storms without using a kernel ap-
proach, whereas, more recently, Taszarek et al. (2017) used the kernel approach but not
Bayes’ rule. Also, the scatter plots in figure 4.8a,b are essentially similar to Frysinger et al.
(2003, Fig. 3). In that case the aim was to find a proper threshold of the ratio U|U|

∆T , such
that for any value below this threshold most of the non occurrences were excluded. By
using this kernel approach it is not necessary to find such a threshold, so again it can be
in principle generalized to any part of the world.

In operational contexts where these CP-EPS data are not available for some reason,
coastal station observational data could be used instead. An example of the same plot,
using observations rather than model data is shown in figure 4.9. It is worth nothing that
it shows very similar result to when the distributions are trained with MOGREPS-UK
data. This means that this method has potential applicability even in regions where CP-
EPS data are not available.
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FIGURE 4.8: Distribution of a) sea breeze occurrences and b) non occur-
rences in the parameter space defined by c2 and U|U| for all the years of
our study at 12 hours ahead. d), e) and f) show the kernel density estima-
tion for a) and b) and the total distribution respectively. c) represents the
conditional probability values π(θsb|x) in this parameter space. As ker-
nel bandwidth the one proposed by (Scott, 1979) was used. All ensemble
members and all the dates of the period studied here have been consid-
ered in this plot. Contour fields are limited to values of the kernel density

estimation higher than 10−6. The solid line represents the 1:1 line.

Equation (4.14) was used to calculate the probabilistic forecast of sea breeze using MOGREPS-
G predictors (hereafter called LR-BAY):

LR-BAY(n) :=
1
M

M

∑
m=1

π(θsb|x(m, n)), (4.16)

where M is the number of ensemble members, 12 in case of MOGREPS-G.

4.4 Comparison

In this section a qualitative comparison is shown between LR-BAY and HR-DYN fore-
casts for the sea breeze occurrence for different lead times against station observations. In
Murphy (1993, Table 2) a list of the properties related to the quality of probabilistic fore-
casts is presented. Some of these properties depend solely on the forecast distribution,
others also on the observation. A property that it is interesting to compare for HR-DYN
and LR-BAY is sharpness. Sharpness is the tendency of a forecast to predict values close
to 0 or 1 and it is a property that depends on the forecast distribution alone.
This can be shown by binning the probabilistic forecast into categories and counting the
instances for each category. The result is shown in figure 4.10 for four different lead times.
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FIGURE 4.9: Same as in figure 4.8, with the Bayesian model trained on
observations. Sea-breeze identification using observations is explained in

the section 4.3.1.

It can be notice that HR-DYN is sharper than LR-BAY for all lead times, i.e. it tends to
forecast values near 0 or 1 more often than LR-BAY. Thus there is more uncertainty in
LR-BAY about sea-breeze occurrence. By looking again at figure 4.8d, e, this can be ex-
plained by the overlapping of the two distributions (occurrences and non occurrences). A
more definite separation between the two distribution would have resulted into a sharper
Bayesian forecast.
Another comparison that does not depend on observation is the Spearman correlation

coefficient r to assess whether there is a monotonic relationship between HR-DYN and
LR-BAY. The results are shown in figure 4.11. A perfect correlation would have a value
of r = 1. It can be seen that the highest correlation (r ≈ 0.3) corresponds to T + 12h and
T + 24h forecast, whereas at T + 18h and T + 30h, the forecasts are not correlated. This
implies that the forecast performance will be more similar at T + 12 and T + 24 than for
other lead times. It will be seen in the next chapter that is actually the case and a possible
reason for this behaviour will be offered.
For a first subjective comparison against observations, in figure 4.12 two visible satellite
pictures for two different days are shown. These correspond to days with the highest
probability of occurrence (according to HR-DYN). In both cases it can be noticed the
typical cloud free strip along the south England and French coasts associated with a sea
breeze, due to penetration of the cooler air mass from the sea. This distinctive feature
has been used also to detect sea breeze fronts in many studies (e.g. Bigot and Planchon
(2003); Planchon et al. (2006); Corpetti and Planchon (2011)).
For a more quantitative verification, figure 4.13 shows the T+12h time series forecasts
for the summer season 2015. This plot also shows the instances when sea breezes were
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FIGURE 4.10: Sharpness diagram for HR-DYN (blue) and LR-BAY (red)
for different lead times over all the period considered. Purple bars corre-

spond to the overlapping of the blue and red bars.

observed or not, according to the algorithm just described. The probability values on oc-
casions when a sea breeze is observed in surface stations are plotted above the horizontal
line, whereas if the sea breeze is not observed the values are plotted below. It can be also
seen that HR-DYN is a better detector of sea-breeze occurrence, with a greater proportion
of blue bars above the 0.5 line with compared to LR-BAY.

However, it should be noticed that, unlike for HR-DYN, LR-BAY never exceeds 0.5.
Therefore in order to make a first comparison the number of occasions when sea breeze
is observed (or not) and probability values exceed (or not) a threshold is counted. This
threshold has chosen to be the half of the maximum respective probability values (t1 =

0.5 and t2 = 0.21) for the two models. The results are shown in table 4.3. This table
can be interpreted as an usual contingency table. Firstly, it can be noted that HR-DYN
has much fewer false alarms than LR-BAY (3 and 41 respectively). On the other hand, the
misses are more comparable (29 and 23). More precisely, when sea breeze is observed HR-
DYN has proportion of probabilities exceeding the threshold of 24/53 ≈ 0.45, whereas
LR-BAY of 30/53 ≈ 0.57. When sea breeze is not observed the proportions are more
different. HR-DYN has a proportion of 144/147 ≈ 0.98 of low probabilities, where LR-
BAY a proportion of 106/147 ≈ 0.72. This already suggests HR-DYN and LR-BAY are
similarly able to discriminate events occuring, but HR-DYN is more able to discriminate
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FIGURE 4.11: Spearman correlation coefficient between HR-DYN and LR-
BAY for different lead times.

FIGURE 4.12: MODIS visible image of south UK and English Channel on
a) 6 August 2013 at 1133 UTC and b) 7 August 2014 at 1145 UTC. Source:

https://worldview.earthdata.nasa.gov/

no-events than LR-BAY. This property will be more fully described and quantified in the
next chapter.

Event observed Event non observed
HR-DYN > t1 24 3
HR-DYN ≤ t1 29 144
LR-BAY> > t2 30 41
LR-BAY ≤ t2 23 106

TABLE 4.3: Number of occurrences and non-occurrences of sea breeze in
relation to probability values exceeding half of the maximum probability

value. This refers to the whole dataset for the T+12 forecast.
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FIGURE 4.13: Time series of HR-DYN and LR-BAY for T+12 (hours) fore-
cast lead time. The values above the black solid line refer to the observed
sea breeze occurrence, whereas the values below correspond to days when

sea breeze has not been observed.

4.5 An alternative method for sea-breeze occurrence forecast

Here an alternative sea-breeze occurrence forecasting method is proposed. The rationale
for this method lies in the fact explained in section 4.3.3 about the relationship between
sea-breeze occurrence and the physical parameters c2 and U|U|. In particular it has been
shown there is dependence between the sea-breeze occurrence and the region of the pa-
rameter space defined wedge earlier. Therefore the following variable is defined:

Y(m, n) :=

1 data point inside the wedge,

0 otherwise
,

where m the ensemble member and n the valid day of the forecast. Using the stan-
dard formula for calculating probabilities from ensembles the probability forecast of a
sea breeze occurring is

WF(n) :=
1
M

M

∑
m=1

Y(m, n). (4.17)

4.6 Other sea breeze characteristics

In this section other sea breeze characteristics beyond the occurrence have also been in-
vestigated. In particular, propagation speed and onset times have been calculated empir-
ically from MOGREPS-UK. The inland propagation speed and onset time are other two
important characteristics of the sea-breeze phenomenon that are useful to predict. These
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two combined can give information about the time of the arrival of the sea-breeze front
at locations inland.

Propagation speed and onset times The sea breeze propagation speed (usb) is calcu-
lated for sea breezes that have penetrated inland for at least 33 km (one MOGREPS-G
grid box size). Following the description of the sea-breeze algorithm, the position of the
sea breeze front is defined as the position of the leading edge based only on the wind
direction criterion.
More precisely, as explained in the section 4.3.2, sea breeze is first detected at time t∗

within G gridboxes from the coast. Then the propagation speed, from MOGREPS-UK, is
simply the inverse of the time taken to travel between the coast and 33 km inland. This
distance has been chosen, since one station inland is located that distance (see again table
4.1), making the verification easier.
The speed is then calculated for each coastal grid point on the coast where the sea breeze
occurs (i.e. the set E defined in the section 4.3.2). Therefore, each coastal grid box will, in
principle, have its own propagation speed value. Then, the mean value of the different
speeds of these adjacent grid boxes is considered. Thus, the propagation speed in the
early stage of the inland penetration is calculated. However, it can be noticed in figure
4.7 the fact that sea breeze tends to accelerate further inland (e.g. by noticing the steeper
wind and temperature profiles). This acceleration has been documented by Simpson et al.
(1977, Fig. 15) in observed sea breezes and Robinson et al. (2013) in numerical simula-
tions in the continuous heating case.
The onset time is defined as the time at which the sea breeze front is located within G
grid boxes from the coast, as explained in the section 4.3.2. For example, the onset time
is represented by the vertical dashed line in figure 4.7. Similarly as for the propagation
speed, the mean value of the onset times of adjacent grid boxes, where the sea breeze has
occurred, is considered.
It is worth to note, however, that for the quantification of speed and timing only hourly
data were available, both from the model and observations. This is a source of error in the
estimation which should be considered in the future work for a more careful assessment.

Froude number and inland penetration These other two characteristics have been cal-
culated in order to compare with values found in the literature and not for the probabilis-
tic prediction itself.

Froude number Froude number has been already introduced in chapter 2 and following
the notation of this chapter can be rewritten as:

Fr =
usb√
gH∆T

T

(4.18)
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usb has been estimated from MOGREPS-UK as explained in the previous section, whereas
∆T from MOGREPS-G, as describer earlier in this chapter, with H = 1000m and T =

300K.

Inland penetration The estimation of maximum inland penetration is based on the data
already shown in figure 4.7. For each member that satisfies the sea breeze condition, the
furthest grid point inland reached by sea breeze front (tracked by the wind direction pro-
file) is flagged as the maximum inland penetration.
The frequency distributions of the these four characteristics are shown in figure 4.14. In

FIGURE 4.14: Frequency distribution for different sea breeze characteris-
tics: Froude numbers, inland penetration, propagation speed and onset

time calculated from T+6 and T+12 MOGREPS-UK forecasts.

regard to the propagation speed, most of the values are in the range 2− 4 ms−1, which are
consistent with values found by Simpson et al. (1977) in the South of England (3ms−1),
whereas Finkele (1998) reported values of 1 − 2 ms−1 from aircraft data on the long,
straight coastline of the Coorong region near Woods Well in South Australia.
The Froude numbers are also in agreement with values found by (Robinson et al., 2013)
for the continuous heating case in the numerical simulations, which is dynamically closer
to the real sea breeze than the lock exchange experiment (see figure 2.3 for Froude num-
ber values of the lock exchange numerical simulations.)
Then sea breezes are predicted to penetrate inland up to 60 km most of the time, reaching
the edge of the sub-domain considered in this study, which again is not uncommon for
Southern England, as shown by (Simpson et al., 1977). It is worth to note that the sea-
breeze tracking algorithm stops at the upper edge of the domain considered in this study.
This is because the focus is on the early stage of the sea-breeze penetration. However it
is possible that sea-breezes can propagate further inland.
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In regard to the onset times, most of the sea breezes initiate in the morning (before 12
UTC), and very rarely after 14 UTC. This is not surprising, considering the very early
sunrise time at this latitudes in Summer. However, most of the sea breezes occur between
9 and 10 UTC. This might suggest that an earlier time window should be considered.
To conclude, the consistent values found here for the propagation speeds and inland pen-
etration are another clue of the validity of the sea-breeze tracking algorithm.

4.6.1 Probabilistic forecasts of onset times and propagation speeds

Probabilistic forecasts of propagation speeds and onset times exceeding a defined thresh-
old have been calculated from both MOGREPS-UK and MOGREPS-G have been com-
puted.

MOGREPS-UK Let OT and SBspeed the variables describing the onset time and the
propagation speed respectively and t̄, s̄ the respective thresholds.
Therefore the following probabilities can be calculated:

P(OT > t̄) =
1
M

M

∑
m=1

X(m, n) (4.19)

P(SBspeed > s̄) =
1
M

M

∑
m=1

Y(m, n), (4.20)

where

X(m, n) :=

1 if OT(m, n) > t̄,

0 otherwise
,

and similarly for Y(m, n) with SBspeed.

MOGREPS-G In regard to MOGREPS-G, in analogy with the occurrence case, the abil-
ity of the parameters U|U| and c2 to provide some information about the propagation
speed and the onset times is tested. Figure 4.15 shows the distribution of the propa-
gation speed and onset times values as a function of the two parameters. The values
of the propagation speed and onset times, calculated for each MOGREPS-UK ensem-
ble member as explained in the previous section, are put in relation with the matching
MOGREPS-G member. Then an elliptical shaped neighborhood 11, with the centre in each
MOGREPS-UK data point, is defined. Then the mean value of all the points within each
neighborhood is calculated and plotted as a function of U|U| and c2.

The relationship between the sea breeze propagation and the MOGREPS-G parame-
ters is not very clear. In regard to the onset times, it can be immediately seen that the
the earliest onset times correspond to the lowest positive values of U|U|. Again this is
physically consistent with the fact that strong offshore winds could prevent or delay the
onset time of the sea breeze.

11The two half width of the major and minor axes of the ellipse have chosen to be 2gH/T m2/s2 and 10
m2/s2.
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FIGURE 4.15: Distribution of a) propagation speed and b) onset time of sea
breeze in the parameter space defined by U|U| and c2 at 12 hours ahead.

With this method, the functions OT
∧

= f (c2, U|U|) and SB
∧

speed = g(c2, U|U|) can be esti-
mated. The two events to be predicted are conditioned on the event that the sea breeze
has occurred. Also in the observations, non-occurrences have been excluded from the
dataset. This is simply because onset times and propagation speed are defined only when
the sea breeze occurs.
Therefore, similarly as with MOGREPS-UK, the following probabilities can be calculated:

P(OT
∧

> t̄|θsb = 1) =
1
M

M

∑
m=1

X(m, n)
∧

(4.21)

P(SB
∧

speed > s̄|θsb = 1) =
1
M

M

∑
m=1

Y(m, n)
∧

, (4.22)
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where

X(m, n)
∧

:=

1 if OT
∧

(m, n) > t̄,

0 otherwise
,

and similarly with Y(m, n)
∧

for SB
∧

speed.
The verification of these probabilistic forecast will be shown in the next chapter.

In regard to observations, onset time is defined for each coastal station independently.
An example for one coastal station, for two different days is shown in figure 4.4, where
the onset time is described with a vertical dotted line. Then a mean onset, between the
coastal stations detecting sea breezes is calculated. For the propagation speed, it is calcu-
lated as the inverse of difference between the times of detection at coastal station and the
station inland.

4.7 Summary and conclusions

In this chapter the post-processing of two ensemble prediction systems for the generation
and comparison of sea-breeze probabilistic forecasts has been presented.
Two different methodologies have been applied to the two EPSs with different grid sizes.
The sea breeze is a mesoscale phenomenon, which is realistically represented only at
convection-permitting resolutions. This has allowed an automatic detection of the sea-
breeze phenomenon in MOGREPS-UK, using a novel tracking algorithm. The algorithm
makes use of only very few thresholds on the model variables, which are mainly required
to avoid any spurious detection (false alarms or misses). In principle, this tracking algo-
rithm can be applied to any coastline, provided with very fine resolution gridded model
data.12

In regard to the coarser resolution model a different approach has been proposed to ex-
tract information about sea-breeze occurrence. Two model parameters reflecting the key
elements of the meteorological environment (temperature contrast and large-scale wind)
have been chosen as predictors. Then the conditional probability of the sea breeze occur-
rence based on these two parameters has been estimated in a Bayesian framework.
A simple algorithm for detecting automatically sea breezes in surface stations has also
been presented, using again few thresholds on the meteorological variables involved. Fi-
nally, an alternative method for forecasting sea-breeze occurrence was also presented. It
is based on the relationship between the sea-breeze occurrence and its relationship with
the large-scale predictors, without using any kernel smoothing.
The main conclusions from this chapter can be summarised as follows:

1. the two selected predictors for the sea-breeze occurrence have shown some abil-
ity to discriminate between sea-breeze occurrence and non-occurrences as defined
either by MOGREPS-UK data or observations.

12This algorithm is now currently being tested at the Bureau of Meteorology (Australia) by Dr Peter Steinle
(personal communication), using a version of the local regional model (∼ 4 km grid size), based on the UK
Met Office Unified model.
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2. The correlation between the convection-permitting probabilistic forecast and the
Bayesian forecast varies with lead time, peaking at 12 and 24 hours ahead (≈ 0.3)
and vanishing at other lead times.

3. A preliminary comparison with observations, suggests that they are equally able to
discriminate event occurrences, with convection-permitting forecast more able to
discriminate no-events than the Bayesian model (lower false alarm ratio)

4. Other sea-breeze characteristics (inland penetration, propagation speeds and onset
times) are shown to have consistent values with the previous literature.

.
In summary, this confirms that in a particular synoptic regime (positive land-sea tem-

perature contrast and light opposing wind) the sea breeze is much more likely to occur.
However, as shown in figure 4.8 sea-breeze could also occur outside the wedge, mean-
ing that this condition is not sufficient to indicate the sea-breeze occurrence. However
whether the convection-permitting model is providing additional information is still not
known at this stage.
In order to quantify this information gain it is thus necessary to verify the two probabilis-
tic forecasts against the station observations.
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Chapter 5

Verification of sea breeze
probabilistic forecasts

In this chapter the verification of probabilistic forecasts, calculated in chapter 4, is carried
out. The inter-comparison between the convective-scale forecast and the Bayesian model
is analyzed in terms of reliability and resolution, two necessary attributes of a skillful prob-
abilistic forecast.
Statistical tests are performed to assess these two properties, firstly for the two forecasts
individually. Then the difference in the resolution property is assessed by comparing the
areas under the ROC curve.
Finally, Brier Score differences and Information gain are computed with respect to ob-
servations for the forecasts pair defined in chapter 4 and for each probabilistic forecast
relative to the climatology.
The work presented in this chapter is part of the same peer-reviewed paper as in chapter
4.

5.1 Introduction

Once computed probabilistic forecasts, which quantifies how likely is the occurrence of
the event to be predicted, it is necessary to assess how well the probabilistic forecasts
are performing. Quantifying the forecast skill in a objective way is the aim of the forecast
verification. Since the introduction of NWP in 1950s, it has been an active research topic.
Joliffe and Stevenson (2012) offer a review of the forecast verification theory, along with
different methodologies to perform it practically.
In this chapter, the verification of probabilistic forecasts of a binary predictand (sea breeze
occurrence) is performed. In the previous chapter the forecasts and observations dataset
have been described.
Two properties that probabilistic forecasts (not only weather/climate related) should
have are reliability and resolution. A qualitative description of these two properties can
be found in Murphy (1993). Broadly speaking, reliability measures how close the distri-
bution of the observations, conditional on the forecasts, is to forecast distribution. Reso-
lution is the ability of a forecast to sort or resolve classes of events with different observed
frequencies.1

Reliability and resolution together determine the forecast skill. This is measured usually

1http://www.cawcr.gov.au/projects/verification/; Accessed online on 20 December 2018.
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relative to a reference forecast and by defining a metric, called score. A score is a sum-
mary measure. Here, two scoring rules are used for the verification: Brier Score (Brier,
1950) and ignorance score (Roulston and Smith, 2002). They have been chosen for two
reasons. Firstly they are both proper (Bröcker and Smith, 2007b). Being proper (strictly
proper) means that the reward associated with the score is maximised if (and only if) the
true probability distribution is forecast. This encourages the forecaster to issue his or her
true belief.
Secondly, they are related. Benedetti (2010) proved the Brier score is a second order ap-
proximation of the ignorance score. However, there are some differences. The main
difference is that the ignorance score is local, whereas Brier score is not. Local scores de-
pends only on the probability assigned to the event that actually occurs and not on the
full probability distribution. However, in case of binary predictands, as in this thesis,
all the scores are local. Also, the two functions the scores are based upon are different.
Therefore some differences between the two scores are expected.
Roulston and Smith (2002) and Benedetti (2010) showed that the two scores judge fore-
casts differently, especially for very rare or very frequent forecasts. In particular igno-
rance score penalises poor sharp forecast more than the Brier score.
Throughout this chapter no serial correlation between forecast and observation pair is
assumed. This is a reasonable assumption, since sea breeze occurrence is verified every
24 hours, which is longer than the typical sea breeze time scale. This assumption allows
to neglect correlations when calculating the standard error of the differences with the
bootstrap method.
Also, the results presented in this chapter have been cross-validated. More precisely,
to verify the Bayesian forecast, as explained in the previous chapter, a three-fold cross-
validation is performed with training the model on two years and validation on the third
year, in each cross-validation run. For instance if the verification is performed for the
year 2013, the training dataset consists of the years 2014 and 2015.
The rest of the chapter is structured as follows. In section 5.2 reliability property will be
defined and verified for both the probabilistic forecast individually, in section 5.3 resolu-
tion is first defined and then tested for both the forecasts individually and then compared
for the forecast pair, section 5.4 contains the summary scores results. In section 5.5 the
verification of the alternative forecast presented in the previous chapter is performed,
whereas section 5.7 contains the verification of the sea breeze onset time and propagation
speeds. The sensitivity of the Bayesian model performance to the kernel bandwidth is
then presented in section 5.8 and finally in section 5.9 conclusions are discussed.

5.2 Reliability diagram

The reliability diagram is a tool to visualize the reliability property, by plotting the con-
ditional observed frequencies against the predicted probabilities (see (Murphy and Win-
kler, 1977) for example). For a reliable system points should lie along the diagonal; mean-
ing, for example over all the occasions in which an 80% probability of an event is fore-
cast, the event should occur 80% of the time. In order to plot the reliability diagrams, the
probabilistic forecasts are first partitioned into bins (here we use 4 bins). Then observed
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frequencies and the mean value of the probabilities forecasts are computed for each bin.
Bröcker and Smith (2007a) propose a new method to take into account sampling fluctu-
ations in the reliability diagram, since these can lead to misleading evaluation. Even for
a perfectly reliable forecast, due to limited statistics, it is not expected that all the points
lie along the diagonal line. Therefore this method helps to assess whether any deviation
from the diagonal line is due to small sampling or to an unreliable forecasting system. In
other words, being close to the diagonal line does not necessarily imply that the system
is reliable.
The method consists into resampling with replacement from the original pair of forecasts
and observations. A pair of surrogate observations and forecast is created and the surro-
gate observed frequencies are recorded. This procedure is repeated Nboot times and the
range of the possible surrogate observed frequencies is plotted for each bin, represented
by the vertical 5%− 95% error bar. A reliable system is the one for which the observed
frequencies lie within the range of possible surrogate observed frequencies, i.e. within
the bar.
Reliability diagrams of HR-DYN and LR-BAY for all lead times are shown in figure 5.1.
Firstly, it can be seen that for HR-DYN most of the observed frequencies, for all lead
times, lie in the 90% confidence interval. However, for all lead times, in the lowest prob-
ability bin, the observed frequency is significantly higher than the forecast probability,
i.e. the forecast is overconfident, even though it is close to the diagonal it is outside the
error bar. It can be seen that for the T+12 forecast the observed frequency in the second
bin is further from the diagonal than the one in the first bin. However, it is inside the
range of expected frequencies. This is just an example of how this resampling method
can reinforce reliability.
This makes the forecast not reliable overall, despite good reliability in the other bins (ex-
cept for the second lowest bin at T+6 and T+30). LR-BAY is not reliable. In addition to the
lowest bin, also the bin with the higher probability values is problematic, at 6, 18 and 30
hours ahead. In this case it can be seen that the observed frequency is significantly lower
than the forecast probability, thus indicating that the forecast is overconfident in this case.

5.3 Resolution

In this section the resolution property of both forecasting systems is tested. The null hy-
pothesis to test is that that they have no resolution. Hereafter the verification dataset will
be indicated by Y in the equations.
Thus the mathematical definition of no resolution is introduced:

P(Y = k, p = pd) = P(Y = 1)P(p = pd) (5.1)

where k = {0, 1} in this case and {pd} is the set of finite values that the forecasting
scheme could take, after binning it, for 1 <= d <= D.
This condition describes independence between the probabilistic forecast and the obser-
vations. In other words, if equation (5.1) holds, it means that the probabilistic forecast
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FIGURE 5.1: Reliability diagrams for HR-DYN and LR-BAY for all lead
times. The dots represent the calculated value from our sample, whereas
error bars indicates the 5%-95% confidence interval for the consistency re-

sampling, as described in Bröcker and Smith (2007a).

distribution and observations are independent, meaning that the probabilistic forecast
has no ability to discriminate between events and no events. The aim is to test the valid-
ity of this null hypothesis.

R statistic test A way to test the null hypothesis 5.1 is to create a statistics that quantifies
the distance between the two probability distributions on the left and right hand side
of equation 5.1. This quantity has been introduced by Bröcker (2015) and is defined as
follows:

R = ∑
k,d
− log

{
P(Y = k)P(p = pd)

P(Y = k, p = pd)

}
P(Y = k, p = pd). (5.2)

R is the Kullback-Leibler divergence (Kullback and Leibler, 1951) between the two sides of
equation 5.1. It measures how different are the two distributions and the higher the value
of R, the less tenable is the equality 5.1. A statistical test is therefore performed to quan-
tify R and to assess whether the value is significantly high to reject the null hypothesis
of no resolution. The test can be summarized as follows:

• The probabilities in the equation 5.1 are replaced by the observed frequencies. These
are computed by constructing the so-called two way contingency table. Two examples
are given in tables 5.1,5.2. Each entry of the table Ckd represents the number of oc-
currences when Y = 0, 1 and p = pd at the same time. Let C•d and Ck• be the two
marginals of the table. Let N be the total number of occurrences.
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• The terms in equation 5.2 can be estimated with the relative observed frequencies.
For instance P(Y = k, p = pd) = Ckd/N, P(Y = k) = Ck•/N and P(p = pd) =

C•d/N. Thefore an estimator forR is given by:

R
∧

:= ∑
kd
− log

(
C•dCk•

NCkd

)
NCkd (5.3)

• If forecast and observations are independent then 2NR
∧

has an asymptotic χ-square
distribution with (K− 1)(D− 1) degrees of freedom (Mood et al., 1974).

• Even though this is an asymptotic result, the Cochran (1954)’s rule requires that
Ckd ≥ 5. It can be seen that this condition is satisfied by the table 5.2, but not by
the table 5.1. Alternative solutions on how to deal with small samples in contin-
gency tables are offered in (Bröcker, 2015) and (Kroonenberg and Verbeek, 2018).
Therefore the statistical test is applied only to the Bayesian model.

The results of the χ2-test are given in table 5.3. It can be therefore concluded that the
null hypothesis of no resolution of the Bayesian model can be rejected at 1% level of
significance for all lead times.

0− 0.25 0.25− 0.5 0.5− 0.75 0.75− 1
Y=0 138 6 1 2
Y=1 23 6 5 18

TABLE 5.1: Contingency table for the convection-permitting forecast at 12
hours ahead.

0− 0.113 0.113− 0.226 0.226− 0.339 0.339− 0.45
Y=0 74 35 23 13
Y=1 14 10 17 12

TABLE 5.2: Contingency table for the Bayesian forecast at 12 hours ahead.

Forecast lead time (hours) 6 12 18 24 30
R
∧

0.04 0.04 0.04 0.03 0.04
p value 0.0007 0.00289 0.002 0.006 0.001

TABLE 5.3: R statistic test results for LR-BAY for all lead times.

Area under the ROC curve Equation (5.1) can be rewritten in terms of H and F, the hit
rate and false alarm rate respectively (Bröcker (2015)):

H(ω) = F(ω), (5.4)

where H(ω) = P(p ≥ ω|y = 1) and F(ω) = P(p ≥ ω|y = 0) and ω is a variable
probability threshold. It can be shown by a simple manipulation that equation (5.1) and
(5.4) are equivalent.
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Starting from equation (5.4) and rewriting it using Bayes’ formula:

P(y = 1|p ≥ w)P(p ≥ w)

P(y = 1)
=

P(y = 0|p ≥ w)P(p ≥ w)

P(y = 0)
⇐⇒

P(y = 1|p ≥ w)P(y = 0) = P(y = 0|p ≥ w)P(y = 1) ⇐⇒
P(y = 1|p ≥ w)(1−P(y = 1)) = P(y = 0|p ≥ w)P(y = 1) ⇐⇒

P(y = 1|p ≥ w) = P(y = 1)(P(y = 0|p ≥ w) + P(y = 1|p ≥ w)) ⇐⇒
P(y = 1|p ≥ w) = P(y = 1),

(5.5)

where in the last equality the fact that (P(y = 0|Γ ≥ w) + P(y = 1|Γ ≥ w)) = 1 is used.
Since this holds for all w ∈ [0, 1], the equivalence is thus proven.
Then H(ω) is plotted against F(ω), obtaining the so called Receiver Operating Charac-
teristics (ROC) curve (parametrized by the varying threshold ω). The performance of the
two probabilistic forecasts is then evaluated by calculating the area under the ROC curve
(AUC, (Egan, 1975), (Mason and Graham, 2002)).
In the previous the χ2-test suggests that there is evidence to reject the null hypothesis of
no resolution for the Bayesian model. The test was not performed for the convection-
permitting forecast due to violation of the Cochran’s rule. Therefore here another way to
test the validity of equation 5.4 (equivalent to equation 5.1) is proposed. An example of
ROC curves, for both the forecasts for T+24 forecast lead time, is shown in figure 5.2a.
The diagonal line represents the condition of no resolution, as described by the equation
(5.4). A perfect forecast is the one for which the ROC curve passes through the top left
corner (the point (0,1), i.e. when the hit rate is 1 and the false alarm rate is 0.), whereas a
non skillful forecast (i.e. with no resolution) is the one for which the hit rates are equal to
false alarm rates. In the first case, AUC= 1, whereas for a non skillful forecast AUC= 0.5.
Figure 5.2b shows the AUC evolution against lead times for both the forecasts. It can be
seen that the convective-scale forecast has a greater AUC than the Bayesian forecast for
all lead times. The aim is then to test whether this difference in AUC is significant. For
this purpose this statistic is used:

AUCh −AUCl√
Var(AUCh −AUCl)

, (5.6)

where the subscripts h and l indicate HR-DYN and LR-BAY forecasts respectively. Var(AUCh−
AUCl) = Var(AUCh) + Var(AUCl)− 2Cov(AUCh, AUCl). For the variance and covari-
ance, expressions by (DeLong et al., 1988) have been used.
The results of this comparison are shown in figure 5.2c. It can be seen that AUCh −
AUCl > 0 is positive for all lead times. Furthermore the 95% confidence intervals, cal-
culated using equation 5.6, indicate that the inequality AUCh > AUCl is significant for
all lead times, suggesting that HR-DYN is more skillful than LR-BAY in discriminating
between events and non-events, since it has more resolution.
The χ2 test reveals that LR-BAY has resolution and this test based on the AUC differences
showed that HR-DYN has significantly more resolution than LR-BAY. Thus the null hy-
pothesis of no resolution can be rejected also for HR-DYN.
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A property related the resolution is discussed and tested in the appendix B.

FIGURE 5.2: a) ROC curve for HR-DYN (green) and LR-BAY (blue) at 12
hours lead time. The dots indicate the different probability thresholds. b)
shows area under the ROC curve values against forecast lead time and c)
difference between the two areas. Positive (negative) values indicate the
area for the HR-DYN (LR-BAY) forecast is greater. The error bars show

the 95% confidence interval based on equation (5.6) .

5.4 Summary scores

In this subsection we compute two probabilistic scores, namely the Brier Score (BS: Brier
(1950)) and Ignorance score (IS: Roulston and Smith (2002)). First we compute the classic
decomposition of the scores into reliability and resolution terms, to examine whether the
conclusions drawn in the previous subsections about reliability and resolution can be
confirmed. Then we compute the differences in the scores for each forecast relative to the
climatological forecast. The scores and relative differences (BSD and ISD) with respect to
a reference (ref) system are defined as follows:

BSp =
1
N

N

∑
n=1

(p(n)−Y(n))2 (5.7)

ISp =
1
N

N

∑
n=1

DKL(p(n), Y(n)) (5.8)

BSD = BSre f − BSp (5.9)

ISD = ISre f − ISp. (5.10)

Here p(n) is the probabilistic forecast to be evaluated, Y(n) is the observation on day
n, N is total length of the dataset. DKL(p, Y) = Y log

(
Y
p

)
+ (1 − Y) log

(
1−Y
1−p

)
is the

Kullback-Leibler divergence (Kullback and Leibler, 1951). BS is a mean-squared error and
measures the distance between forecasts and observations. IS measures the ignorance
possessed (or the information content) by a forecast after the verification against the true
outcome. The amount of ignorance decreases monotonically with increasing probability
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FIGURE 5.3: Reliability (a) and b)) and resolution (c) and d)) terms calcu-
lated for both the forecasts calculated using Brier Score (BS) and ignorance
score (IS). e) and f) are the Brier and ignorance score differences respec-
tively based on equations 5.9 and 5.10. Error bars represent the 90% boot-

strap confidence interval.

value. 2 Both IS and BS are negatively oriented, which means the lower the score the
more skillful the forecast. Therefore BSD> 0 or ISD> 0 implies that the convective-scale
forecast is more skillful than the reference system, whereas if BSD < 0 or ISD< 0 the
reference system is more skillful. Both BS and ISDN can be decomposed into reliability
(REL), resolution (RES) and uncertainty (UNC) components (Bröcker, 2009; Weijs et al.,
2010) as follows:

BS = BSREL − BSRES + BSUNC (5.11)

=
1
N

K

∑
k=1

nk(p(k)−Yk)
2 − 1

N

K

∑
k=1

nk(Yk −Y)2 + Y(1−Y) (5.12)

IS = ISREL − ISRES + ISUNC (5.13)

=
1
N

K

∑
k=1

nkDKL(p(k), Yk)−
1
N

K

∑
k=1

nkDKL(Yk, Y)−
(
Y log(Y) + (1−Y) log(1−Y)

)
.

(5.14)

2For instance if p(n)→ 1 and Y(n) = 1 (the event actually occurs), then IS→ 0.
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FIGURE 5.4: Lag – 1 and Lag – 2 autocorrelation function of the score dif-
ferences timeseries at T+12 h.

Here, K is the number of categories (bins) which the probabilistic distribution is divided
into and p(k) is the value of each category k. nk is the number of occurrences and Yk

is the observed frequency for each category, respectively. Y = 1
N

N

∑
n=1

Y(n) is simply the

observed frequency over the entire data set. In the calculation of the decomposition and
the score differences we have assumed no serial correlation. “The effect of serial correla-
tion is to inflate the variances of the sampling distributions of the two statistics, so that
uncorrected confidence intervals are too narrow” (Wilks, 2010). This assumption allows
us to neglect correlations when calculating the standard error of the differences with the
bootstrap method. This is a reasonable assumption, since we are verifying sea breeze
occurrence every 24 hours, which is longer than the typical sea breeze time scale. A lag
– 1 autocorrelation of the ignorance score differences (according to equation 5.10) at 12
hours ahead. Results are shown in figure 5.4. Results for other lead times are similar. The
autocorrelation at lag 1 day is . 0.2. In Wilks (2010), Fig. 4 it is shown the sensitivity of
BS variance to autocorrelation. It can be seen that for lag – 1 autocorrelation ≤ 0.2, the
probability coverage (i.e. the width of the confidence intervals) does not change much.
Therefore the assumption assumed for the rest of the chapter is reasonable.

The results of the decomposition are shown in Figures 5.5a–5.5d. Recalling that for an
ideal forecast REL = 0 and RES > 0, it can be seen that both the forecasts have reliability
significantly different from 0 but have significant resolution, for all lead times. It is also
clear, that the resolution term for the convective-scale forecast is greater than the Bayesian
one although not significantly so at all lead times. This implies that the Bayesian forecast
is less able than the convective-scale forecast to discriminate between events and non-
events but more able to do so than a climatological forecast.
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FIGURE 5.5: Reliability (a) and b)) and resolution (c) and d)) terms calcu-
lated for both the forecasts calculated using Brier Score (BS) and ignorance
score (IS). e) and f) are the Brier and ignorance score differences respec-
tively based on Equations 5.9 and 5.10. Error bars represent the 90% boot-

strap confidence interval.

Figures 5.5e and 5.5f show the differences between the BS and IS scores obtained for the
two forecasting methods, using Equations 5.9 and 5.10 with LR-BAY taken as reference
and HR-DYN as p. The results are shown in Figure 5.5e, f. It can be seen that for both
ISD and BSD the difference in the score is significant (except for ISD at 6 hours ahead),
implying that the convective-scale forecast has more value than the Bayesian forecast for
sea-breeze occurrence.

After comparing and quantifying the skill of the convection-permitting forecast with
respect to the Bayesian forecast, it is interesting to assess how both the systems perform
with respect to a third reference, the climatological forecast. By computing the resolution
terms in the previous section, we have already shown that both the forecasts have sig-
nificantly more resolution than the climatological forecast but less reliability. Therefore,
this further comparison is useful to assess whether the probabilistic forecasts are per-
forming better than the climatological forecasts, or the lack of reliability is masking their
additional resolution. The climatological forecast, i.e. the percentage of times sea breeze
occurs over all the data, has been calculated using either observations or convection-
permitting model data, leaving one-year-out for the verification itself (for instance, if we
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FIGURE 5.6: Score differences between each probabilistic forecast and a cli-
matological forecast (estimated either from the observations or the model).
a) and b) show these differences calculated using the Brier score, whereas c)
and d) show the score differences calculated with the ignorance score. Pos-
itive (negative) differences indicate that the probabilistic forecast is more
(less) skillful than the climatological forecast. Error bars represent the 90

% confidence interval calculated using bootstrap technique.

are validating on 2013 then 2013 is not included in the calculation of the climatology). The
difference in the skill has been quantified using the Brier score and ignorance score, using
Equations 5.9 and 5.10, with climatology as a reference, in place of LR-BAY. The results
are shown in Figure 5.6. In terms of Brier score difference, the convective-scale forecast
is significantly more skillful than the climatological forecast (based either on model or
observations), for all lead times, except 6 hours ahead. On the other hand, the Bayesian
forecast is shown to be generally less skillful than climatology, although significantly
only at 18 hours ahead. With regard to the ISD, the conclusions are essentially same. The
convection-permitting forecast is still more skillful than the climatology (although signif-
icantly only compared to model climatology for T+12, T+24 and T+30) and the Bayesian
forecast significantly worse than the climatology not only at 18 hours ahead, but also at
30 hours ahead. These slight differences between ISD and BSD could be due to the fact
that the two scores assign rewards and penalties to the forecast in a different way, be-
cause of the different function they are based on. Roulston and Smith (2002) show that IS
penalizes sharp 3 forecasts much more than BS. Since even the Bayesian forecast is sharp
compared to a climatological forecast, it is likely that this is the reason for the differences
in the ISD and BSD measures. Although the Bayesian forecast has more resolution than
a climatological forecast it is not sufficient to compensate for its lack of reliability.

3Sharpness is the tendency of a forecast to predict extreme values (0 or 1).
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5.5 Verification of the alternative forecast of sea-breeze occur-
rence

Reliability and resolution have been tested for WF, presented in chapter 4. Reliability
diagrams, for all lead times, are shown in figure 5.7. First of all it can be noticed, by
comparing it with figure 5.1, that WF reaches higher probability values than LR-BAY for
all lead times. This is expected, since, unlike in the Bayesian case, the method to produce
forecasts is dichotomous, so a data point could be either in the wedge or not. Therefore
if on a selected day n all the ensemble members are in the wedge, then WF(n)=1, but LR-
BAY(n) < 1, because there are also non-occurences in the wedge which are taken into
account in the Equation 4.16.
Also WF is not reliable, with the last bin containing the highest probability values being

FIGURE 5.7: Same as in figure 5.1 for WF forecast.

problematic. WF is overconfident and this can be explained simply by looking at figure
4.9b, where it can be noticed that there are many non-occurrences in the observations
inside the wedge.
In regard to the resolution, areas under the ROC curve are computed for all lead times
and shown in figure 5.8. By comparing with figure 5.2 it can be seen that WF has an
higher AUC score than LR-BAY for all lead times. However, HR-DYN is still performing
significantly better, expect for 6 hours ahead.

5.6 Forecast verification against the control member

In the previous sections probabilistic forecasts have been performed against observations.
The alternative is to consider the high-resolution member as observation. This is to verify
whether the added value of the convection-permitting ensembles is due to the verifying
system or to its intrinsic ability to resolve the sea-breeze circulation. This is because the
Bayesian forecast has been trained on high-resolution data and not on observations. This
might seem a disadvantage when verifying it against observations.
Also, when comparing against the high-resolution control member, the frequency bias is
removed and also the so called representativity error.
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FIGURE 5.8: Same as in figure 5.2 with the alternative forecast WF in place
of the Bayesian forecast LR-BAY.

Therefore, reliability diagram and ROC curves have been computed for both the fore-
casts evaluated against the high-resolution control member. The results are shown in
Figures 5.9 and 5.10. It can be seen that in this case, unlike when comparing against ob-
servations, are both reliable. In regard to the ROC curves, it can be seen that now the

FIGURE 5.9: Reliability diagram at T+12 hours for the two probabilistic
forecasts with the high-resolution control member taken as verification.

Error bars are the same as in figure 5.1.

convection-permitting forecast has a higher AUC (& 0.2 with respect to previous verifi-
cation), whereas the Bayesian forecast has a slight higher AUC forecast compared to the
other verification. This might be due to the fact that the frequency bias has not been com-
pletely removed since the high-resolution control member is taken as verification and
not the low-resolution control member. This implies that in this case the AUC difference
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between the convection-permitting and the Bayesian forecast is even higher.

FIGURE 5.10: Same as in figure 5.2 with the high-resolution control mem-
ber taken as verification.

5.7 Onset time and propagation speed forecast verification

Here the binary probabilistic forecasts calculated in the subsection 4.6.1 are verified against
station observation. In particular, the area under the ROC curve is calculated for all the
lead times. The results are shown in figures 5.11 and 5.12. It can be seen in general, for the
propagation speed there are not significant differences between HR-DYN and LR-BAY.
In general the probabilistic forecast are performing poorly in terms of resolution, espe-
cially for higher thresholds of the speed and for lead times longer than 12 hours ahead.
In regard to the onset time, HR-DYN is performing significantly better than LR-BAY at
6 hours ahead for the early onset (< 12 UTC) and at 12 hours ahead for the late onset. In
general, none of the forecast is able to predict the sea-breeze onset time from 18 hours
ahead.

5.8 Sensitivity of Bayesian model verification to kernel band-
width

In Chapter 4 the Bayesian model was introduced. One step in its construction is the
kernel density estimation. One parameter to choose for the kernel density estimation
is the bandwidth factor, filtering smoothing of the occurrence density. In this analysis
the factor based on Scott (1979)’s rule has been selected. Here the area under the ROC
curve of the Bayesian model has been calculated for different bandwidth factors in the
interval (0, 5]. As shown in figure 5.13 the area under the ROC curve decreases with
the bandwidth factor. This is because, as the kernel bandwidth increases, so does the
overlap between the densities of the occurrences and non-occurrences. This implies that
the probabilistic forecast becomes less sharp and so less able to discriminate between
events and no-events, which is measured by the area under the ROC curve. It can be also



5.8. Sensitivity of Bayesian model verification to kernel bandwidth 85

FIGURE 5.11: Same as in figure 5.2 for the probabilistic forecasts of sea-
breeze propagation speed above different thresholds (4, 6 and 8 km/h from
top row to bottom row). ROC curves in a1), a2) and a3) have been com-

puted at 24 hours ahead.

noticed that the Scott’s factors used in this analysis correspond to the maximum value of
the area under the ROC curve.



86 Chapter 5. Verification of sea breeze probabilistic forecasts

FIGURE 5.12: Same as in figure 5.2 for the probabilistic forecasts of onset
times below (top row) and above (bottom row) a specified threshold (12

UTC).
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FIGURE 5.13: Area under the ROC curve of the Bayesian model against the
bandwidth factor at 12 hours ahead. The dashed vertical lines represent
the Scott’s factors for the estimation of occurrences and non-occurrences

respectively.
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5.9 Conclusions

Presented here is the quantification of the added value provided by a convection-permitting
ensemble forecast (HR-DYN) compared to a Bayesian forecast (LR-BAY) driven by the
same global model ensemble in regard to the occurrence of sea breezes. The forecasts
have been verified against observations over three different summer periods (2013-2015),
for lead times from 6 hours up to 30 hours.
The alternative simple forecast for the sea-breeze occurrence and sea-breeze propagation
speeds and onset times forecast were verified against station observations.
Reliability diagrams and ROC curves have been computed also taking the high-resolution
control as verification. The conclusions from the probabilistic forecast verification against
the observational dataset can be summarised as follows:

1. The two large-scale predictors used to train the Bayesian model are shown to con-
tain more information (in terms of resolution) about the sea breeze occurrence pre-
dictability than the climatological forecast. The convection-permitting forecast HR-
DYN has been shown however to provide more information than the Bayesian
forecast LR-BAY. This could be due to the convection-permitting model’s ability
to explicitly represent the sea-breeze circulation and fine-scale topography which
affects its dynamics. Also, the result is suggestive that the sea breeze occurrence
depends on more than the two large-scale predictors used which may have limited
the Bayesian forecasts skill.

2. The convection-permitting forecast is significantly more skillful than the Bayesian
forecast, with respect to Brier Score and Information Gain score. The classic score
decomposition in reliability and resolution highlights that the convection-permitting
model is more reliable and has more resolution for all lead times.

3. When verifying against the high-resolution control member both the probabilistic
forecasts have an higher AUC than when verifying against observations. However
the AUC difference is higher in this case, implying that the convection-permitting
forecast is more able to discriminate between events and no-events and that its skill
relative to the Bayesian forecast does not depend on the fact the verification was
performed against observations.

4. The convection-permitting forecast has significant skill also with respect to the cli-
matological forecast, with higher skill relative to the model than observational cli-
matology. On the other hand, the fact that the Bayesian model has better resolution
than climatology is not sufficient to compensate for its lack of reliability.

5. Forecast skill does not decrease with lead time, showing that there is not a depen-
dence on the initialisation time. A negligible dependence of the forecast skill on the
lead time has been recently found also by ? for short-range convective precipita-
tion forecasts. In the case presented here, T+18h forecast is performing relatively
poorly compared to other lead times. Ascertain the precise reasons for this would
need more investigation. However, it is worth to note that forecasts of different lead
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times are initialized at different initial times (see again figure 4.2). The T+18h fore-
cast is initialized at 18UTC for the coarse resolution global model and 21UTC for the
convection-permitting model. At 06UTC and 18UTC there are fewer observations,
since radiosonde ascents data are assimilated only at 00UTC and 12UTC (https://
www.metoffice.gov.uk/learning/making-a-forecast/first-steps/making-observations/

upper-air).4 Therefore, since sea breeze forecast are sensitive to stability of the at-
mosphere (among other factors, see Lombardo et al. (2016) and references therein),
it might be that the more information about stability given by upper air observa-
tions could have an impact on the skill of sea breeze forecast.

6. The convection-permitting forecast is not significantly better than a statistical model
based on large-scale predictors in the prediction of sea-breeze propagation speed
for all lead times, whereas it is more skillful for the onset time, up to 12 hours
ahead.

7. The alternative forecast (WF) is unreliable since it is underconfident in the lowest
bin and overconfident in the highest bin. On the other hand it showed to have
higher AUC values than the Bayesian forecast (LR-BAY).

4Accessed online on 24 November 2018.

https://www.metoffice.gov.uk/learning/making-a-forecast/first-steps/making-observations/upper-air).
https://www.metoffice.gov.uk/learning/making-a-forecast/first-steps/making-observations/upper-air).
https://www.metoffice.gov.uk/learning/making-a-forecast/first-steps/making-observations/upper-air).
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Chapter 6

Probabilistic forecasts of convective
wind gusts

In this chapter the information gain from a convection-permitting model is quantified for
probabilistic forecasts of wind gust occurrence in a summer season. More precisely, the
surface (10m) wind speed output from a convection-permitting model is compared to the
gust parametrization from a coarser resolution model. The aim is to use these two vari-
ables to estimate the probability of high wind speeds occurrence, by counting the fraction
of ensemble members exceeding a high percentile of the two distributions respectively.
Since the summer season is analysed, it is expected many of the high wind speeds event
are related to convective outflows. Therefore two other probabilistic forecasts of high
wind speeds are estimated, both using the Bayesian method: one conditioned on a gust
parameter only and another one including also a convective parameter. The gust param-
eter alone accounts only for unresolved turbulent mixing. Since direct outflow associated
with convection is not represented by the gust parameter parameter and neither is con-
vection directly, the convective parameter is needed to assess whether it can provide
useful information about the convective “wind gust” occurrence.
Therefore the two probabilistic forecasts estimated directly from ensemble members and
the two Bayesian forecasts are computed, compared and verified against station observa-
tions and a control member, used as “truth”.

6.1 Introduction

“Wind gust” is defined as the peak wind speed in a 10 min period based on a 3 s run-
ning mean measurement (World Meteorological Organization (2008)). Suomi and Vihma
(2018) provide an overview of the state-of-art wind gust measurement techniques. In
general wind gust measurements require a high temporal resolution device. This means
that the whole measurement chain including the anemometer, data acquisition, process-
ing, recording and reporting has to support this.
This brief and intense peak in wind gust can pose a threat for structures such as build-
ings, bridges and wind turbines. Therefore the knowledge of local gusts is important
for those involved in designing structures, for instance. The Association of British Insur-
ers estimates that averaged annual insured loss from wind-related damage to domestic
property is in excess of £ 340 m (ABI (2005)). Moreover, damage from wind gusts are not
proportionally related to the peak gust of a storm (Hewston and Dorling (2011)). Hawker
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(2007) reports that an increase of 25% in peak gust speed can result in 650% increase in
damage.
In (Sheridan, 2018, Table 1) a list of mesoscale or boundary-layer phenomena associated
with high or gusty winds is presented. In this study the summer period is investigated
and therefore it is expected that majority of gusty events are associated with convective
turbulence.
Damaging winds from deep convective systems can be classified according to their ori-
gin: those associated with strong sub-scale vortices (e.g. tornadoes), the so-called straight-
line winds associated with the descent of cold air from a storm in the form of downburst
or microburst (for a review see Wakimoto (2001)) or just the outflow from a shower asso-
ciated with evaporative cooling leading to negative buoyancy.
Wind gusts resulting from convective thunderstorms can lead to severe damage and may
be a particular concern for outdoor activities. They are more frequent during Summer,
very common in the United States but also in central Europe, causing significant damage
and also fatalities. Examples include the Pukkelpop storm (https://www.bbc.com/news/
world-europe-14586001)1, with wind speed between 29 and 37 ms−1, 5 deaths and 140
injuries due to a stage collapse (De Meutter et al. (2015)). Another is the Pentecost storm
on 9 June 2014, causing 6 fatalities and total losses for EUR 650 million (Mathias et al.
(2017), Barthlott et al. (2017)).
In the UK these severe events are rarer, although when they occur they can be very dam-
aging. An example was the combination of a microburst and tornado in York on 3 August
2011 (Smart et al. (2012)). Other examples of a microburst in the UK are reported by Wa-
ters and Collier (1995) and investigated by Gray (2006).
It is therefore undoubtedly important to forecast the likelihood of these events in order
to give early warning.
Sheridan (2018) offers a review of the current gust forecasting techniques. These may be
classified into three main categories: machine learning techniques, statistical methods and
physically-based approaches.
In regard to the first ones, Mercer and Dyer (2014) show the potential of the kernel princi-
pal component analysis (KPCA), which is an extension of the principal component anal-
ysis when a linear relationship between the input variables cannot be deduced, used to
reduce the dimensionality of the predictors set.
Statistical methods have been applied by Thorarinsdottir and Johnson (2012), using non-
homogeous Gaussian regression to postprocess ensemble forecasts of maximum wind
speed and gust occurrence and more recently by Pantillon et al. (2018) show the limits of
predictability of windstorms in convection-permitting ensemble forecasts using statisti-
cal post-processing.
Finally, physically-based approaches refer to methods based on physical reasoning con-
cerning boundary layer turbulence, using Monin-Obukhov similarity theory following
Panofsky et al. (1977). One study by Brasseur (2001) proposes a new method based on
physical principles, namely the deflection of air parcels which are brought down by tur-
bulent eddies.)
There have been also studies selecting sounding-derived parameters associated with the

1Accessed online on 18 November 2018.

https://www.bbc.com/news/world-europe-14586001
https://www.bbc.com/news/world-europe-14586001
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most severe wind gusts (e.g. Kuchera and Parker (2006) and Taszarek et al. (2017)) with
the aim of improving the operational forecasting of damaging convective gusts.
Two crucial recent developments present new opportunities and challenge for gust fore-
casting :

1. increase in resolution of local area NWP models, which leads convective-scale phe-
nomena and fine scale topographic features to be being better resolved;

2. the shift from deterministic forecasts to ensembles and probabilistic forecasts

In regard to the shift to convection-permitting models with horizontal grid-length of or-
der of 1-2 km, they resolve some convective overturning on the grid scale, whereas shear-
driven turbulence is still not properly resolved (Mylne and Roberts, 2017). For example,
Harvey et al. (2017) show an example of this issue of high-resolution models not properly
resolving shear-driven turbulence at cold fronts and that NWP models do not converge
to observations with increasing resolution. Therefore the use of a shear-driven gust pa-
rameter in convective situations leads to an over-estimation of the gusts, because it adds
to the explicitly represented convective outflows. The challenge is thus to deal with this
“grey-zone”, where resolved (convection) and unresolved (turbulence) features are not
clearly separated (Mylne and Roberts (2017)).
In regard to the use of ensembles, Sheridan (2018) points out that “given this stochastic
nature, a probabilistic approach seems to offer some advantages”, despite challenges in
the verification of probabilistic forecasts against sparse observations.
In this chapter a high percentile of 10m wind speed output (e.g. 95%) from a convection-
permitting ensemble forecast and the wind gust parametrization from a coarser resolu-
tion ensemble are compared. In section 6.2 the methodology and aims are presented, in
section 6.3 the data used are presented. Then in section 6.4 the comparison between the
forecast field is discussed with relative probabilistic forecasts computed in section 6.5.
Spatial verification of probabilistic forecasts is performed in section 6.6. In section 6.7
an application of the Bayesian approach used for sea breezes is applied to the wind gust
prediction. Finally, conclusions of this chapter are summarized in section 6.8.

6.2 Aims and methodology

Here, a similar methodology to the sea-breeze case, is applied to high wind speeds fore-
casts. It is useful to assess whether resolved winds at high resolution provide greater
forecast information about the high wind speed occurrence than the gust parameter from
a coarser resolution model. It is expected that the dynamics associated with convec-
tive wind gusts is reasonably resolved only by convective-scale models. Therefore in
order to extract the information about the same event (wind speeds exceeding a high per-
centile) from much coarser resolution models another method is implemented, exploit-
ing as much as possible the information contained in the coarser resolution parameters.
Therefore, as for the sea breeze case, four probabilistic forecasts are compared:

1. based on the direct information coming from the convective-scale members;
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2. based on the direct information coming from the coarse resolution gust parametriza-
tion;

3. a Bayesian forecast conditioned on a gust parameter (described later);

4. a Bayesian forecast conditioned on the gust parameter and convective parameter.

The questions that will lead the study of this chapter are:

1. What is the relationship between the coarser resolution parameter and convective-
scale wind speed outputs ? Are the convective cases, as defined by the convective
parameter, significantly different from the non-convective ones ?

2. How do the probabilistic forecast differ ? Does the Bayesian forecast conditioned
on gust and convection parametrization have more information than the forecast
conditioned on the gust parametrization only ? In other words, does the convective
parameter add any value to the probabilistic forecasts of both models ?

3. Does the probabilistic skill vary with geographical location, e.g. due to varying
topography ? Can this be used to attribute an appropriate amount of convective-
scale forecast skill to better resolved topography ?

6.3 Wind gusts outputs

The data come from the same ensemble models as described in chapter 4. The wind gust
is parametrized in MOGREPS-G as follows (Lock et al. (2018)):

g = U10m + σu
1
k

log

(
5ekcugn + z0m(e f f )

5 + zz0m(e f f )

)
, (6.1)

where U10m is the 10 metres wind, σu is the standard deviation of the horizontal wind, k
the von Kármán constant, cugn is determined from universal turbulence spectra of a 25%
exceeding probability of the three second wind gust, z0m(e f f ) is the effective roughness
length to avoid unrealistic high gust values u∗ of the friction velocity over mountainous
region. The stability dependence of σu is estimated on the basis of the similarity relation
from Panofsky et al. (1977):

σu =

Agustu∗(1− zh/(24L))1/3, for L < 0

Agustu∗ for L > 0

with Agust = 2.29, zh is the height of the lowest inversion, L is the Obukhov length. For
L = 0 the wind gust diagnostic is undefined and therefore it is set g = U10m. Note that
the friction velocity, u∗, must use the implicitly calculated surface stress components the
because the explicitly calculated u∗ can be erratic, particularly over mountains. Then, for
consistency with the implicit u∗, L must be calculated implicitly and, to avoid potential
numerical problems in very light winds, the unstable (L < 0) case is rewritten as:

σu = Agust(u3
∗ + kw3

∗/24)1/3,
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where w∗ is the vertical component of the friction velocity. From MOGREPS-UK the 10m
wind speed is used instead as a proxy for the full wind. This is because, the inherent
dynamics leading to the generation of convective wind gust is expected to be reasonably
resolved by the convective-scale model and hence generates convective outflows with
higher peak values. For smaller-scale turbulence, when there is no convection, some
parametrization is still needed for convection-permitting models.

6.4 Comparison of gusts

Let g(X, Y, d, m) be the parametrized gust from from MOGREPS-G (defined in equation
6.1) and |v|(x, y, d, m) the 10 metre wind speed from MOGREPS-UK, where X, Y, x, y are
the spatial coordinates on the respective model grids, d is the day of the year and m is the
ensemble member.
Firstly, for each MOGREPS-G grid box (33 × 33 km), the maximum of the 10m wind
speeds from MOGREPS-UK within that larger grid box is computed.
g is output every 3 hours and is the maximum gust over this period, whereas |v| is output
every hour.
Therefore, in order to compare the two quantities, the temporal resolution is matched. In
order to do this, the maximum |v| over the same 3 hours window is taken.
The wind gusts are detected and verified in the time window 12-18 UTC for the summer
2015. Only this period was chosen since the main aim of this chapter is to provide a proof
of the concept of the application of the methodology for the sea-breeze case. Also, this
time window has been chosen since it is when the highest gusts tend to occur in the sum-
mer period (see (Hewston and Dorling, 2011, Fig. 7)), when atmospheric instability due
to surface heating facilitates thermally driven mixing, which in turn leads to transfer of
momentum downward resulting in surface gusts.
In this time window there are two 3-hour windows (12-15 UTC and 15-18 UTC). If the
day is defined as convective (meaning that the convective rainfall accumulation from
MOGREPS-G is non-zero), then the period with the highest rainfall accumulation is cho-
sen. If the day is not convective, then the time window corresponding to the highest
MOGREPS-G gust is selected.
Thus the following variable is defined:

MRW(X, Y, T, m) := max
x,y,t
|v|(x, y, t, m) (6.2)

g(X, Y, T, m) and MRW(X, Y, T, m) (maximum resolved wind) can now be compared for
each MOGREPS-G grid box. In this study only forecasts initialized at 00UTC for MOGREPS-
G (and 03 UTC for MOGREPS-UK) on the same day are analysed. This is because this
study serves as a proof of the concept. The subdomain chosen for this analysis is repre-
sented by the black box shown in figure (6.1).
Figure 6.2 shows the comparison between g and MRW for three different grid boxes, in
the upper, centre and lower part of the subdomain considered in this study and repre-
sented by the smaller grid boxes in figure 6.1. This domain was chosen since it has a low
and uniform elevation above sea level. This is to exclude cases where skill might depend
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FIGURE 6.1: UK orography map from MOGREPS-UK. The black bigger
dashed box indicates the domain considered in this study and the blue
dots the station observation used for verification, whereas the three small
dashed boxes indicate the three grid boxes referred after as upper, central

and lower.

on orographic effects. However, only the upper left corner presents an higher elevation
and later in the chapter it will be shown how this affects the skill of the convective-scale
forecast relative to low resolution ones.
In order to quantify the differences between the convective and non-convective cases a
two dimensional Kolmogorov-Smirnoff (KS) test has been performed on the pair ((gconv, MRWconv)

,(g, MRW)) and a one dimensional KS test on the two frequency distributions of the dif-
ferences with respect to the best fit line. Firstly, it can be noticed that there is a high
positive correlation between the two variables. This is quantified by ρ, the Pearson cor-
relation coefficient.
Also, it can be noticed that MRW < g in most of the cases. However, for the convective
cases, MRW is higher and closer to g. This is quantified by calculating the difference
between the convective and non-convective data from the line of best fit trough all the
points. Looking at the frequency distributions of the differences in figure 6.2, it can be
seen that the convective cases are more shifted towards negative values of the differences
between the best fit line and the observed values.
The two dimensional KS test gives a p-value of 6.07 · 10−119, 1.54 · 10−131, 6.20 · 10−145 for
the upper, central and lower grid box respectively. The test on the frequency distribu-
tions gives a p-value of 4.89 · 10−26, 4.48 · 10−15, 2.5 · 10−20 for the the three grid boxes.
Therefore two preliminary conclusions can be drawn from this first comparison:
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FIGURE 6.2: First column shows g(X, Y, T, m) against MRW(X, Y, T, m) for
a) upper, b) central and c) lower grid box within the spatial domain con-
sidered. Red dots represent convective cases as defined by the convection
parametrization, whereas blue dots are the no-convective cases. Horizon-
tal and vertical dotted lines represent the 95th percentile of the two dis-
tributions respectively. The solid line is the best linear fit through all the
data, the dash-dotted line is the 1:1 line, ρ is the Pearson correlation co-
efficient. The second column represent the frequency distribution of the
differences between the best fit line and the data for convective (red) and

non-convective (blue) cases.

• There is high correlation between the MOGREPS-G parameter gust and the 10m
wind speed from MOGREPS-UK.

• The convective cases are significantly different from the non-convective cases.

In the next sections the implications of these preliminary conclusions are investigated in
terms of the probabilistic forecasts. For instance the fact that there is an high correlation
between the two forecast fields, does it imply that the two probabilistic forecasts are
performing in a similar way ? In other words, is the gust parameter a good predictor
of high wind speed occurrence ? Also, does the convective parameter add additional
information with respect to the gust parameter alone ? These will be addressed in the
next sections.
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FIGURE 6.3: a) kernel density estimation of the distribution of wind gust
events(solid lines) and no events (dashed lines). Events are defined as the
occurrence of exceeding the 95th percentile of the distribution. The distri-
butions are plotted against the gust parameter for all (black), convective
(red) and non convective cases (blue). b) shows the respective probabili-
ties, obtained by applying the Bayes’ formula which involves the ratio be-
tween the solid and dotted lines of the panel a). Black crosses represent the
MOGREPS-UK probability values against the ensemble mean of the gust

parameters, for each day of our period of evaluation.

6.5 Probabilistic forecasts

In this section the probabilistic forecasts of wind gusts are defined and calculated. These
forecasts will be verified in the next section. The aim is to assess whether using only
MOGREPS-G parameters (gust and convective) is sufficient to convey information about
the wind gust occurrence or whether the 10m wind speed output from MOGREPS-UK
can bring additional useful information.
The event to be predicted is the occurrence of high wind speed. This is defined here
by the gust exceeding the 95th percentile of the relevant distribution as will be defined
shortly. Once that the event is defined, the probabilistic forecasts of this event can be
estimated based on the ensemble prediction systems used.
In particular the following probabilities are calculated:

Phrdyn(d) : = P
(

MRW(X, Y, d) > 95thMRW(X, Y)
)

(6.3)

Pgust(d) : = P
(

MRW(X, Y, d) > 95thMRW(X, Y)|g(X, Y, d) > 95thg(X, Y)
)

(6.4)

Pbay f gust(d) : = P
(

MRW(X, Y, d) > 95thMRW(X, Y)|g(X, Y, d, m)
)

(6.5)

Pbay f gustconv(d) : = P
(

MRW(X, Y, d) > 95thMRW(X, Y)|g(X, Y, d, m), conv(X, Y, d, m)
)

(6.6)
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where conv(X, Y, d, m) is the convective parameter output from MOGREPS-G for each
day d and for each member m. More precisely the convective parameter is a binary vari-
able which is set equal to 1 if the convective rainfall accumulation output from MOGREPS-
G is non-zero, otherwise equal to 0.
The probabilistic forecasts calculated in equations (6.3-6.4) are directly estimated from
the ensemble members of MOGREPS-UK and MOGREPS-G respectively, by counting
the fraction of the ensemble members exceeding the 95 % percentile. On the other hand,
the probabilistic forecasts in equations (6.5-6.6) are the conditional probabilities of the
same event, based on the parametrized gust only and with the parametrized convection
respectively. These probabilities are calculated using the Bayes’ formula, as done in the
sea breeze case as discussed in chapter 4. Also in this case MOGREPS-UK data are used
to train the Bayesian model. In the calculation of these conditional probabilities, the first
step is the estimation of the likelihood function, i.e. the distribution of the predictors
given that the event of exceeding the 95th percentile has occurred or not.
This function is shown in figure 6.3. In the left panel the three cases of all, convective
and non-convective cases are plotted for upper left grid box. First of all, it can be seen
that there is a discrimination between events (solid lines) and no-events (dashed lines),
with the overlap of the two densities more noticeable for the convective cases (red lines).
In the right panel, the corresponding conditional probabilities are shown, against the
parametrized gust. It can be noticed the sharp increase of probability values at about
15ms−1. Also, for lower values of the gust, the conditional probability based on convec-
tive parameter is slightly higher than the others, indicating that gust parameter alone
does not capture information about gusts occurring during convection, as expected.
Before computing probabilistic scores associated with these four probabilities, a qualita-
tive comparison is offered in the remainder of this section.
First of all, figure 6.4 shows a single case example of the spatial map of the four probabilis-
tic forecast calculated. The first thing to notice is that Phrdyn has the highest probability
value. Pgust has lower probabilistic values with a different structure. Pbay f gustconv and
Pbay f gust have a very similar structure and comparable probability values.
Figure 6.5 shows the frequency distribution of the four probabilities in the whole spatial
domain and for the whole period considered in this study. It can be noticed that Phrdyn

and Pgust have more occurrences near p ≈ 0 or p ≈ 1, whereas Pbay f gustconv and Pbay f gust

have more occurrences also for values of 0.125 < p ≤ 0.375 and fewer values for p ≈ 1. In
other words, Phrdyn and Pgust are sharper than Pbay f gustconv and Pbay f gust. As last compari-
son, figure 6.6 shows the map of the Spearman’s correlation coeffient for different pairs of
the probabilistic and Bayesian forecasts. It can be seen that the pair (Pbay f gust,Pbay f gustconv)
show the highest correlation, in the bottom part of the spatial domain, whereas Phrdyn

and Pgust have an high correlation in the upper part of the spatial domain.

6.6 Spatial verification

In this section the relative skill of the different forecasts defined by equations (6.3-6.6) is
assessed. Firstly, using the MOGREPS-UK control forecast in place of observations, in
order to estimate the maximum possible information gain and avoid complications from
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FIGURE 6.4: Probability values in the spatial domain considered here for
a) Phrdyn, b) Pgust, c) Pbay f gustconv and d) Pbay f gust at 12 hours ahead valid

on 01/06/2015.

FIGURE 6.5: Frequencies of the maxima probability values within 33 km
for the different probabilistic forecasts at 12 hours ahead.
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FIGURE 6.6: Spatial map of the Spearman’s correlation coefficient
for different pairs of the probabilistic forecasts. a) (Phrdyn,Pgust), b)

(Phrdyn,Pbay f gust), c) (Phrdyn,Pbay f gustconv), d) (Pbay f gust,Pbay f gustconv).
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limited observations and representativity errors. The event is defined to be observed on
day d if MRW(X, Y, d) > 95thMRW(X, Y), where MRW(X,Y) is the time distribution of
the control member at the grid point X, Y. Secondly, the surface wind gust data from
synoptic stations will be used.
The verification is performed for each MOGREPS-G grid box, i.e. the scores are not ag-
gregated. This allows to avoid considering spatial correlations into the calculation of the
probabilistic scores.
Given the distribution of the stations (see figure 6.1), it can be seen that stations are not
uniformly distributed. There are some grid boxes not occupied by any station. Also,
since convective gusts are very localized phenomena (on a spatial scale smaller than the
distance between the stations), it is likely that some stations will miss the detection of the
highest convective gusts.
This motivates the implementation of a neighborhood approach for the generation and
verification of probabilistic forecasts.
The results of this section are cross-validated. More precisely, to verify the Bayesian fore-
casts, the leave-one-out cross-validation is performed with training the model on all the
days of the summer period excluding the day which it is validated on, in each cross-
validation run.

6.6.1 Wind gusts in observations

As mentioned in chapter 3, the maximum gusts are recorded every hour and it represents
the 10 minutes max gust speed in the period between 20 and 10 minutes before each hour.
The event to be predicted is the strong wind gust. This is defined as the occurrence to
exceed the 95th percentile of the probability distribution. Similarly, in the station obser-
vations, the event is defined as the occurrence to exceed the 95th percentile of the wind
speed distribution for each individual station observation. Then it is checked that in the
time window period considered here (12-18 UTC), the wind speed recorded at any hour
during this period exceeds the 95th percentile of the distribution.

6.6.2 Neighborhood

Schwartz and Sobash (2017) provide a review of the state of the art of the neighbor-
hood techniques (see also references therein). Here the neighborhood approach is im-
plemented, otherwise the observations are badly undersampling in space, due to their
sparsity.
In particular Ben Bouallègue and Theis (2014) examines two different methodologies to
implement a neighborhood approach. They differ both in the implementation and in
the interpretation: one, which is called “fuzzy probabilistic forecast” (or smoothing) and
the other called upscaling. The smoothing method calculates the grid-scale probabilities,
whereas the upscaling is used to calculate non-grid-scale probabilities. There is a com-
mon step for both the methods: the probabilities are first calculated for each grid point,
as described in the previous section. Let Pi be the probability at grid point i. Then three
different neighborhoods are defined, as described in figure 6.7. The square geometry is
then used. Each neighborhood can be identified either by the number Nb of grid boxes or
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by the full width of grid. For instance, the neighborhood comprising 3× 3 grid boxes can
be also indicated by the distance (33 km) from the grid i at the centre of the neighborhood.

• smoothing: The smoothing techniques consists in averaging the probability values
over the Nb points of the neighborhood. Let Si be the set of grid points within the
neighborhood i. Then:

SPi =
1

Nb

Nb

∑
k=1

Pk, k ∈ Si (6.7)

SPi is interpreted as the smoothed probability of the event at the grid point i given
a smoothing length scale which defines the neighborhood size.

• upscaling:
MPi = max

Si
Pk, k ∈ Si (6.8)

MPi is interpreted as the probability of the occurrence of the event in any point of
the neighborhood, thus on a scale larger than the native grid.

It is important to notice that the same neighborhood approach is applied to station ob-
servations. For the smoothing method, the number of stations where the event has been
observed is divided by the total number of stations within the neighborhood i. In regard
to the upscaling method, if the event is observed at least in one station of the neighbor-
hood the event is said to have occurred within the neighborhood. As a result, as also
Schwartz and Sobash (2017) points out, when verifying smoothing probabilities the ob-
servations can be fractional, whereas they are necessarily binary for the verification of
the upscaling method.
Here, three different neighborhoods are defined, as shown in figure 6.7. The the verifica-
tion is performed at each MOGREPS-G grid box independently.
For neighbourhoods which extend outside the analysis domain, i.e. that ones whose cen-
tre is located near the edge of the domain, the neighbourhood is defined to comprise only
the grid boxes inside the domain.

6.6.3 Results

After defining the two neighborhood methods, the verification attributes, computed in
the previous chapter for the sea breeze prediction, are here computed for each MOGREPS-
G grid box. In particular ROC curves are computed for MPi (since ROC curves are de-
fined for binary observations) and probabilistic scores calculated for both the methods.
More precisely, Brier score is well defined also for the fractional observations (see Equa-
tion 5.7), whereas the Ignorance score only for binary observations. Then, also the poten-
tial forecast skill is evaluated, considering the MOGREPS-UK control member as truth
(Buizza (1997)) 2

. This has been done in order to avoid representativity error issues and to remove the
frequency bias.

2In this case the control member has not been considered for the calculation of probabilistic forecasts.
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FIGURE 6.7: Schematic diagram of the MOGREPS-G native grid box
(shaded in grey), with the three neighbours comprising 3× 3 (red), 5× 5

(green) and 7× 7 (blue) grid boxes.

Bootstrap resampling is applied to test any significance in the score differences, analo-
gously with the sea-breeze forecast verification. In this case the entire neighbourhood
has been resampled (not the individual grid boxes) in order to retain spatial dependence.

Figure 6.8 shows the ROC curves for three different grid boxes in the domain for the
different probabilistic forecasts evaluated both against the MOGREPS-UK control mem-
ber and stations observations.
Not surprisingly, it can be immediately noticed that the probabilistic forecasts verified

against the MOGREPS-UK control member perform better than the ones verified against
the station observations. Also, when verified against observation Pbay f gust has the highest
AUC value and this is pretty consistent across the different grid boxes and neighbor-
hoods.
Also, the grid box in the upper part of the domain is shown to perform better than the
one in the centre, especially for Pbay f gustconv and Pbay f gust. In order to better quantify this,
areas under the ROC curve are calculated for each grid point, against the control member
and station observations.
Figure 6.9 shows the area under the ROC curve (AUC) for each grid point for the prob-
abilistic forecasts verified against the control member. Phrdyn has the highest values of
AUC, between 0.9 and 1, whereas Pgust has the lowest scores. Pbay f gustconv and Pbay f gust

show slightly higher values than Pgust, especially in upper part of the domain. Also
Pbay f gustconv is shown to have higher values than Pbay f gust in the same part of the domain.
Figure 6.10 shows the AUC values with the forecasts verified against stations observa-
tions. The situation is in this case reversed. Pbay f gustconv and Pbay f gust have higher AUC
values than Phrdyn and Pgust. This can be explained by the low density of station ob-
servations which could miss some gusts. That is the reason why the more conservative
Bayesian forecasts (see again figure 6.5) perform better.
In order to establish whether these differences in the AUC scores are significant, figure
6.11 reveals that Phrdyn is performing better than Pgust, almost everywhere in the domain,
significantly in the upper part of the domain. Phrdyn is worse than Pbay f gustconv and more
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FIGURE 6.9: Spatial map of the AUC values for a)Phrdyn, b) Pgust, c)
Pbay f gust and d) Pbay f gustconv at 12 hours ahead, with verification performed
against the MOGREPS-UK control member using the 3× 3 neighbourhood.

significantly than Pbay f gust. This means that the convective parameter is not adding addi-
tional information (in terms of resolution) with respect to the gust parameter only.
When quantifying the differences in AUC against the MOGREPS-UK control member,
Phrdyn is shown to have significant higher AUC values than the other forecasts, but not
everywhere in the spatial domain. The differences between the two Bayesian forecast are
not significant anywhere in the domain (figure 6.12d). Then Brier score (BS) and igno-
rance score (IG) are computed, at each grid point, verified against the control member
and station observations.

Score differences between different pairs of the probabilistic forecasts defined are
shown in figure 6.13 and 6.14. They have been calculated using equations (5.9-5.10).
Phrdyn performs better than any other probabilistic forecast, significantly from the neigh-
borhood containing 3× 3 grid boxes or more (for the central and lower grid box). In the
neighborhood containing only 1 grid box, the differences between Phrdyn and the other
forecasts are not significant. The last column shows the differences between Pbay f gust and
Pbay f gustconv. Generally Pbay f gust perform better than Pbay f gustconv. In terms of BSD, dif-
ferences on the smallest neighborhood are significant only in the central grid box (figure
6.13), whereas they become significant in the other parts of the domain with the neigh-
borhood containing at least 3× 3 grid boxes. In terms of IG, same conclusions can be
drawn.
In order to have a clearer idea of spatial structure of probabilistic scores, figure 6.15 shows
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FIGURE 6.10: Same as in figure 6.9, with forecast evaluated against stations
observations.

the spatial map of BS, for the smoothing forecast on the 3× 3 neighborhood. It is worth to
notice the variation of BS with latitude for all the probabilistic forecasts: the probabilistic
forecasts perform better at high latitudes than lower latitude. The same is true also with
respect to IGN (not shown here). More precisely, BS is lowest (indicating more skill) in
the upper left part of the domain. By looking at figure 6.16, it can be seen that in the up-
per left part of the domain (indicated by the black box) the elevation is higher. Therefore,
it is plausible that topography plays a role in the wind gust prediction. In figure 6.17 the
Brier Score differences between each pair of the probabilistic forecast are shown, evalu-
ated against observations on the 3× 3 neighborhood Phrdyn is performing better than any
other probabilistic forecast, almost everywhere significantly. The difference between the
two Bayesian forecasts is shown in figure 6.17d. The difference is higher in the central
and upper part of the domain than in the lower part. Everywhere, the Bayesian model
based on the gust parameter only is providing more information than the one based also
on the convective parameter.
Figure 6.18 shows the same as the previous figure, but with probabilistic forecast evalu-
ated against the control member. In this case, it can be appreciated that the differences
are almost everywhere not significant, indicating that none of the probabilistic forecast
has a significant superior potential skill for the wind gust occurrence.
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FIGURE 6.11: AUC differences for a)Phrdyn-Pgust, b)Phrdyn- Pbay f gustconv,
c)Phrdyn-Pbay f gust, Pbay f gustconv-Pbay f gust for the 3 × 3 neighborhood, veri-
fied against station observations. Black triangles indicate significant dif-

ferences at 5% level.

6.7 The relationship between wind gusts and large-scale condi-
tions

In this section the relationship between wind gusts and large-scale conditions is investi-
gated. Similarly as done with the sea breeze prediction, two predictors are selected and
computed by MOGREPS-G. Any parameter should reflect a physical process involved
in the generation of wind gusts. Two main mechanisms are associated with wind gust
occurrence: wind shear and buoyancy (Suomi et al. (2013)). More precisely, “wind gusts
observed at the surface seem to originate from air parcels flowing at higher levels and
being deflected downwards to the surface” (Brasseur (2001)). In order to reach the sur-
face, the stability of the layers is a very important factor. A stable layer prevents the
deflection of an air, while instability favours the vertical transport and is able to deflect
air parcels. Therefore as predictors the magnitude of wind shear and static stability at
two geopotential heights (500 and 850 hPa) are used. These are defined in the following
way:

WS2 =
(∆U)2 + (∆V)2

(∆z)2 (6.9)

N2 =
g

θw0

∆θw

∆z
, (6.10)
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FIGURE 6.12: Same as in figure 6.11, with the MOGREPS-UK control mem-
ber taken as verification.

where g is the gravitational acceleration, θw0 is the wet-bulb potential temperature and
∆θw is the wet-bulb potential temperature difference and ∆z is the height difference be-
tween the two geopotential heights.
These predictors are valid at 12UTC, for each MOGREPS-G grid box. The ratio N2/WS2

is known as bulk Richardson number.
The aim is to estimate the distribution of high wind speeds events (as defined in the pre-
vious sections by exceeding the 95th percentile) and no-events in the parameter space
defined by N2 and WS2. These distributions, estimated using again a Gaussian kernel
density estimation technique, are shown in figure 6.19. for three different MOGREPS-
G grid boxes, located in three different regions of the spatial domain considered in this
study.

The distributions of all the cases (events and no-events) and no-events only (middle
row) look very similar. This is because most of the cases comprise no-events. The distri-
bution of the events is different and show interesting features. Two of the three locations
show two peaks of the distribution. One peak is located in the portion of the parameter
space corresponding to high values of shear and positive values of static stability. The
other peak corresponds to low values of wind shear and vanishing values of static stabil-
ity. High values of shear are found to be indicative of severe wind gust also by Taszarek
et al. (2017). The other peak associated with near-neutral stable conditions (N2 ≈ 0) may
be indicative of deeper mixed layer and thus of surface-induced convection. Therefore
these two peaks may correspond to two different dynamical situations leading to wind
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FIGURE 6.13: Brier score differences of Phrdyn relative to Pgust (first col-
umn), to Pbay f gust (second column) and to Pbay f gustconv(third column. The
fourth column shows the BS of Pbay f gust relative to Pbay f gustconv. Probabilis-
tic forecast are produced with the upscaling method and verified against
observations. Upper, central and lower refer to the three grid boxes as in
the spatial domain of interest. Error bars show the 95% confidence interval

calculated using the bootstrap method.

FIGURE 6.14: Same as in figure 6.13 for information gain score.

gusts: the first is connected to turbulent motions, the second to convective cases. In re-
gard to the first peak, this corresponds to high values of wind shear and thus to high
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FIGURE 6.15: Map of the Brier Score for the smoothing probability forecast
in the 3× 3 neighborhood evaluated against observations.

values of turbulent kinetic energy, since the two quantities are strongly related. If then the
mean turbulent kinetic energy is greater than the buoyant energy (measured by the static
stability), the parcel of air is able to reach the surface generating the gusts.
Similarly as for the sea-breeze cases, the densities of wind gust occurrence and non-
occurrence presented here can be used to calculate the conditional probabilities of the
wind gust occurrence (as defined in the previous sections by exceeding the 95th percentile
of the MOGREPS-UK distribution). Then the spatial verification performed in the rest of
this chapter can be applied to these probabilistic forecasts to calculate the skill scores
relative to other probabilistic forecasts defined in section 6.5.
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FIGURE 6.16: A closer look on the spatial domain of the figure 6.1.

FIGURE 6.17: Map of the Brier Score difference for the smoothing proba-
bility forecast and observations within the smallest neighbourhood (3× 3
grid boxes.). a) BSgust − BShrdyn, b) BSbay f gust conv − BShrdyn, c) BSbay f gust −
BShrdyn,d) BSbay f gust conv − BSbay f gust. Black triangles indicate significant

differences at 5% level.
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FIGURE 6.18: Same as figure 6.17, with probabilistic forecasts compared
against the control member.
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FIGURE 6.19: Kernel density estimation of the distribution of the high
wind speeds for a) all cases, b) no-events and c) events in the parameter
space defined by the wind shear and static stability for the upper, central,
lower grid box. Events (i.e. the exceedance of the 95th percentile of wind

speed distribution) are defined according to MOGREPS-UK forecasts.
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6.8 Summary and conclusions

In this chapter probabilistic forecasts of the occurrence of strong wind gust have been cal-
culated and verified against station observations and the MOGREPS-UK control member
for each grid point in the spatial domain using a neighborhood approach. Three different
neighborhood sizes have been considered, consisting of 3× 3, 5× 5 and 7× 7 grid boxes.
Probabilistic forecasts of high wind speeds (above the 95th percentile) are initialized at 00
UTC (03 UTC for the convection-permitting) and the 12-18 UTC time window is verified.
From the analysis conducted the following conclusions can be drawn:

• There is high correlation between the gust diagnostic produced by the coarse res-
olution model and the 10m wind speed output. Furthermore, in convective situa-
tions the correlation is lower.

• The gust parameter produced by coarse resolution model and the Bayesian models
based on this diagnostic only and also on convective parametrization have some
information about the high wind gust occurrence (as defined earlier).

• Neverthless, the convection-permitting model is shown to provide still additional
information (not in terms of AUC when verifying against observations), signifi-
cantly for neighborhoods containing 3 × 3 grid boxes or more, when compared
against station observations. If the MOGREPS-UK control member is taken as ver-
ification, the two probabilistic forecasts and the two Bayesian forecasts are shown
to perform in a similar way and none of them is significantly superior.

• It seems that the geographical location plays a role for the performance of the prob-
abilistic forecasts. More precisely, higher latitude regions perform better than the
ones at lower latitudes. This can be attributed to the different elevation between
higher and lower latitudes.

• Two large-scale predictors (static stability and wind shear) have shown to be able
to discriminate between high wind speeds events and non events. In particular,
the distribution of the events has two peaks which correspond to two different dy-
namical mechanisms (turbulent mixing and surface induced convection). leading
to high wind speeds.
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Chapter 7

Conclusions and Future work

7.1 Summary

Convection-permitting ensembles represent a new appealing forecasting technology . At
the same time, due to very fine model grid size, they are computationally expensive.
Therefore the aim of this thesis was to determine whether the resolved scales represent
significant new forecast information or simply respond to large-scale forcing in a highly
predictable way.
The other aim was also to understand the dynamical mechanisms leading to any im-
provement in the skill. Thus, two dynamical phenomena were selected to test the proba-
bilistic forecasts’ performance: sea breezes and convective wind gusts.
Sea breezes are atmospheric counterparts of the so called density current. Therefore a re-
lated aim was to investigate the dynamics of two colliding density currents, by means of
numerical simulations in an idealized framework.
These two phenomena occur on spatio-temporal scales which are realistically represented
only at convection-permitting resolutions. However, the mechanism of their occurrence
is still influenced by the large-scale environmental conditions in which they are embed-
ded. Therefore, the probability extracted from a convection-permitting model for the sea
breeze and convective wind gust occurrence was compared to a conditional probability
of the occurrence, based on large-scale conditions extracted from a lower resolution en-
semble prediction system.
Probabilistic score differences between these forecasts were then calculated to quantify
any additional value provided by the convection-permitting ensemble forecast.

7.2 Main results

The main results for each research questions are listed below the project described in
chapter 2 and the remainder of the thesis:

7.2.1 Chapter 2

(a) Is a two-dimensional vorticity model able to capture the essential features of the col-
lision dynamics, in an idealized framework similar to the laboratory experiments ?
This can be seen first visually in the supplementary videos of (Cafaro and Rooney,
2018) and comparing with similar videos of (van der Wiel et al., 2017).
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For a more quantitative analysis, the interface shape angle and the maximum col-
lision height were calculated. In particular maximum collision height for both
numerical simulations and laboratory experiments were compared (figure 2.8c),
showing a similar behaviour with respect to the buoyancy ratio parameter.

(b) What is the role of baroclinically generated vorticity in determining and explaining
some characteristics of the collision dynamics ?

For a steadily translating density current, the vorticity generation is balanced to
first order by the horizontal current motion. It is conjectured that during a density-
current collision, this balance is lost, and takes some time to be recovered. This
implies that the dynamics during the collision are controlled by the motion of the
current-head vortices which are already established.

(c) Can these characteristics be predicted using only the initial conditions, prior to the
running of the numerical model ?

Yes, two predictive formula for the interface shape angle were presented, based on
two different arguments. Both of them were found to agree well with the values of
the numerical model (figures 2.7 and 2.12). This could have potential application in
future parametrization of these processes in coarser resolution models.

7.2.2 Chapters 3, 4, 5, 6

a) How can the information about different weather events be extracted for an au-
tomated forecast production from both the convection-permitting model and its
lower resolution counterpart ?

In chapter 4 methodologies to extract information about sea-breezes occurrence
were described. For the convection-permitting model, using gridded data, a novel
tracking algorithm of the sea-breeze front inland penetration was implemented.
Detection methods used by other authors either used observational data, by thresh-
olding the meteorological variables affected by the sea-breeze passage. This implies
that different thresholds have to be used for different parts of the world. Hourly
rate of change of surface wind and temperature variables were used to detect for
each grid point, the position of the sea-breeze front. The main aim of the algorithm
is to detect the spatio-temporal coherence of the sea-breeze front and to minimise
the risk of spurious detection, given the resemblance between sea-breeze charac-
teristics and cold fronts. This tracking algorithm is used to provide a definition of
sea-breeze occurrence for each member and therefore to estimate the probability of
sea-breeze occurrence. It could be implemented in an operational environmental
system.
A different methodology was implemented in order to estimate the probability
of sea-breeze occurrence from the coarser resolution ensemble members (section
4.3.3). Due to the inability to resolve the sea-breeze circulation, the former method-
ology is not applicable. A Bayesian approach was used instead. Two predictors
(land-sea temperature contrast and large-scale wind), describing the large-scale
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conditions and influencing the sea-breeze occurrence, define a two-dimensional pa-
rameter space. In this space, the two densities of occurrences and non-occurrences,
defined with the previous tracking algorithm, are estimated. These densities are
then used to estimate the probability of sea-breeze occurrence conditioned on the
two-large scale predictors given by the coarse resolution model.
The same methodology was applied to the prediction of wind gusts. In this case
different predictors were selected (static stability and wind shear), related to the
wind gust occurrence.
Again, this Bayesian method could be implemented operationally.

b) How do forecast probabilities calculated from both the ensembles differ ?

In regard to the sea-breeze case, differences between the convection-permitting
probabilistic forecast and the Bayesian forecast estimated from the coarse resolution
ensembles, are established with respect to lead time. The higher resolution prob-
abilistic forecast is sharper than the the Bayesian forecast for all lead times (figure
4.10). The Bayesian forecast exhibits a similar behaviour between T+12 and T+24
and T+18 and T+30 forecasts. At 12 and 24 hours ahead it does not have probability
values higher than 0.5, whereas for the other two lead times, there are instances of
values ≈ 1. Interestingly, these are the lead times when the Spearman’s correlation
coefficient is almost zero (figure 4.11), whereas it is ≈ 0.3 at 12 and 24 hours ahead.
This coefficient measures to what extent there is a monotonic relationship between
the two probabilistic forecast (ranging from −1 for a negative monotonic relation-
ship to 1 for a positive relationship).
In regard to the wind gust variable, two probabilistic forecasts and two Bayesian
forecasts, defined in equations (6.3-6.6), are compared, only for one initialization
time and one valid time window for a whole summer season.
Once again, the two probabilistic forecasts estimated directly from the convection-
permitting and coarse resolution ensembles are sharper than the Bayesian forecasts
(figure 6.5).
In regard to correlation, given the probabilistic forecast were produced for each
coarse resolution grid box, the Spearman’s correlation coefficient was calculated
for each grid box (figure 6.6). The probabilistic forecasts computed directly from
the convection-permitting and coarse resolution members show correlations in the
range 0.5− 0.8, with the peaks in the upper part of the spatial domain. The pair
formed by the Bayesian forecasts conditioned on the gust parameter only and also
on the convective parameter show the highest correlation (≈ 1), especially in the
lower part of the domain.

c) What is the forecast skill of the convection-permitting ensemble relative to a coarser
resolution ensemble ? How does it depend on the variable ? How does the skill
evolves with forecast lead time ? Is any gain in the skill significant ?

In Chapter 5 the probabilistic forecasts of sea-breeze computed in chapter 4 were
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verified against station observations. The skill of the convection-permitting ensem-
ble was calculated relative to both the Bayesian forecast based on the large-scale
predictors and the climatological forecasts, i.e. the percentage of occurrence in the
stations observations.
Different verification metrics were used to quantify the added value of the convection-
permitting ensemble: area under the ROC curve, Brier Score and Ignorance Score. It
was found that the convection-permitting ensemble does have an higher area under
the ROC curve for all lead times. This means that it is more able to discriminate be-
tween sea-breeze events and no-events than the Bayesian forecast (figure 5.2). The
calculation of probabilistic scores above mentioned, indicate that the convection-
permitting ensemble is significantly more skillful than the Bayesian forecast (figure
5.5). The difference in the Brier score is in the range 0.05 − 0.1, whereas the In-
formation gain in the interval 0.2− 0.6. Whether these values warrant the cost for
running the convection-permitting ensemble forecast is however beyond the scope
of this thesis.
Interestingly, it was found that the skill does not decrease with lead time. In particu-
lar, forecasts at 12 and 24 hours ahead show a similar performance, in terms of area
under the ROC curve, reliability and resolution terms (figures 5.2, 5.5). Different
initialization times with different assimilated observational data, boundary-layer
and land-surface schemes may all have contributed to this evolution of the skill
with lead time. Also, since sea breeze is a self-generating phenomenon if the con-
ditions are right, there is no non-linear feedback from previous evolution.
For the wind gust prediction, in chapter 6, the probabilistic and Bayesian forecasts
was verified against station observations (using a neighborhood approach) and also
against the convection-permitting control member. The relative skill between dif-
ferent pair of the forecasts, calculated against station observations and for each grid
box, shows that the convection-permitting ensemble is more skillful, almost every-
where significantly in the domain (figure 6.17). Instead, when the control member
is taken as verification, the conclusion is different. Almost everywhere, none of the
forecasts is significantly more skillful than the others.

d) Can be the potential information gain be predicted from the synoptic-scale flow ?
This was addressed by calculating the probability of the weather event, conditioned
on some synoptic-scale predictors. In the sea-breeze case, the land sea tempera-
ture contrast and the ambient wind was shown to be able to discriminate between
sea breeze events and no-events (figure 4.8). This implies that the synoptic-scale
flow can convey some information about sea-breeze occurrence. After performing
the verification against observation, it can be seen that in terms of resolution, the
Bayesian model has significantly more resolution than the climatological forecast
(which has zero resolution, by construction, figure 5.5). This means that having
daily information about the large-scale conditions is more useful for the sea-breeze
occurrence prediction than the climatological forecast.
Synoptic-scale predictors were chosen also for the wind gust prediction. The Bayesian
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probabilistic forecasts based on gust parameter and the convective parameter, given
by the coarse resolution ensemble, are shown to have potential information about
wind gust occurrence, by performing not worse than the convection-permitting
forecast (figure 6.18).

7.3 Future work

Here some limitations of this work along with some suggestions for extending it are
offered.

7.3.1 Chapter 2

The work presented in chapter 2 although it offers interesting insights into the under-
standing of the dynamics of collision of two unequal density currents, has some limita-
tions due to the numerical simulations carried in an idealized framework. Here some
suggestions for future work for this specific project:

• Firstly, a stratified ambient fluid may be considered. This could represent other
boundary layer types and the same features (maximum collision height and inter-
face angle) can be calculated into this new framework.

• Secondly, the ambient wind at rest was imposed, as initial conditions. Therefore the
effect of wind shear was not accounted.

• After incorporating these effects into the idealized numerical simulations, a 3D nu-
merical simulation may be considered, maybe using large eddy simulations (LES)
models.

7.3.2 Chapters 4,5,6

The work presented on the sea breeze and convective wind gusts has some limitations.
Here these limitations are discussed some directions for extending it in the future are
offered.

• The sea breeze tracking algorithm assumes a east-west oriented coast. In this case
the maximum of the hourly changes of the variables involved was calculated in the
meridional direction (in the equations 4.4-4.6), which is the direction perpendicular
to the coast. For more general coastline orientation, the maximum on the gridded
data should be calculated with respect to both the meridional and zonal directions.

• The sea breeze probabilistic occurrence forecasts are produced by calculating the
probability of the sea breeze diagnostic exceeding a certain threshold. Sensitivity
tests on how the probability values vary with this threshold can be carried, defining
maybe the optimal threshold the one for which the highest probabilistic score is
achieved.
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• The Bayesian model presented in chapter 4 can be improved by adding other pre-
dictors, whose information is not already embedded by temperature contrast and
large-scale wind. For instance, the stability parameter can be included, or other
conditions which are not directly or indirectly included in the parameters used.
However, in this case much more data is needed to obtain good kernel density es-
timates as the dimension increases from two. Also, other statistical methods can
be used (e.g. multivariate logistic regression, model selection approach). However
these methods could have not provided us a physical link between the higher den-
sity of sea breeze events and the values of the predictors used.

• The algorithm to detect sea breezes in observations is basic. More sophisticated
methods, including fuzzy algorithms may be used (Coceal et al., 2018). Further-
more, observational errors are not taken into account in the verification process
(e.g. as in Bowler (2008), Candille and Talagrand (2008)). This is because the main
scope of this thesis is the inter-comparison of the two probabilistic systems and not
assessing the quality of the systems themselves. However, taking into account ob-
servational error “helps to produce better forecasts of the truth and to ensure we
favour forecasters who issue better forecasts of the truth” (Ferro (2017)).

• The work presented in chapter 6 is an application of the methodology introduced in
chapter 4 to a severe weather event. Therefore it serves as a proof of concept of the
methods. Thus only one forecast lead time and one validation year only were inves-
tigated, implementing the leaving one-day-out technique for training the Bayesian
models. Also, the probability of exceeding a high percentile was used and not also
the full probability distribution of the gust. Furthermore, the 10m wind speed was
used as a proxy for the wind gust and compared with the gust parameter from
the coarse resolution ensemble. This is reasonable in convective situations, when
then convective outflow contribution is higher than the turbulent process contribu-
tion. However, in non-convective situations, there would still need to parametrize
turbulence mixing for the convection-permitting model, providing a more direct
comparison with the gust parameter output from the coarse resolution ensemble.
The problem is, as pointed out by Mylne and Roberts (2017) is that in convective
situations, the use of a parametrized gust would lead to an overestimation of the
wind speed. Therefore in convective situation, the gust parametrization should be
switched off or modified in convective situations. A clear discrimination between
convective and no-convective events is needed to remove this overestimation.
Also, the Bayesian model based on wind shear and static stability can be trained on
a much larger sample and then used to calculate the conditional probability of high
wind speeds based on the two predictors.

Finally the author would like to raise some other research questions, which are not
directly related to the main research questions of this thesis but that could lead to some
interesting work in the future:
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• Looking at figure 4.5, some ensemble members show the sea breeze signal, whereas
others not. It could be interesting to know what kind of physical differences are re-
sponsible for this behaviour.

• A general thought on reliability property of ensemble forecast. One assumption is
that whenever a probability of sea breeze of 40% is issued, it is expected the sea
breeze to occur 40% of the time, if the ensemble prediction system is reliable.
However, this could not be true, not only because the system is indeed not reliable
but also because when the same probability is issued, the atmospheric conditions
are not necessary the same.
In this study, sea breeze forecast were analysed in anticyclonic conditions, so this
assumption should be verified. However, for instance, for variables like precipita-
tion this assumption, in principle, is not true.
That is why it is important to categorize events for different weather regimes, to
have a more reliable analysis of the reliability property. So, once again, the verifi-
cation of the phenomena themselves and not the conventional model variables is
important in this respect.
The hope is that with this thesis, such analysis of specific weather phenomena is
encouraged and will become more widespread in the future.
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Appendix A

Modified maximum likelihood
estimator of sea breeze occurrence

In this appendix a modified maximum likelihood estimator (MLE) of the Bernoulli distri-
bution is presented. In chapter 4, to generate the convection-permitting forecast from the
ensemble members, the classic MLE was used (see equation 4.13). Here a modified max-
imum likelihood estimator is presented. This is to take into account the finite ensemble
size, which can lead to the generation of probability values of 0, which are problematic
in the calculation of the Ignorance score.
Let the functional φ(p) be defined as

φ(p) := − logL(p) + λDKL(p, pc), (A.1)

whereL is the classic likelihood function of the Bernoulli distribution, DKL is the Kullback-
Leibler divergence between p and pc already defined in Chapter 5 and λ a real parameter
to choose and pc a climatological probabilistic forecast. More precisely

L(p) := pn(1− p)N−n (A.2)

L can be rewritten as:

L(p) =
(

p
p̂

)n (1− p
1− p̂

)N−n

p̂n(1− p̂)N−n, (A.3)

where p̂ = n/N is the maximum likelihood estimator (MLE) for the Bernoulli distribu-
tion, the sample proportion of successes n and N is the ensemble member size. Therefore

− logL(p) = −n log
(

p
p̂

)
− (N − n) log

(
1− p
1− p̂

)
+ log C(N, n)

= N
(
− p̂ log

(
p
p̂

)
− (1− p̂) log

(
1− p
1− p̂

))
+ log C(N, n)

(A.4)

where C(N, n) = p̂n(1− p̂)N−n that does not depend on p.
Therefore φ(p) can be rewritten as:

φ(p) = NDKL(p, p̂) + λDKL(p, pc) (A.5)
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Thus, in order to calculate the MLE for φ:

∂

∂p
φ(p) = N

(
− p̂

p
+

1− p̂
1− p

)
+ λ

(
− pc

p
+

1− pc

1− p

)
=

1
p
(−Np̂− λpc) +

1
1− p

(N(1− p̂) + λ(1− pc))

(A.6)

Then it follows that:
∂

∂p
(φ(p)) = 0 ⇐⇒ p =

p̂ + λ
N pc

1 + λ
N

, (A.7)

which is the MLE for the functional φ. It is worth to notice that p → p̂ for N → ∞
or if λ = 0, i.e. if the ensemble size becomes bigger and bigger or if the climatological
probability has no weight.
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Appendix B

Sufficiency property

In order to provide additional evidence related to the equation (5.1), here another prop-
erty is examined. This is the sufficiency property explored by (De Groot and Fienberg,
1982) and reformulated by (Bröcker, 2009) in these mathematical terms:

P(Y = 1|(p, q)) = P(Y = 1|q), (B.1)

where p and q are the convective-scale and the Bayesian forecast respectively. In other
words, equation (B.1) means that the forecasting scheme q is sufficient for p. Therefore if
equation (B.1) holds, there is not additional information provided by p.
Again, its validity is tested statistically, using the log-likelihood ratio test (Mood et al.
(1974)), which has been already used to test resolution (section 5.3).
In particular p and q are divided into categories Cm and Dl (1 ≤ m ≤ M, 1 ≤ l ≤ L)
respectively. In this case M = L = 2. The two categories C and D are the two evenly
spaced bins in the interval [0, max p] and [0, max q] respectively. This will define a three-
way contingency table:

#{Y = k, p ∈ Cm, q ∈ Dl} =: nk,m,l , (B.2)

with
P(Y = k, p ∈ Cm, q ∈ Dl) =: Pk,m,l . (B.3)

Categories C andD have been chosen in order to not have zero entries in the contingency
table nk,m,l . Therefore equation (B.1) can be rewritten as:

P(Y = k|p ∈ Cm, q ∈ Dl) = P(Y = k|q ∈ Dl) (B.4)

⇐⇒ Pk,m,l

∑k Pk,m,l
=

∑l Pk,m,l

∑k,l Pk,m,l
(H0) (B.5)

Equation B.5 represents the null hypothesis H0. The likelihood function and the likeli-
hood ratio are thus defined as:

L = ∏
k,m,l

Pnk,l,m
k,l,m . (B.6)

Λ =
max logL

maxH0 logL =
λ1

λ0
. (B.7)

λ0 = maxH0 logL has to be calculated. From equation (B.5):

Pk,l,m = πk,lρl,m, (B.8)
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where

πk,l =
∑l Pk,l,m

∑k,l Pk,l,m

ρl,m = ∑
k

Pk,l,m

(B.9)

Therefore

logLH0 = log

(
∏
k,l,m

(πk,lρl,m)
nk,l,m

)
, (B.10)

where LH0 is the likelihood function under the null hypothesisH0.
Equation B.10 has to maximised with respect to both πk,l and ρl,m There are two additional
constraints to take into account:

∑
l,m

ρl,m − 1 = 0

∑
k

πk,l − 1 = 0 ∀1 ≤ l ≤ L.
(B.11)

Hence, in order to calculate maxH0 logL, the method of Lagrange multiplier is applied
subject to (B.11).
The following expression needs to be maximised:

F(πk,l , ρl,m, R, Πl) = ∑
k,l,m

nk,l,m (log(πk,l) + log(ρl,m))+R

(
∑
l,m

ρl,m − 1

)
+∑

k,l
Πl

(
πk,l −

1
k

)
(B.12)

∂F
∂πk,l

=
∑
m

nk,l,m

πk,l
+ Πl = 0

∂F
∂ρl,m

=

∑
k

nk,l,m

ρl,m
+ R = 0

(B.13)

Combining equations (B.13-B.11) the following expressions for πk,l and ρl,m are obtained:

πk,l =
∑
m

nk,l,m/N

∑
m,k

nk,l,m/N

ρl,m = ∑
k

nk,l,m/N,

(B.14)

where N is the total length of the dataset.
It can be proved that 2(λ1 − λ0) = 2 log( max L

maxH0 L ) ≈ χd, where d = (K − 1 + M)L− 1.1

The results of the log-likelihood ratio test are shown in table B.1.
It can be seen both from the p-value and from the value Λ that there is enough evi-

dence to reject H0 at 5% significance level. In other words, this statistical test suggests

1In our case K=2
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Forecast lead time (hours) 6 12 18 24 30
Λ 427.00 8.43 · 103 2.26 · 106 1.04× 107 1.07× 104

p 0.03 0.002 2.05 · 10−5 5.14× 10−6 0.023

TABLE B.1: Log-likelihood ratio test results for all lead times.

that the Bayesian forecast alone does not provide sufficient information.
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