
Blow-up in the Nonlinear Schrödinger
Equation Using an Adaptive Mesh

Method

Ashley Twigger

Supervisor: Professor Michael J. Baines

Contents

Abstract 1

Acknowledgements 2

1 Introduction 3

1.1 The structure of blow-up solutions for PDEs 4

1.1.1 Overview . 4

1.1.2 Scaling . 6

2 Moving grids 9

2.1 Moving mesh methods . 12

2.1.1 Moving mesh PDEs . 12

2.1.2 Conservative method 16

3 Numerical Results 20

3.1 Fisher’s equation . 20

3.2 The Kassoy problem . 24

3.3 The nonlinear Schrödinger equation 28

3

0 CONTENTS

4 Discussion 31

Bibliography 33

Abstract

In this dissertation we give a brief overview of moving mesh methods, in-

cluding one based upon moving mesh PDEs and one based on relative con-

servation. Then we describe the blow-up problems that we are interested

in applying the relative conservation method to. Later on we analyse our

results comparing them to existing results.

1

Acknowledgements

Firstly I would like to thank the entire department for being so supportive

and understanding. In particular my supervisor Mike Baines who has gone

above and beyond what I would expect of a supervisor, and Sue Davis who

throughout the year has been there when I needed her. I would also like

to thank the EPSRC for allowing me the opportunity to be on this course,

without the funding that they provided it would not of been possible for me

to further my education.

Declaration

I confirm that this is my own work and the use of all material from other

sources has been properly and fully acknowledged.

Ashley Twigger

2

Chapter 1

Introduction

Blow-up has increasingly become a major phenomena in the evolution of

nonlinear equations. Physical problems when modelled may develop singu-

larities in a finite amount of time T (T <∞). Combustion in chemicals,

chemotaxis in cellular aggregates, or the formation of shocks in the invis-

cid Burgers equation are examples of blow-up in the solution of a model [3].

These singularities can represent a change in the properties of the model such

as ignition of a heated gas mixture.

A class of problems that displays this feature is the semilinear parabolic

equations. These are used in the description of blow-up in the temperature

of a reacting medium such as burning gas. These have the form

ut = uxx + f(u) (1.1)

with boundary conditions

u(0, t) = u(1, t)

3

4 CHAPTER 1. INTRODUCTION

and initial conditions

u(x, 0) = u0(x)

where f(u) is any convex function of u. As this is the part of the equation

that is blowing up we require f(u) → ∞ as u → ∞. The restrictions of

the initial condition are that it must be sufficiently large and have a single

nondegenerate maximum [3].

1.1 The structure of blow-up solutions for PDEs

First we give an overview of the problem followed by an example of scaling.

1.1.1 Overview

Let x∗ denote the single blow-up point, such that

u(x∗, t)→∞ as t→ T (1.2)

and

u(x, t)→ u(x, T) <∞ if x 6= x∗ (1.3)

This just means that as we approach the blow-up time T the only point

that approaches infinity is the blow-up point x∗. Around x∗ an isolated peak

develops with the width tending towards zero as time approaches T . To

compute a solution which represents the true solution accurately, an adap-

1.1. THE STRUCTURE OF BLOW-UP SOLUTIONS FOR PDES 5

tive numerical method must be used that evolves the spatial mesh as the

singularity develops. The singularity develops in a fairly simple manner, of-

ten independent of local structures in the initial conditions.It is conjectured

in [5] that the growth of u(x, t) near the blow-up time T is described by

max |u(x, t)| ∝ (T − t)−α α > 0

We will be looking at the equation when f(u) = up (p > 1) which is Fisher’s

equation and f(u) = eu which is the Kassoy problem in addition to the non-

linear Schrödinger equation which we will discuss later. These problems are

great for testing out numerical methods as the formation of the singularities

is typical of a wide range of PDEs (partial differential equations). Also, a

lot is known about the underlying analytic structure of the solutions for t

close to T and x close to x∗. Thus they make excellent problems for testing

performance and accuracy. If the numerical method faithfully follows the

underlying asymptotic structure we can assume that it does the same for

more complicated problems where we do not know the underlying structure.

Most of the work that precedes [3] is based on either clearly knowing the

analytic structure of the singularity and exploiting it or using h-refinement

based methods that increase the number of mesh points as t→ T . Contrary

to this both Budd’s and our methods do not rely on a priori knowledge of

the solution or additional mesh points. This is achieved by using a monitor

function M(u) which gives information on how the mesh points should be

distributed through space and time.

Analysing the scaling properties of the PDE leads to an optimal choice for

M . A full proof of the asymptotic scaling of the singularity can be found in

[1].

6 CHAPTER 1. INTRODUCTION

Let us consider the solutions of the Fisher’s equation

ut = uxx + up, p > 1 (1.4)

with

u(0, t) = u(1, t) = 0

u(x, 0) = u0(x) > 0

If u0(x) is sufficiently large and has a single nondegenerate maximum then

(1.2) and (1.3) hold. The point x∗ at which the isolated spike occurs and the

blow-up time T depend on u0(x), but the development of the blow-up itself

is almost independent of the initial conditions, provided x and t are close to

x∗ and T respectively [2].

1.1.2 Scaling

We now consider scaling properties of (1.4).

Let
t = λt′

x = λθx′

u = λβu′

Substituting into the left hand side of (1.4)

1.1. THE STRUCTURE OF BLOW-UP SOLUTIONS FOR PDES 7

ut =
∂u

∂t
=
∂
(
λβu′

)
∂ (λt′)

= λβ−1∂u
′

∂t′

and the right hand side

uxx =
∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
λβ−θ

∂u′

∂x′

)
= λβ−2θ ∂

2u′

∂x′2

up = λβpu′p

Changing variables the Fisher’s equation becomes

λβ−1u′t′ = λβ−2θu′x′x′ + λβpu′p

For natural scaling invariance of the PDE we need

β − 1 = β − 2θ = βp

which implies θ = 1
2

and β = − 1
p−1

, and so a natural scaling of the solutions

of (1.4) is

(T − t)→ λ(T − t)
x→ λ

1
2x

u→ λ−β
, λ > 0 (1.5)

A self-similar solution of (1.4) is any solution of the form

u

(T − t)−β
= f

(
x

(T − t)−
1
2

)

8 CHAPTER 1. INTRODUCTION

which is invariant under this scaling. Such scaling invariance and corre-

sponding self-similar solutions can be found in various equations describing

blow-up, with very similar scalings used for the Kassoy problem and nonlin-

ear Schroödinger equation.

Here are a few that we will be looking at in this dissertation.

Fisher’s equation

ut = uxx + up (p > 1)

The Kassoy problem

ut = uxx + eu

The nonlinear Schrödinger equation

iψt +∇2ψ + |ψ|2σ ψ = 0

The first two are semilinear parabolic equations and the final one is a hyper-

bolic PDE.

Chapter 2

Moving grids

When a singularity forms it gains height and loses width at increasingly

smaller time scales when approaching time T . This isolated spike could be

missed by a fixed mesh method over time, as the spike could fall between

mesh points. So an adaptive mesh method should be used to overcome this.

There are three main types of adaptivity:

(1) h-refinement is static and refines the mesh by adding nodes to make

the mesh finer in places shown in figure 2.1, but practically this is

not a viable method to use in this case as it becomes more and more

computationally expensive as the problem develops and the singularity

loses width.

(2) p-refinement is also static and uses higher order polynomials to rep-

resent the solution more accurately (figure 2.2). It has high rates of

convergence and accuracy compared to h-refinement but a polynomial

9

10 CHAPTER 2. MOVING GRIDS

Figure 2.1: Left: original mesh. Right: post h-refinement, refined edges in
red.

will never be able to fully model the blow-up if it falls between nodes.

Figure 2.2: A sketch of p-refinement where higher order polynomials are used
between nodes.

(3) The methods that both ourselves and Budd use are based on r-refinement.

These are moving mesh methods that uses a fixed number of nodes and

11

redistribute them to keep track of main features according to a certain

criteria which is set (figure 2.3). This has the advantage that it can

keep track of the singularity right up to blow-up time T without being

expensive to compute, but it has the drawback that away from the

blow-up point the solution can be poorly resolved due to few nodes

remaining close.

Figure 2.3: r-refinement: the nodes are redistributed give finer resolution in
places.

Now we describe the r-refinement based moving mesh methods.

12 CHAPTER 2. MOVING GRIDS

2.1 Moving mesh methods

2.1.1 Moving mesh PDEs

To solve PDEs such as (1.1) Budd proposes in [3] that by using a moving

mesh PDE method in which u(x, t) is discretised in the spatial variable to

give the solution ui(t) on a moving mesh xi(t), i = 0, ..., N . The boundary

conditions of (1.1) dictate that u0(t) = uN(t) = 0, x0 = 0 and xN = 1. The

mesh xi(t) is defined by the mesh transformation

x(ξ, t) : [0, 1]→ [0, 1],

where x is the physical coordinate and ξ is the computational coordinates.

Figure 2.4: Sketch of transformation from computational space (left) to phys-
ical space (right)

As can be seen in figure 2.4 a simple mesh in computational space can be

2.1. MOVING MESH METHODS 13

used to describe a complicated physical space.

xi(t) = x(ξ, t) = x

(
i

N
, t

)
. (2.1)

The constraint ∂x
∂ξ
> 0 ensures that mesh crossing does not occur.

The moving mesh PDE (MMPDE) approach [2] requires a new PDE to solve

x(ξ, t) known as the moving mesh PDE which is solved simultaneously with

the original PDE to find u(x, t).

The process used to determine x(ξ, t) is the equidistribution of a positive

monitor function M(u). The equidistribution principle takes some measure

of something such as error, density or a function and places the nodes of a

mesh so that the contributions between the nodes are distributed equally to

give a smooth solution.

∫ xi(t)

0

M dx =
i

N

∫ 1

0

M dx = ξ

∫ 1

0

M dx (2.2)

since M is distributed equally between nodes (2.2) holds. Differentiating

(2.2) gives

∂

∂ξ

(
M
∂x

∂ξ

)
= 0, x(0, t) = 0, x(1, t) = 1 (2.3)

If (2.3) holds then a coordinate transformation is said to be equidistributed.

Budd et al [2] found that for his method it is more convenient not to strictly

enforce equidistribution but instead to solve for an MMPDE which tends

towards an equidistributed solution. That way he states a simple initial mesh

can be used, such as a uniform one. Also the process produces a more stable

mesh with less chance of mesh crossing then if (2.2) were strictly enforced,

14 CHAPTER 2. MOVING GRIDS

and a smoothing approach was used.

Out of the various MMPDEs proposed in [4], Budd uses the two labelled

MMPDE4 and MMPDE6, which are respectively

τ
∂

∂ξ

(
M
∂ẋ

∂ξ

)
= − ∂

∂ξ

(
M
∂x

∂ξ

)
(2.4)

and

τ
∂2ẋ

∂ξ2
= − ∂

∂ξ

(
M
∂x

∂ξ

)
(2.5)

where ẋ denotes ∂x
∂t

∣∣
ξ
, and τ is a small parameter used to relax the mesh to

increase resolution away from the blow-up.

τ tends to zero on the left hand side of both (2.4) and (2.5) as t tends to

T therefore the MMPDEs head towards an equidistributed state (2.3). This

relaxes the need to enforce an exact equidistribution at the start allowing

the use of a simple initial mesh such as a uniform one. Also this relaxation

increases resolution further away from blow-up giving a better approximarion

to the exact solution in the region.

If the MMPDE method is used the MMPDE must be invariant under the

scaling (1.5), which can be achieved by using a suitable parameter τ and mon-

itor function M(u) [2]. For Fisher’s equation the MMPDEs remain invariant

under the monitor function M(u) = up−1.

For the numerical computation the PDE (1.4) is transformed in terms of the

computational coordinate ξ using the chain rule

2.1. MOVING MESH METHODS 15

ut = u̇+ uxẋ uxi = uxxi

and discretised by a central finite difference into the quasi-Lagrangian form

 u̇− uξ
xξ
ẋ = 1

xξ

(
uξ
xξ

)
ξ

+ up

u(0, t) = u(1, t) = 0
(2.6)

Discretising this equation in the spatial variable whilst remaining continuous

in time gives

u̇i −
ui+1 − ui−1

xi+1 − xi−1

ẋi =
2

xi+1 − xi−1

(
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1

)
+ upi (2.7)

for i = 1, ..., N − 1 which are the interior points, since the exterior points are

fixed (u0 = uN = 0 for all t). MMPDE4 and MMPDE6 can be discretised in

a similar fashion.

To obtain a reasonably accurate solution without oscillatory behaviour

it is often necessary to use some sort of smoothing of the mesh. Using a

smoothed monitor function M̃ Budd’s final forms of the discretised MMPDEs

are

τ
(
M̃i+ 1

2
(ẋi+1 − ẋi)− M̃i− 1

2
(ẋi − ẋi−1)

)
= −

(
M̃i+ 1

2
(xi+1 − xi)− M̃i− 1

2
(xi − xi−1)

)
(2.8)

for MMPDE4 and

16 CHAPTER 2. MOVING GRIDS

τ (ẋi+1 − 2ẋi + ẋi−1) = −
(
M̃i+ 1

2
(xi+1 − xi)− M̃i− 1

2
(xi − xi−1)

)
(2.9)

for MMPDE6. i = 1, ..., N − 1 with x0 = 0 and xN = 1, where M̃i+ 1
2

:=

1
2

(
M̃i + M̃i+1

)
. Note that the smoothing of the monitor function maintains

dimension which is important when rescaling of the equations is considered.

This method has been used on blow-up problems successfully. We now de-

scribe a different approach.

2.1.2 Conservative method

The way our numerical method differs to Budd’s is that instead of moving

into a computational space to solve the PDE and then differentiating with

respect to time to get ẋ we remain in the physical space and compute ẋ

directly in terms of x. Also, Budd uses a monitor function to equidistribute

the error of some property (e.g. density) whereas we are using a monitor

function to maintain any distribution of the nodes so that for example any

initial ”mass” in a cell remains constant relative to the total mass.

Mass in cell

Total mass
= constant ∀t < T

this gives each node a velocity so we know where it will be at the end of each

2.1. MOVING MESH METHODS 17

Figure 2.5: Sketch showing the same cell represented in blue then red and
containing the same relative ”mass” in both as the problem has evolved

time step.

Now we look at the general outline to the method that has been used.

Method

The conservative method begins with an initialisation process. ∆t is the

time step used throughout the computations and if fixed then it is chosen

here, whereas if a variable ∆t is being used then the constants ∆s which is

a small scalar, and T an estimate to the blow-up time are chosen now, later

determining ∆t at each time step.

xi(0) =
i

N
L for i = 0, ..., N, L > 0.

This creates a uniformed mesh of N + 1 nodes in the region [0, L]. We then

apply the initial condition

18 CHAPTER 2. MOVING GRIDS

u(x, 0) = f(xi) for i = 0, ..., N

to the mesh points. If the mass of the region changes during evolution then

we define θ in terms of the monitor function M(u) as follows.

θ =

∫ xN

x0

M(u) dx.

This is a normalising variable used in the next part of the initialisation pro-

cess

ci =
1

θ

∫ xi

x0

M(u) dx for i = 1, ..., N − 1, (2.10)

which remain constant for all t due to the 1
θ

in front of the integral.

This is the beginning of the loop, where the method starts in earnest. It de-

termines the velocities of θ and each mesh point individually. From equation

(2.10) θ̇ is given by

θ̇ =

∫ xN

x0

∂M(u)

∂t
dx

also from (2.10) using Leibnitz’ rule

ẋi =
1

ui

[
−
∫ xi

x0

∂M(u)

∂t
dx+ ciθ̇

]
for i = 1, ..., N − 1. (2.11)

The singularity at x0 is an attractor, all the mesh points xi that are not fixed

2.1. MOVING MESH METHODS 19

have a negative velocity heading towards x0 at a quicker rate the closer they

are. This monotonic decrease in velocity (ẋi+1 < ẋi) insures that no node

crossing occurs during the evolution of the problem. By using an Euler time

stepping equation it is then possible to approximate θ and the mesh points

at the next time step by

θ(t+ ∆t) = θ(t) + ∆tθ̇

and

xi(t+ ∆t) = xi(t) + ∆tẋi for i = 1, ..., N − 1.

With the mesh points redistributed we can approximate u(x, t) using our

numerical method using the following equations.

u0 =
2θ

x1

ui =
2θ

xi+1 − xi−1

(ci+1 − ci−1) for i = 1, ..., N − 1.

Once we have reached this point we begin again at the beginning of the loop

and approximate for the next time level until the blow-up time T is reached.

Chapter 3

Numerical Results

To obtain the results shown in this dissertation we used C++ to write a pro-

gram which outputs to Matlab, allowing us to look at the results graphically

and quickly be able to analyse them qualitatively.

3.1 Fisher’s equation

To investigate whether our numerical method returns meaningful results we

first look at the Fisher’s equation for p = 2 for which there are relatively large

amounts of text about the underlying asymptotic structure of the blow-up.

In particular the equation appears in the Budd papers referenced in this

dissertation.

Unlike Budd in [2] we only use the right side of the domain as the problem

is symmetric about the centre. In doing this we have to slightly change the

boundary conditions from

20

3.1. FISHER’S EQUATION 21

u(x, t) = 0 at x = 0 and x = 1

to

ux(x, t) = 0 at x = 0 and u(x, t) = 0 at x = 0.5.

In addition the initial condition has to be modified so that it is translated

left from

u(x, 0) = 20sin(πx) (3.1)

to

u(x, 0) = 20sin

[
π

(
x+

1

2

)]
(3.2)

For the equation we have used the monitor function

M(u) = up−1 (3.3)

which remains invariant under evolution, thus the rescaling (1.5) holds for

all time before the blow-up time T .

As can be seen in figure 3.1 for the initial condition (3.2) the solution shows

convergence, as the number of nodes is increased and the fixed time step is

reduced the blow-up time approaches a time of T ≈ 0.08244 which is close

22 CHAPTER 3. NUMERICAL RESULTS

Figure 3.1: Convergence of the solution for increasing numbers of nodes.

to the blow-up time T = 0.08237 that Budd found in [2] with his method.

Since we know that the blow-up occurs at u0 we can divide the entire region

by this to get a solution that remains between zero and one for all time.

Figure 3.2 shows the normalised evolution from the initial state for a few

time steps close to blow-up. The normalised solution is converging towards

a delta function this shows that it is only u0 that is blowing up creating an

isolated spike.

3.1. FISHER’S EQUATION 23

Figure 3.2: The scaled solution is approaching a delta function.

Again using the monitor function (3.3) we now look at the Fisher’s equation

for p = 3. As it is the up term that is blowing-up in the problem it is safe to

assume that the blow-up time T will occur sooner then for the p = 2 case.

From our program blow-up time appears to occur at T ≈ 0.0012836 which

agrees with our assumption that blow-up will occur sooner then for p = 2.

Even though the curve reaches a lower height then for the p = 2 case, there

is a steeper incline to the spike which if normalised would be even closer to

the delta function then the first case.

24 CHAPTER 3. NUMERICAL RESULTS

Figure 3.3: Blow-up in Fisher’s equation for u3.

3.2 The Kassoy problem

The Kassoy problem is much like the Fisher’s equation except that the forcing

function is now eu instead of up.

The monitor function we use throughout the numerical results for the Kassoy

problem is

M(u) = eu (3.4)

3.2. THE KASSOY PROBLEM 25

which remains invariant under the scaling (1.5).

After much experimentation with the same initial and boundary conditions

as for the Fisher’s equation it appears that a fixed time interval does not do

an adequate job of handling the blow-up. If a relatively large time interval is

chosen then after only a few time steps the blow-up will evolve too quickly to

keep track of, as can be seen in figure 3.4. On the other hand if a relatively

small time interval is chosen then it becomes impractical and expensive to

compute.

Figure 3.4: Blow-up in the Kassoy problem for N = 40 and ∆t = 10−10 for
the first 24 time steps.

26 CHAPTER 3. NUMERICAL RESULTS

There is nothing keeping us from using a variable time step that adheres to

a certain set criteria, thus we can use an increasingly small time step as we

approach the blow-up time thereby always being able to keep track of the

development of the problem.

If instead of fixing ∆t in the Euler time stepping equation we fix another

variable, ∆s, that follows the relation

∆t = 2(T − t)
1
2 ∆s (3.5)

which is independent of the scaling factor λ so that ∆t becomes variable

and tends towards zero as t tends towards T . Euler time stepping therefore

becomes

xn+1 = xn + 2(T − t)
1
2 ∆s︸ ︷︷ ︸

=∆t

ẋ (3.6)

and similarly for θ,

θn+1 = θn + 2(T − t)
1
2 ∆s︸ ︷︷ ︸

=∆t

θ̇. (3.7)

A drawback of defining ∆t in this way is that we need an estimation for

the blow-up time T , which is not difficult if we know the evolution of the

solution, but if the blow-up time is unknown then it can become an issue.

Although it should be noted that it is better to over estimate T initially

rather then under since if we under estimate T then ∆t will reach zero before

the blow-up time, and so the actual blow-up time will never be reached.

For a slightly modified initial condition (u(x, 0) = 2sin
[
π
(
x+ 1

2

)]
) we obtain

figure 3.5 which follows the development of the singularity much better then

when a fixed ∆t was used giving an estimate of T ≈ 2.276× 10−7

3.2. THE KASSOY PROBLEM 27

Figure 3.5: ∆s = 10−8, N = 40, T = 2.3× 10−7 and t→ 2.27642× 10−7

This seems to be what we would expect from the problem, it should be

blowing up more rapidly then the Fisher’s equation. It is also much quicker

to compute then if a small fixed ∆t were used. It appears that it still does

not follow the development of the problem to the true blow-up time from

assumption you would expect the incline towards the blow-up to be steeper

then for anything the Fisher’s equation could generate due to it growing

exponentially. But comparing figure 3.5 with figure 3.3 the numerical results

for the Kassoy problem has less of an extreme gradient at the blow-up time.

28 CHAPTER 3. NUMERICAL RESULTS

3.3 The nonlinear Schrödinger equation

Assuming radial symmetry the nonlinear Schrödinger equation is

i
∂ψ

∂t
+

1

r

∂

∂r

(
r
∂ψ

∂r

)
+ |ψ|2 ψ = 0 (3.8)

where

ψ = u+ iv

and we use the initial condition

u(r, 0) =

{
6
√

2e−r
2

if 0 ≤ r < 5

0 if r ≥ 5
(3.9)

and boundary conditions

ur(0, t) = 0 and u(5, t) = 0 (3.10)

using the monitor function

M(ψ) = |ψ|2

u(r, t) in fact tends towards zero as r tends to infinity but since it is not

possible to compute an infinite region we can truncate it at r = 5 in the

boundary conditions because the rate at which it tends towards zero is of

O(e−r
2
). Furthermore it should be noted that there is no need for the nor-

malisation factor θ in the nonlinear Schrödinger equation numerical method

since the total ”mass” of a cell is invariant throughout the evolution.

3.3. THE NONLINEAR SCHRÖDINGER EQUATION 29

To solve we seperate the problem into a real part and an imaginary part,

solving seperately we can then find a solution for ψ at each time step using

much the same method as in the general case. The biggest change is that

θ̇ is zero, erasing a term in (2.11), losing the need to calculate θ̇ and (2.10)

entirely.

Approaching the nonlinear Schrödinger equation using this method created

results that clearly did not describe the blow-up. This seemed to be because

of the way the mesh was being redistributed, from (2.11)

M(ψi)ṙi = −
∫ ri

r0

∂M(ψ)

∂t
r dr + ci θ̇︸︷︷︸

=0

. (3.11)

Our monitor function in this case is

M(ψi) = |ψi|2 = u2
i + v2

i

thus (3.11) becomes

ṙi = − 1

|ψi|2
∫ ri

r0

∂

∂t
|ψi|2 r dr

=
2

|ψi|2

[
ru2 ∂

∂r

(v
u

)]ri
r0

=
2riu

2
i

u2
i + v2

i

∂

∂r

(v
u

)∣∣∣
r=ri

. (3.12)

For the mesh points to move towards the blow-up (3.12) must be negative,

meaning ∂
∂r

(
v
u

)
must be less then zero. Plotting v

u
against r it was easy to

see the mesh points were not all being attracted towards the singularity.

30 CHAPTER 3. NUMERICAL RESULTS

Figure 3.6: Plot of vi
ui

against ri

From figure 3.6 it is clear that throughout time there is a local minimum

within the domain at r = 1.25. ṙi is determined by the relation

ṙi =
2riu

2
i

u2
i + v2

i

∂

∂r

(v
u

)∣∣∣
r=ri

(3.13)

and is positive except when ∂
∂r

(
v
u

)∣∣
r=ri

is negative meaning that before this

point the nodes are attracted to the singularity, at r = 1.25 the node remains

static and any points after the minimum will actually be travelling away from

the singularity. This will actually reduce resolution at the singularity from

our initial mesh and therefore this method will not work for the nonlinear

Schrödinger equation under the current conditions.

Chapter 4

Discussion

In this paper we have shown that for problems exhibiting a single blow-up

it is possible to follow the evolution using an adaptive mesh method that

has a finite number of mesh points and remains in physical space, yet still

providing results that concur with the underlying asymptotic structure. In

addition to giving an overview of preceding work done by Budd et al that

does a similar job but by solving in computational space.

Comparing the two moving mesh methods, the moving mesh PDE method

is very efficient needing very few nodes to give a good approximation to the

blow-up, it’s weakness is it’s reliance on small parameters and fixes to create a

robust program. In contrast, the conservative method although less efficient

is also much simpler requiring no adjustments or fixes to the method.

Future work includes trying different monitor functions, for example arc

length M(u) =
√

1 + u2
x for the Fisher’s equation and Kassoy problem or

M(ψ) =
∣∣∂ψ
∂r

∣∣− 1
2
|ψ|4 for the nonlinear Schrödinger equation as these proper-

ties also remain invariant ([3] and [5] respectively). This change in monitor

function may improve our results which would be of particular interest for the

31

32 CHAPTER 4. DISCUSSION

nonlinear Schrödinger equation as it was the monitor function that defined

ṙ and thus why the process failed.

In addition, it may also be worth looking into a variable ∆t for more

than just the Kassoy problem and whether a higher accuracy time stepping

such as Heun’s method makes a significant difference to the overall results.

Similarly the C++ program currently uses the Trapezium rule for numerical

integration if we had more time then maybe it would be good to investigate if

alternative methods have an impact. The program also assume that a single

blow-up occurs at x0 future work could generalise this to look at blow-up

within the domain or to take into account multiple blow-ups.

Bibliography

[1] J. Bebernes and S. Bricher, Final time blowup profiles for semilinear

parabolic equations via center manifold theory, SIAM J. Math. Anal. 23

(1992), no. 4, 852–869.

[2] C. Budd, J. Chen, W. Huang, and R. Russell, Moving mesh methods with

applications to blow-up problems for pdes, 1995.

[3] Chris J. Budd, Weizhang Huang, and Robert D. Russell, Moving mesh

methods for problems with blow-up, SIAM Journal on Scientific Comput-

ing 17 (1996), no. 2, 305–327.

[4] Weizhang Huang, Ren, and D. Russell, Moving mesh partial differential

equations (mmpdes) based on the equidistribution principle, SIAM J. Nu-

mer. Anal 31 (1994), 709–730.

[5] Y. Tourigny and J.M. Sanz-Serna, The numerical study of blowup with

application to a nonlinear schrodinger equation, Journal of Computational

Physics 102 (1992), 407–416.

33

	Abstract
	Acknowledgements
	Introduction
	The structure of blow-up solutions for PDEs
	Overview
	Scaling

	Moving grids
	Moving mesh methods
	Moving mesh PDEs
	Conservative method

	Numerical Results
	Fisher's equation
	The Kassoy problem
	The nonlinear Schrödinger equation

	Discussion
	Bibliography

