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Abstract

Data assimilation is a means of estimating an atmospheric or oceanic state by com-
bining observational data with a prior estimate of the state, usually from a numerical
model. We look at application of data assimilation to numerical weather prediction
using control theory.

Firstly, we apply observer theory to successive correction methods of data as-
similation to show when they converge in time to the true solution. However, we
mostly focus on 4D variational data assimilation schemes. Here the approach is to
minimize a cost function penalizing distance from observational data over a time
interval, subject to the constraint that the model equations are satisfied. The min-
imization problem can be solved by iterating on the model initial state, which is
referred to as “using the initial state as the control vector”.

Our aim is to provide a consistent theoretical foundation which allows for model
error in variational assimilation. We investigate the “correction term technique” in
which a constant correction term approximating model error is added to the model
equations and used as a control vector instead of, or as well as, the initial state.
We use the concept of complete N-step observability to give conditions for a unique
solution of the minimization problem using different control vectors.

We suggest a generalization of the correction term technique in which we use
state augmentation to estimate a serially correlated component of model error along
with the model state. In particular, we consider using a correction term representing
model error that evolves as the model state evolves. We investigate the effectiveness
of the constant and the evolving correction term in compensating for different types
of model error using simple linear models. We also use the correction term technique
for a 1D nonlinear shallow water model in the presence of different types of model
error, and find that a constant correction term can compensate for non-constant

model error on a significant timescale.
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Chapter 1

Introduction

We start with an introduction to data assimilation, particularly focusing on its
application to numerical weather prediction (NWP). This is followed by an overview

of the rest of the thesis.

1.1 Background on data assimilation

In meteorology and oceanography, data assimilation is a means of estimating the
state of the atmosphere or ocean by combining observational data with a prior
estimate of the state, which usually comes from a dynamical model. This estimate
of the atmospheric or oceanic state is often called an analysis.

Three important applications of data assimilation are: to provide a good analysis
of the current situation to be used in initiating a forecast; to give a good analysis of
a past event for diagnostic studies or archive records; and to use observational data
for the process of model verification and for increasing our knowledge of physical
processes.

In meteorology, the main application of data assimilation is in NWP, where it
is used to obtain a good estimate of the current atmospheric state for initiating a
forecast. Typically, data in a time window of 10 or 12 hours is assimilated to give
an analysis of the “current” state, to be used as initial conditions for a forecast. It is
this application that we refer to as operational data assimilation. Data assimilation

is also used in a non-operational context for diagnostic studies of the atmosphere,



in forecast verification, for archive records and for climate studies. In oceanogra-
phy, on the other hand, the main use of data assimilation is in studies to increase
understanding of ocean circulations, although it is also used in short range ocean
forecasting [32].

A wide variety of data assimilation schemes have been proposed and developed
over the last 50 years or so, and many of them are taken from state estimation tech-
niques in engineering. We now introduce the terminology we will use to describe
different types of data assimilation schemes. By three dimensional (3D) data assim-
ilation schemes, we mean schemes which are designed to provide an analysis at a
single time, and treat each analysis time in isolation. In contrast to 3D schemes, four
dimensional (4D) schemes seek to benefit from the “time-tendency information” in
the observations. In 4D schemes, information from observations at earlier (and in
some cases later) times is used in the analysis at a given time. 4D data assimilation
schemes involve a model of the state evolution.

Sequential data assimilation schemes treat observations as they occur in time,
and then discard them [32]. If a 3D analysis is carried out repeatedly, this can be
seen as a sequential approach to data assimilation, and hence 3D schemes can be
regarded as sequential methods of data assimilation. 4D sequential schemes seek to
find an analysis which draws closer to the true solution as time progresses, and as
more information from observations becomes available. In these schemes information
from observations at earlier times influences the solution at any time. In the control
theory literature, 4D sequential data assimilation is referred to as filtering [44].

The 4D wvariational assimilation schemes, on the other hand, use information
from observations at both earlier and later times in a given assimilation interval for
an analysis at any given time in the assimilation interval. For a set of observations
over a given assimilation interval, a 4D sequential data assimilation scheme is de-
signed to give the “best possible analysis” (in some sense) at the end of the time
interval, and a 4D variational scheme is designed to give the best possible analysis
over the entire assimilation interval.

4D variational assimilation can be expressed as a constrained minimization prob-

lem. The aim is to minimize a cost function penalizing distance from the observa-



tions over the assimilation interval, and distance from a prior estimate, subject to
the constraint that the solution (the analysis) is consistent with the model dynamic-
s. In the strong constraint approach to the 4D variational assimilation problem, the
constraint is that the solution must satisfy the model equations exactly. In the weak
constraint approach, the solution is only required to satisfy the model equations

approximately, and hence some allowance is made for model error.

Meteorological observational data available for assimilation

We now give a brief description of the types of observational data available for use in
operational meteorological assimilation to produce analyses for weather forecasting,
a fuller description is given in the book by Daley [24].

Meteorological observations are available on a world-wide scale, and there is
international cooperation on the data collection and distribution to the various na-
tional meteorological centres. At surface level, observations are available from land
weather stations and over the sea from ships. These observations are available at
least every three hours, usually at the sub-synoptic times, ie 0000GMT, 0300GMT,...
Radiosondes and pilot balloons are launched from land areas and from ships, and
typically give observational data at the synoptic times, ie 0000GMT and 1200GMT.

An increasingly important source of data is that of reports from commercial air-
craft. These reports provide an increase in the spatial coverage of data, and a more
continuous temporal coverage, but are of course limited to the well-travelled routes.
Satellite information provides greater global coverage, and also greater vertical cov-
erage. This data is again available continuously in time (ie, is asynoptic). One
important aspect of satellite data is that it typically is nonlinearly related to the
model state variables. It is likely that the availability of satellite data will increase
still further in the near future [60].

More detail on what meteorological variables are observed in each of these data
sources and also the sizes of typical observational errors in each case are given in
[24]. Observational data varies enormously in type and accuracy, and also in spatial
and temporal distribution. This is an important point to consider in design of a

data assimilation scheme.



The quality control of observations is crucial for successful data assimilation.
Data needs to be checked for gross errors and for internal consistency. This may
be done before data is assimilated, or as part of the data assimilation process itself.
Generally, it is assumed that observational errors are Gaussian [38]. Information
on observational error correlations and on how to specify the observation error co-
variance matrices needed in many applications of data assimilation can be found in

[24].

Numerical models used in data assimilation

The type of numerical model used in data assimilation depends of course on the
application. In the context of operational data assimilation in meteorology, the
forecast model itself, or perhaps a simplified version of it, is used. Data assimilation
is carried out on both global models and mesoscale limited area models in an op-
erational context. The models used may be finite difference models, finite element
models or spectral models. Current operational weather forecast models typically
have a model state with dimension of the order of 10° to 10”. This huge number
of model unknowns at each timestep has a very dominant impact on the practical
choice of a data assimilation scheme.

The models most accurately describing atmospheric or oceanic evolution are
nonlinear. These models can exhibit chaotic behaviour, and this has also been
observed in the laboratory for some types of flow [63]. However, nonlinearities in
atmospheric and oceanic flows are essentially quadratic, and the nonlinear effects
do not dominate on the time-scales of operational data assimilation, although they
can have a huge impact on longer timescales, [32]. For mid-latitude atmospheric
flows, Lacarra and Talagrand [48] have showed that the tangent linear model is a

good approximation to the full nonlinear model for a period of about 48 hours.

Initialization

In numerical weather prediction (NWP), initialization is a process of reducing the
inertia-gravity waves present at the beginning of a forecast as much as possible. This

is necessary in the context of data assimilation with realistic models, because dis-



crepancy between noisy data and a prior estimate of the state can produce spurious
inertia-gravity waves [32]. Although primitive equation models do in fact exhibit
gravity waves which describe a small amount of the flow, atmospheric and ocean-
ic flows at mid-latitudes on the timescale of a forecast are well described by the
relatively slow Rossby waves.

Early NWP models were often quasi-geostrophic, and hence avoided the need
for initialization, since these models produce only Rossby waves. When primitive
equation models became operational for forecasting in the early 1970s, initialization
became necessary. Initialization has generally been carried out separately from
the data assimilation procedure, by projection of the solution onto the subspace
described by the Rossby modes [32], or by the process of nonlinear normal mode
initialization introduced by Machenhauer [59]. In “advanced” data assimilation
techniques, however, it is possible to incorporate the initialization process in the
assimilation. This may be done in Kalman filtering applications by projection of
the solution onto the Rossby modes [32], and in variational assimilation applications

by the addition of a penalty term to the cost function [19], [91], [94].

Brief historical overview of data assimilation methods

Here we mention briefly the main methods that have been used for data assimilation
in meteorology and oceanography, and methods that are currently being developed.
More detail on the methods themselves with more references on their application
are given in Chapters 3 and 4.

In the 1940s and 1950s, along with the advent of primitive computers, interest
grew in finding methods for objective analysis of the atmosphere. The earliest at-
tempts involved using polynomial splines to fit the data. This was done by Panofsky
in 1949 [68], and by Gilchrist and Cressman in 1954 [35]. The method of succes-
sive corrections, introduced by Bergthorsen and D66s in 1955 [9] and Cressman in
1959 [21], proved more appropriate when less dense data coverage was available, and
variants of this method have been used successfully in operational data assimilation.

Schemes taking into account the relative accuracy of observations and corre-

sponding prior estimates of the state from numerical models were proposed early



on, but only as computer power increased was this approach further developed and
used extensively in an operational context. The method of optimal interpolation
(OI) suggested by Gandin in 1963 [30], attempts to provide a statistically optimal
estimate of a linear system at a given time. Variants of this method, which are
also applicable to nonlinear systems, have been applied widely for operational data
assimilation in the 1980s and 1990s. The three-dimensional variational assimilation
(or 3DVAR) method [73] can be seen as a different approach to solving the same
problem as OI, and is currently being developed for operational use at several NWP
centres.

In the earlier days of data assimilation, observations were available mainly at
the synoptic and sub-synoptic times. Since observations from satellites have be-
come available, however, some observations are available continuously and it has
become more important that data assimilation techniques should draw upon the
time-tendency information available in the observations. For this reason, there is
much interest at present in the design and development of 4D data assimilation
methods. Two examples of such methods include the Kalman filter, and 4D varia-
tional assimilation.

The Kalman filter, proposed by Kalman in 1960 [45] for engineering applications
can be used as a sequential 4D assimilation method. For a linear model and under
certain assumptions, it provides a statistically optimal solution at a given time taking
into account all previous observations. The method in unsimplified form is generally
considered too expensive for use with large operational models in meteorology and
oceanography [32], but various simplifications have been proposed which are feasible
[84]. Kalman filtering theory can also be extended for use with nonlinear models.

The four-dimensional variational assimilation method was suggested for mete-
orological data assimilation by Sasaki in 1958 [75]. the method seeks to obtain an
optimal solution over an entire assimilation interval by minimization of a cost func-
tion penalizing distance from the observations and from a prior estimate of the state.
The minimization is subject to the constraint that the model equations hold, either
exactly (the strong constraint approach), or approximately (the weak constraint ap-

proach). Using the strong constraint approach, the problem can be reduced to that



of finding the optimal initial state for the assimilation interval [51]. This approach
to 4D variational assimilation has received much attention since the mid 1980s, and
several meteorological centres are currently developing it for eventual operational
implementation in the late 1990s.

Under certain statistical assumptions, the weak constraint formalism, which al-
lows for model error, gives the same statistically optimal solution as the Kalman
filter at the end of an assimilation interval. The problem of finding 4D variation-
al assimilation methods that can account for model error at reasonable cost is a

problem currently receiving attention in research.

1.2 Overview of the thesis

In Chapter 2 we present mathematical background useful for the methods of data
assimilation we consider in this thesis. We include definitions and useful results
from control theory, an overview of nonlinear optimization theory, background on
descent methods and a brief overview of probability theory.

In Chapter 3, we look at sequential methods of data assimilation. We give some
background on 3D data assimilation methods and on the Kalman filter. When
describing the Kalman filter, we focus on the assumptions made on model error and
observational error, and on how to allow for serially correlated model error, since we
refer to these issues later. We then give background on observer theory, and describe
as an example of observer design, a robust observer. We note that observer theory
is useful for data assimilation and that 4D sequential data assimilation methods
such as the Kalman filter are observers. We point out that if a 3D scheme such as
a successive correction scheme is implemented repeatedly, it too can be expressed
as an observer. This provides a way of looking at the dynamical properties of the
resulting analysis. For example, we give conditions in the linear time invariant case
under which the analysis will converge to the true solution. Using a simple model,
we compare the results of data assimilation using the Cressman successive correction
scheme and a robust observer.

Much of the thesis focuses on 4D variational assimilation methods, and in par-



ticular we address the problem of how to account for model error in these methods
without incurring too much extra cost. Chapter 4 gives background on 4D varia-
tional methods of assimilation. We describe the strong constraint approach using
the initial state as a control vector, and discuss the derivation of the adjoint models
used in this approach. We then describe the correction term technique in which a
constant correction term representing model error is added to the model equations,
and used as a control vector as well as or instead of the initial state. Finally, we
describe the weak constraint approach to variational assimilation, which allows for
model error in a more general way, and refer to methods that have been proposed
for solving this problem.

In Chapter 5, we concentrate on the correction term technique. We give condi-
tions for uniqueness of the solution of the variational assimilation problem using the
initial state, the correction term and both together as control vectors, and relate
these conditions to the concept of complete N-step observability. We point out the
importance of including a background estimate of the correction term in the cost
function if there are insufficient observations; such a background term was not in-
cluded in earlier published work on the correction term technique. We also compare
the results of data assimilation using these different control vectors in a practical
context, using a simple linear model with a constant source of model error. In the
theory we present, we suggest that the correction term vector might have a dimen-
sion m less than the dimension n of the state vector. In these experiments, in which
the source of model error is localised, this approach improves the efficiency of the
method.

Then, in Chapter 6, we consider how we could use a more general representation
of model error in variational assimilation. We give examples of different forms
for representing model error supposing that model error is composed of serially
correlated and serially uncorrelated components, and we discuss how the technique
of state augmentation can be used to estimate the serially correlated component of
model error along with the model state. We suggest a generalized correction term
technique in which the correction term represents a serially correlated component of

model error which might evolve in time and might have dimension m less than or



greater than the dimension of the model state. We carry out experiments using a
simple model in which model error is not constant in time. In these experiments we
use an “evolving correction term” which evolves as the model state does.

In Chapter 7, we carry out experiments using a 1D nonlinear shallow water
model. We compare the results of data assimilation using the constant correction
term, the initial state and both together as control vectors in the presence of different
types of model error and errors in the initial state. In particular, we investigate
whether the constant correction term can compensate for model error on a significant
timescale, when model error depends on the model state. Finally, in Chapter 8, we
summarize the conclusions from the work in the thesis and discuss how the work
could be extended.

Throughout the thesis we bear in mind the application of data assimilation for
numerical weather prediction in an operational context. Here, the huge dimension of
the model state is a dominating factor in the practical choice of assimilation methods.
Data assimilation is also used in other applications in the atmospheric and oceanic
sciences, as we discussed in the previous section. Apart from these applications,
state estimation using observed data has many applications in engineering, and the

work in this thesis has relevance to this wider field also.



Chapter 2

Mathematical Background

Throughout this thesis, we will be looking at data assimilation for meteorology and
oceanography using a framework of mathematical control theory. In the first sec-
tion we introduce the general model system, using control theory notation. Then,
in Section 2.2, we give background on some of the basic concepts of control theory
which will be useful, and state definitions and theorems which will be referred to
later on. In Section 2.3 we give background on nonlinear optimization theory, and
in Section 2.4 describe descent algorithms that may be used to iterate to an optimal
solution. Sections 2.3 and 2.4 provide the background for the variational data as-
similation methods. Finally, Section 2.5 gives background on probability theory and
the concept of a “most likely” estimate, which is widely used in data assimilation.
In this background chapter, we limit our discussion to discrete systems, since
this is most convenient for application to numerical models of meteorology and
oceanography. Many texts on control theory concentrate on continuous systems,
with only brief reference to the discrete case. However, we treat the discrete case
since the transition from the continuous to the discrete case is not always immediate

[86].

2.1 Introducing the System

To start with, we introduce the general nonlinear model system which we will use

throughout the thesis, and explain what we mean by the true model state and model
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error. We specify how the observational data is related to the true model state. We
then introduce the linear version of the system, which we will want to focus on in

some situations.

2.1.1 The nonlinear model

We consider the discrete, nonlinear model on the time interval [tg, ¢ 5],
Xk+1 :fk(kauk)v k:()v"vN_lv (21)

where x5 € IR" represents the model state at time t,, up € IR™ is a vector of
model inputs at time t;, and f : IR" X IR™ — IR" is a nonlinear function describing
the evolution of the state from time t; to time #;.;. The state represents model
variables defined on a spatial grid {r;},5 = 0,..JJ, which might represent one, two
or three spatial dimensions. The model inputs in our context might include tunable
model parameters, forcing terms or boundary conditions. Equation (2.1) represents
an explicit, one-step model on a fixed spatial grid. We stick with this notation
for simplicity, although the theory can usually be generalized to implicit or multi-
timestep models.

We assume that specification of the model state x; at time ¢; and the inputs
u;,..,u;_1 uniquely determines the model state x; at time #;, for any k£ > 5. We

also assume that f; is differentiable with respect to x; and uy for all k.

2.1.2 The true model state and model error

The development here, which introduces the concept of the true model state and
defines model error, follows that in the papers by Cohn and Dee [17], Dee [25] and
Cohn [16].

We suppose that the true state of the atmosphere or ocean at any time ¢ in a
time interval [to,tn] can be represented by a vector £(f) belonging to an infinite
dimensional space U. We further suppose that the evolution of the state from time
i to time f; 41 can be described by a well-posed nonlinear system of equations, and

can be written in the form

E(tir1) = V(&) (2.2)

11



where v, : U — U is a uniquely defined nonlinear solution operator [17]. We now
define the true model state xi to be the representation of the infinite dimensional

true state at time ¢ on the model grid, and we write
XL = TIE(1), (23)

where I : ¢4 — IR" is a mapping onto the model grid. Hence we can write the

evolution of the true model state in terms of our model (2.1) as follows
Xpp1 = (X}, wp) + &5, k=0,..,N—1, (2.4)

where
e = Hepy(&(1r)) — fulx), uk). (2.5)

The term €5 € IR" is the model errorin the evolution operator fy. If, for example,
the equation representing the evolution of the true state £(¢) is a known system of
partial differential equations, and if the model (2.1) is a consistent discretization of
this, then model error is just the truncation error of the discretization. In general,
however, as well as errors due to lack of resolution, sources of model error arise due
to lack of knowledge of the true evolution of the atmosphere or oceans, or due to
deliberate simplification of their known evolution. Hence, sources of model error
include misspecification of model parameters, forcing terms and boundary condi-
tions. Equation (2.5) shows that in general model error depends on the unknown
true state in an unknown way [25], and so might be treated as stochastic forcing [16],
or by some simple deterministic correction [26]. In Chapter 6 we consider specific
examples of how we might approximate or represent the model error term so we can

account for it in data assimilation.

2.1.3 Observational data

We suppose we have a set of observations yo,..,yny_1 which are related to the true

model state by
Y& :hk(X};)—I-(Sk, kZO,..,N—l, (26)

where y;, € IRP* is a vector of p, observations at time ?;, h; : R" — IRP* is a

nonlinear function relating the observations to the model state at time ¢, and 8, €
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IRP* represents the observational error at time t;. In the context of control theory,
the observations are generally referred to as model outputs. If observation times do
not coincide with the timesteps ¢, then hy will include temporal interpolation. The
number of observations p, varies with time, and this includes the possibility of no
observations at some timesteps.

Observational error has two components usually referred to as measurement er-
rors and representational errors. The measurement errors are due to errors in the
measurement instruments and in the transmission of information, and the represen-
tation errors are due to errors in h;. More detail on the form of observational error

is given in [24].

2.1.4 The linear assimilation system

In some cases we will limit our attention to linear theory, and so we consider the

discrete, linear, time-varying model
Xk+1 = Aka + Bkuk, (27)

with x; and uy, defined as in (2.1), and with A, € R™™", B, € IR™*™. We assume
that Ay is nonsingular and that By has rank m for all &, so that specification of xg
and the u;, 7 = 0,.., k — 1 uniquely determines x;, for & > 0. We suppose that the

evolution of the true model state xi satisfies
XII;-H :Akx};—l—Bkuk—l—sk, kZO,..,N—l, (28)

where €, € IR" 1s the model error as defined in Subsection 2.1.2.

We now suppose that the observations are related linearly to the true model

state as follows,
yi = Cpxh + 85, kE=0,..,N—1, (2.9)
with y; and 85 defined as in (2.6) and C} € IRP**".

If the assimilation system (2.8),(2.9) is a linearization of the system (2.4),(2.6)
about some reference state xj and input uy, then A; and C}, are the Jacobians of f;,
and hy, respectively with respect to xj, and By is the Jacobian of f;, with respect to
uy, all evaluated at (x3,u). In this case, the model (2.8) is often referred to as the

tangent linear model of (2.4) in data assimilation literature [48], [20].
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2.1.5 State transition matrix

For some applications of the linear system, it will be useful to relate the state at
a given time to the state at any earlier time. We therefore introduce the state

transition matriz ®(k, j), for the unforced system
X1 = ArXp, (2.10)
which relates the state at time t; to the state at an earlier time ¢; as follows, [2],
xp = ®(k, 7)x; Yk > g, (2.11)

with
o )=1 i (212)

For the system (2.10) the state transition matrix is given uniquely by
k-1
O(k,j) =[] A (2.13)
i=j
Clearly we have
O(l,j) =0, k)P(k,j) Vi>k >y, (2.14)

and since the matrices A; are assumed to be nonsingular, we also may define
Bk =@ k), i<k (2.15)

For the forced model (2.7), we now have [2]

k-1

=7

The relationship (2.16) will be important later on in the thesis.

2.2 Controllability and Observability

The general aim of control theory is to regulate the state to some desired state by
a suitable choice of the inputs which we are free to choose. The variables we use to
manipulate the state are known as control variables. Generally, the model inputs

are used as control variables. In some cases we might be free to choose the initial
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states, and so these too could be used as control variables. The “strong constraint”
approach to variational assimilation hinges on the use of the initial state as a control
vector, or vector of control variables, since the idea is to choose that initial state
which will ensure that the state at later times is as desired. One of the areas we will
investigate is the use of correction terms representing model error as control vectors.
Other work has been carried out using tunable model parameters [74] or boundary
conditions [50] as control variables.

In this section, we introduce the concepts of controllability and observability,
and give some theoretical results which can be used to determine whether a system

is controllable or observable.

2.2.1 Some definitions

The concepts of controllability and observability are very important in control theo-
ry. The concept of controllability addresses the question of whether it is possible to
choose control variables to obtain the desired state, and the concept of observability
addresses whether it is possible to reconstruct the model state from the outputs
or observations and a knowledge of the model inputs. Here we give definitions for
complete p-step controllability and complete v-step observability. Often, the phrase
“u-step” or “v-step” is not included in definitions of controllability or observability.
In the theory we present in Chapter 5, however, we require these more specific p-
and v-step definitions.

The definitions are for the linear system with no model error and no observational

error, ie for the system

XII;-H = Akx}; + Bkuk, (217)
Vi = CiXj. (2.18)

However, as we will see in Chapter 5, the concepts are still useful for the sys-
tem (2.8),(2.9) with model error and observational error.

We note that since the system matrices A; are nonsingular, the related concepts
of reachability and detectability are in this case equivalent to controllability and

observability respectively, [86].
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Definition 2.1 The system (2.17),(2.18) is completely u-step controllable at time t;
if for any arbitrary state x; at time ¢; and any desired state x?, there is an admissible
control sequence uj,..,u;y,—1 on the discrete time interval [¢;,¢;1,-1] which drives
the system to the desired state x? at time ¢;,,.

If the system is completely p-step controllable for any time ¢;, it is completely
w-step controllable.

If the system is completely p-step controllable (at time ¢;) for some g, we might
simply say that the system is completely controllable (at time t;).

Definition 2.2 The system (2.17),(2.18) is completely v-step observable at time
t; if and only if knowledge of the outputs y;,¥,41,...,¥;4,-1 and of the inputs
U;,Wjt1,.., ;4,9 is sufficient to determine the state x;.

If the system is completely v-step observable for any time ¢;, it is completely
v-step observable.

If the system is completely v-step observable (at time ¢;) for some v, we might

simply say that the system is completely observable (at time t;).

2.2.2 Theory for the general linear case

For the linear system (2.17),(2.18), the following theorems can be used to determine
whether the system is controllable or observable. We first introduce the pu-step
controllability matrix Ci for time t; and the v-step observability matriz O, for time

t; as follows.
Cl, = (Bj=1,9(j,7 = 1)Bjgs ..., ®(j,] — p+1)Bj), (2.19)
¢

C]-l-l/—lq)(j +v— 17])

Theorem 2.1 The linear system (2.17),(2.18) is completely p-step controllable at
time t; if and only if Rank (Ci) =n.
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The proof of Theorem 1 is given in [86] for the concept of reachability, which in
this case is equivalent to that of controllability. We note that complete p-step
controllability at time ¢; implies complete p'-step controllability at time ¢; for all
integers u' > p [86].

We give the proof of the next theorem, since it illustrates a line of argument we
will use later. The proof is based on that given by Weiss [86], but uses our notation

and expresses a couple of the arguments slightly differently.

Theorem 2.2 The linear system (2.17),(2.18) is completely v-step observable at
time t; if and only if Rank (O7) = n.

Proof

(i) We firstly show that Rank (07) = n is a sufficient condition for complete v-
step observability at time #;. We suppose that Rank (07) = n. We use (2.16)
and (2.18) to rewrite the information available from the observations on the time

interval [t;,t;1,-1] explicitly in terms of the state x;, as follows
Y& :qu)(k,j)X]‘—l-bk, k:j,...,j—l-l/—l, (221)

where b; = 0 and

k—1

=7

Hence we can write

Oix; = z, (2.23)
where
Yi—b;
Yi+1 — bj+1

z= _ . (2.24)

Vitvr-1 — b]‘+u—1
Since Rank (O7) = n and, by construction, z is a linear combination of the columns
of 07 so that Rank (O?/|z) = n, x; can be uniquely determined from the observations

and specified inputs.
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(ii) To show that Rank (O?) = n is a necessary condition for complete v-step
observability at time ¢;, we suppose that the system is completely v-step observable
at time ¢;, but that Rank (O7) < n, and let u, =0, k = j,...j + v — 2.

Then there exists a nonzero vector v € IR", such that

Olv = 0. (2.25)

14

Putting x; = v in (2.23) with zero input, we have z = 0, which violates complete p-
step observability (since we have zero output over the whole time interval [¢;,#;4, 1]

although the state at time ¢; is not zero). O

We note that complete v-step observability at time ¢; implies complete v/-step

observability at time t; for any integer v/ > v [86].

2.2.3 Theory for the linear, time-invariant case

The results given above can be applied to the time-invariant system, but in this

special case, we can say a bit more. The linear, time-invariant system is given by

Xy = Axj+ Bug, (2.26)

vi = Oxy, (2.27)

where xi € IR", up € IR™ and y; € IR? are defined as in (2.4) and (2.6), and
Ae R, B e IR"™" and C € IRP*" are constant matrices. For a time-invariant
system, p-step controllability at time ¢; clearly implies p-step controllability for all
time, and v-step observability at time ¢; implies v-step observability for all time.

We introduce the notation

C

* u—1 * CA
C:=(B,AB,..,A"'B), 0= | . (2.28)

CAU—I

The time invariant system (2.26),(2.27) is completely controllable if and only if
Rank (C) = n, [2], and is completely observable if and only if Rank (OF) = n, [66].
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Later in the thesis, we will want to apply theoretical results involving the concept
of complete v-step observability to the special case of a time invariant system, and
where it is possible, to express the results in terms of the more familiar concept of

complete observability. The following theorem enables us to do this.

Theorem 2.3 a) If the linear time-invariant system is not completely observable,
then it is not completely v-step observable for all positive integers v.
b) If v > n then the linear time-invariant system is completely v-step observable if

and only if it is completely observable.

Proof

a) We must show that Rank(O?) < n implies Rank(O%) < n for all positive integers

v, and we do this by showing
Rank(O;) < Rank(O;) (2.29)

for all v.
This is clearly true for v < n. We suppose that » = n 4+ 1. By the Cayley Hamilton

theorem [2], we have
n—1
AT =3y A (2.30)
j=0

for some ~; € IR, and so C'A" can be be written as a linear combination of the rows

of OF

no

and hence (2.29) holds. Similarly, for any v > n,
n—1 ]
A= (5 a0 a, (2.31)

=0

and hence C'A" is still a linear combination of the rows of O,

and so (2.29) holds

for all positive integers v.

b) It follows from part a) that for any positive integer v, the linear time-invariant
system is completely v-step observable only if it is completely observable. We now
suppose that the linear time invariant system is completely observable, and hence

is completely n-step observable. As noted earlier, complete n-step observability
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implies complete v-step observability for any v > n, and so part b) of the theorem

holds. O

One further result which will be useful when considering the time invariant case

is the Hautus condition [28], which is given in Theorem 2.4.

Theorem 2.4 The linear time-invariant system (2.26),(2.27) is completely observ-
able if and only tf, VA € C and V s € IR",
(A=As=0and Cs=0 < s=0.

2.3 Nonlinear optimization theory

The theory we give here provides background for the variational methods of data

assimilation which we investigate in this thesis. Useful texts for this material include

[36], [29], [43], [10], and [89].

2.3.1 Preliminaries

A Hilbert space is a complete, linear inner-product space. All the properties of
Hilbert spaces are important for our purposes [43]. We denote the inner product
defined on a Hilbert space V by < x,y >y, for any two elements x and y € V. We
note that real, n-dimensional Euclidean space IR™ with the Euclidean inner product

(or “dot product”) is a Hilbert space, and throughout the thesis use the notation
<X,y >=xly (2.32)

to refer to this inner product.
Later in the thesis, we refer to the adjoint of a linear operator. For a linear
operator A from a Hilbert space U to a Hilbert space V, the adjoint operator A* is

the linear operator from V to U for which, for all u € &/ and v € V
< v, Au >y=< A%v,u > . (2.33)

In the case where ¢ is IR™ and V is IR", both with the Euclidean product (or dot

product), A : IR™ — IR" is an n X m matrix and we have
<v,Au>=vIAu = (ATv)Tu =< ATv,u >, (2.34)
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so that AT : IR" — IR™ is the adjoint of A.

We consider a nonlinear, real valued function 7 on V. We suppose that 7 is
three times differentiable at vo € V, and that vo+606v € V represents a perturbation
of size § € [—1,1] in a direction §v from vy. The Taylor series expansion of 7 about

Vo can be written as follows [43]

T (vo+08v) =T (vo) +0 < VT (vo), 6V >y +0° < 6v, Hy(vo)dv >y +0°(9),
(2.35)
where the vector Vy T (vg) € V is the gradient of J with respect to v at vy, and
the linear operator Hy(vo) : V — V is the Hessian of J with respect to v at vq.
Throughout the thesis, we use this notation to denote the gradient and the Hessian

of a real valued function.

2.3.2 Unconstrained minimization

We suppose that we wish to minimize a real valued function J, usually referred
to as a cost function, which is defined on a Hilbert space V. The unconstrained

minimization problem we consider is

Problem U

Minimize J; te, find v* €V such that
J(v7) < T(v) (2.36)

for all v in some neighbourhood N' C'V of v*.

If such a v* exists, it is called a local minimum of J. If the inequality in (2.36)
is strict, then v* is a unique local minimum. If V' (v*) =V, then v* is also a global
minimum.

Since we have no constraints, the following is a necessary condition for v* to
minimize J

VoI (V) =0. (2.37)

In the special case that the cost function is quadratic in v,

1
J = §<V,AV >y + < b,v >y +c, (2.38)

21



where b € V and ¢ € IR are constants and A : YV — V is a linear operator, if A is
a positive definite operator, then a minimum v* exists, is unique, and is given by
v* = —A~'b, [43]. If, however, A is only positive semi-definite, a minimum v* exists
but is not unique, since v* 4 z is also a minimum for any z satisfying < z, Az >= 0.
Further, if A is indefinite, then there is no minimum.

We now return to the general case where 7 is not necessarily linear or quadratic.
We suppose J is three times differentiable, and so can be expanded in a Taylor
series of the form (2.35). Then, for ||#6v|| small enough, the quadratic part of the
expansion dominates, so if Vy(v*) = 0, and Hy(v*) is a positive definite operator,
then v* is a unique local minimum of J [43]. If Hy(v*) is only a positive semi-
definite operator, we can draw no conclusions about v*, because of the influence of
the higher order terms in the expansion. However, if Hy(v*) is indefinite, then v*

cannot be a minimum.

2.3.3 Constrained minimization

In this subsection, we consider constrained minimization of a real valued function
J over IR", which with the Euclidean inner product (2.32) is a Hilbert space.

The constrained minimization problem we consider is
Problem C :
Minimize J subject to the r constraints
ge(v) =0, k=1,..r, (2.39)

or equivalently

g(v)=0, (2.40)

where v < n and g is a vector of r real valued functions g, : R" — R, k=1,..,r
which are continuously differentiable. We further assume that the vectors Vygi(v),

k=1,..,r are linearly independent for all v € IR".

A constrained minimization problem of this form can be addressed as an un-

constrained optimization problem using the technique of Lagrange multipliers. The
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Lagrangian function associated with Problem C is defined to be
L(v,A) =T (v)+ATg(v), (2.41)

where A € IR" is a vector of r Lagrange multipliers Az. A solution of Problem C,
if it exists, can be found by extremizing the (unconstrained) Lagrangian function £

with respect to v and A. Necessary conditions for an extremal are [29],

VL = 0, (2.42)
VaL = 0. (2.43)

Any vector v € IR" satisfying (2.40) can be written in the form
v = (2.44)

with u € IR"™" and x € IR", where the n —r components u; may be chosen indepen-
dently, and the r components are determined from the choice of the u; through (2.40)
[89]. We refer to the n — r variables u; as control variables, and the vector u as a

control vector.

2.3.4 Solving Problem C by reducing the control vector

We now describe an iterative method for finding v* satisfying necessary conditions
for a solution of Problem C by iterating on the control variables. Since this involves
iterating on the control vector u rather than on the full vector v, this technique
is referred to as “reduction of the control vector”. This method was suggested for
application to 4D variational assimilation by Le Dimet and Talagrand [51], who
used the optimal control approach of Lions [53] rather than the Lagrange multiplier
approach we use here.

Necessary conditions for an extremal of £ are given by

Vul = VoI V) +GLv)A=0, (2.45)
Vil = VxJWV)+GLEv)A=0, (2.46)
VaL = g(v)=0, (2.47)



where Gy € R and Gx € IR™" are the Jacobian matrices of g with respect
to u and x respectively. Since the vectors Vygi(v) for k = 1,..,r are linearly
independent, the Jacobian Gx(v) is invertible.

From a guess u for the control vector, the corresponding vector x is specified

u
from the constraints (2.40), and hence (2.47) holds. From this choice of v =

)
X

A can be uniquely chosen to satisfy (2.46). Then we have the following expression

for the gradient of £ with respect to the control vector u
Vol = VoI (v) + GLV)A. (2.48)

This gradient can be used in a gradient method to obtain a better guess of u, and

the procedure repeated until (2.45) holds.

2.4 Gradient methods

We consider here the problem of unconstrained minimization of a cost function J
over IR™ with respect to a control vector u € IR". We suppose that for any guess u*
of an optimal u, we can find Vy7 (u”), the gradient of the function with respect to
the control vector at uy.

A gradient method for iterating to a minimizing u* is of the following general

form [81],
u ! = u* — pFGd” (2.49)

where d* € IR" is the descent direction based on the gradient Vy 7 (u®), p* € IR is
the step-length, and () € IR™*" is a matrix which should ideally approximate the
inverse of the Hessian Hy(u”) of J with respect to u at u*.

We now outline three types of gradient algorithms; steepest descent methods,
conjugate gradient methods and Newton-type methods. We give more detail on the

conjugate gradient method and a package quasi-Newton method, since we use these

methods in the thesis.
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2.4.1 The steepest descent algorithm

In this case, the direction d* in (2.49) is simply the direction Vy 7 (u*), Gy is the

identity, and p* is chosen to ensure
J (") < J(ub). (2.50)

In practice, this might be done by setting p* = 1 initially on each iteration, and
halving p* until (2.50) holds. Alternative step-length choices are given in [36].

The advantage of the steepest descent method lies in its simplicity, but the
rather ad-hoc method of finding the step-length can render it very inefficient since it
involves many evaluations of 7 and V7. Further, choosing the direction d* with no
consideration of the previous directions used is not the most efficient approach. The
conjugate gradient method provides a more sophisticated approach to calculating
p* and d*

, and we describe this next.

2.4.2 The conjugate gradient method

The aim of the conjugate gradient method (CGM) is to choose the k% descent
direction d* to be a projection of the gradient V7 (u*) onto a subspace of R"
which is orthogonal to d’ for 5 = 0,1,...k — 1. Primarily, the CGM addresses an

unconstrained minimization problem with quadratic cost function,
1
j:§<u,Au>—|—<b,u>, (2.51)

where A € IR™™" is symmetric, positive definite, and b € IR". The method calculates
the optimal step-length p* for each direction, and so for the quadratic case above
should theoretically converge in at most n iterations. However, this condition does
not hold in practice because of rounding errors, and if n is large, we require good
convergence in far fewer iterations in any case.

The conjugate gradient iteration on u is given by
uttt = u* — prd* (2.52)

dFtt = —pftt 4 gRdk, (2.53)
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where

L o<rhdb > <t AdF >

= =5ae ~ ko 2.54
= a7 o dhadi s (2:54)

and
r" = Auf + b = VT (u") (2.55)

with
d’ = —r° (2.56)

The conjugate gradient method can also be used when J is not quadratic, as
described in [43]. For the non-quadratic case, however, the step-length p* given
by (2.54) is no longer the “exact” step-length for the direction d*, and a different
procedure (a linesearch) must be used to give a good estimate of the optimal step-
length. This need for an accurate step-length can lead to expensive line searches for
non-quadratic problems. However, Newton-type methods have the advantage that

accurate line searches for the optimal step-length are not needed.

2.4.3 Newton’s method and quasi-Newton methods
Newton’s method

Newton’s method provides an iterative solution to the problem
f(u) =0, (2.57)

where u € IR", and f : R" — IR" is a nonlinear function, which is assumed to
be continuously differentiable in the neighbourhood of u with nonsingular Jacobian

Fu(u). Newton’s method for solving (2.57) is
u = uf — F7N(uM)f(u"). (2.58)

Newton’s method has fast convergence (quadratic rate), and for a quadratic cost
function converges in just one iteration.

In the context of our minimization problem, the problem of the form (2.57) that
we wish to solve is

VuJ (u) = 0. (2.59)
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For this problem, Newton’s method is
ut ! = uf — H (W) VT (uF). (2.60)

The drawback of Newton’s method however is that it requires a solution of the

equation

Hu(uF) (0" — ™) = vV, 7 (uF) (2.61)

at each iteration. For this reason, modifications of the Newton method have been
devised, to simplify the Hessian or to approximate its inverse. These modifications

constitute the quasi-Newton methods.

Quasi-Newton methods

Quasi-Newton methods for our minimization problem are of the form

ut ! = uf — PG VLT () (2.62)

k. A particular class of

where G} approximates Hy'(u"), the inverse Hessian at u
quasi-Newton methods is the class of methods which use information on the previous
gradients to compose G, and so to gradually build up a better approximation of
the true inverse Hessian. The BFGS update formula for (), [81] has been widely
considered one of the most efficient [65], [81], [33]. For problems where n is large,
however (say, n > 500, [33]), the cost of storing these approximate Hessian matrices
becomes prohibitively expensive, with a memory requirement of O(n?), compared
to the O(n) memory requirement of the CGM.

This problem may be alleviated by storing only the most recent gradient infor-
mation, from, say, the last m iterations [65]; such methods are called limited memory
quasi-Newton methods.

Another important issue for quasi-Newton methods is the condition number of
the matrices Gy,.. Large condition numbers lead to large round-off errors, which affect
the numerical stability of the method. This matter is treated by Oren and Spedicato
[67]. We now give some detail on a limited-memory quasi-Newton algorithm used

in a package from INRIA. We use the program N1QN3.f in the work described in
Chapter 7.
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The INRIA N1QN3 minimization algorithm

This minimization algorithm uses the the quasi-Newton update formula (2.62), in
which G, the current approximation of the inverse Hessian, is calculated using a
limited memory BFGS update. It is based on an algorithm by Nocedal, [65], with
an added preconditioning option, and is described in the documentation [34] and in
the paper by Gilbert and Lamaréchal [33].

The general inverse BFGS formula, for approximating the new inverse Hessian

Gra1 from G is as follows

Sk(yk)T yk(sk)T Sk(sk)T
G = ({1 — W)Gku ~ s (yk)TSk), (2.63)
where
sh = uft —u*, y' = VoI (W) — Vo J (uh). (2.64)

The matrix Gy is not stored explicitly in memory, but the product G V47 (uy) is

calculated from a diagonal matrix Dy and m pairs of vectors
{(yj,8j) th—m <y <k—1} (2.65)

if k> m + 1, or just k pairs otherwise. In this way, at the k" iteration with
k > m + 1, the oldest pair is discarded and a new pair added. The matrix GG} can
be represented using (2 + 1) n-vectors, where 1 is an integer supplied by the user,
and this is all that need be stored in memory.

The form of the starting matrix Dy has been found to be very important to
the performance of quasi-Newton methods in general, and the paper by Oren and
Spedicato [67] gives some detail on how Dy can be chosen. The NIQN3 algorithm

(without the preconditioning option) specifies Dy to be the diagonal matrix
Dy = 6,11, (2.66)

where the number 6y is the Oren-Spedicato factor
(y*—1)Tsh-1
"=

which is intended to give G a good scaling.

5k_1 - (267)
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The step-length p* in (2.62) is chosen to satisfy Wolfe’s conditions
JW) < J(WF) 4 agp" < VaT (W), G VT (0¥) >, (2.68)

< VaJ (W) Gr VLT (0Y) > > ay < VT (UF), GV (uF) >, (2.69)

where the constants ay and ay must be set in the ranges 0 < oy < % and oy < g < 1.
In the algorithm, these are set at the values a; = 107%, ay = 0.9.

The algorithm provides the option of preconditioning by altering the way in
which Dy, is specified in (2.66). In the preconditioned version, Dy is calculated from
Dy_1 using a diagonal update formula, and the matrix is now diagonal with respect
to a new inner product to be specified by the user. This change of inner product
is equivalent to a change of orthonormal basis from the canonical basis for IR", and
this change of basis forms the preconditioning. If the usual inner product is the
Euclidean product, as assumed in the above, then a new inner product could be of
the form

<a,b>p=alLTLb, (2.70)

where L is nonsingular, and the Canonical basis is altered by this change from the
basis {e;}, j = 1,..,n to the basis {L~'e;}. Rather than storing the matrix L, or
the new basis, the user provides a subroutine which specifies how the inner product

is to be calculated.

2.5 Background on probability theory

This section gives a brief overview of probability theory. The aim is to introduce the
concept of a statistically “most likely estimate”, which is a very important concept
in data assimilation. Before this, we give necessary definitions and background on

the Gaussian distribution. References for this theory include [3], [14], [55] and [44].

2.5.1 Definitions
Random variables and probability density functions

A random variable can be thought of as a numerical value associated with a random

event. The range of a random variable X, denoted Ry, is the set of all possible values
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of X. We consider here only continuous random variables, or random variables with
an uncountable range.

An n-vector X of random variables X;, y = 1,..,n we refer to as a random n-
vector, or simply as a random wvector if its dimension is not to be specified. The
range of a random n-vector we denote Rx, where Rx = Rx, X Rx, X ... X Rx,,.

Associated with any random variable X is a probability density function (abbre-
viated to pdf), px : Rx — IR. The pdf of a continuous random variable X describes
how the unit of probability of X is distributed on the real line. The probability
Pla < X <b) that X takes a value between a and b € IR is given by

b
Pla< X <b)= / px(@)de. (2.71)
The other fundamental properties of a pdf are

px(x) >0 forall x€ Ry, (2.72)

/Rx px(x)de = 1. (2.73)

We write the pdf of a random n-vector as px : Rx — IR", where px is the vector
of the pdfs of the random variables X;, j =1,..,n.
The joint pdf of two random variables X and Y is given by pxy : Rx X Ry — IR,

with
bopd
(e X <oe<y <d)=[ [ pxyiey) dedy, (2.74)
pxy(x,y) >0 forall =€ Rx,y € Ry (2.75)
/Rx /RprY de dy =1 (2.76)

The random variables X and Y are independent if

pxy(,y) = px(x)py (y). (2.77)

The conditional pdf of X, given that Y has taken a value y° (so y° is a realisation
of the random variable Y') is defined to be

Px|y=y () = pi);:ggf). (2.78)
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This relation is from Bayes theorem, and it can also be written in the form

PY+X=x@f5px($)‘

P —,0lT) = 2.79
XY=y ( ) pY(yO) ( )
We note that if X and Y are independent, then

Pxy=yp () = px(z), (2.80)

ie, knowledge that Y has taken a particular value has no impact on the probability

of X.

Mean, mode, variance, covariance and correlation

The mean value or expected value E{X} of a random variable X is defined to be

e{X} = /Oo epx(2)de. (2.81)

A random variable is unbiased if £{X} = 0. The mean of a random n-vector X is

the vector of mean values of the components of X,

E{ X1}
£{X} = . (2.82)
E{Xn}

The expectation operator £{ } is a linear operator, and so has the following property

for random vectors X and Y,
E{AX + BY +c} = AE{X} + BE{Y} + ¢, (2.83)

where A and B are constant matrices and ¢ is a constant vector. The mode of a
random variable is defined to be the value for which its pdf achieves a maximum.

The vartance of a random variable X is defined to be
Var{X} = &{(X — E{X})Q}, (2.84)

which can be interpreted as the expected square distance from the mean. For con-

stants ¢ and b € IR we have
Var{aX + b} = a*Var{X}. (2.85)
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The standard deviation of X is defined as
o(X) = (Var{X})7. (2.86)
The covariance of two random variables X and Y is defined as
Cov{X,Y} = E{(X — E{X (Y — E{Y )}, (2.87)
and the correlation between X and Y is
Cor{X,Y} = E{XY}. (2.88)

If Cov{X,Y} =0, then X and Y are uncorrelated. The correlation coefficient of X

and Y is
Cov{X,Y}

SRR SIS

(2.89)

where —1 < p(X,Y) < 1.
By linearity of the expectation operator, we have for matrices A and B of suitable

dimensions

Cov{AX,BY} = ACov{X,Y}B". (2.90)

We also note that if X and Y are unbiased, then
Cov{X,Y} = E{XYT}. (2.91)
By the covariance matrix of a random vector X, we mean the covariance matrix

Cov{X, X}.

2.5.2 The Gaussian distribution

We now suppose that a random variable X represents random error. The Gaussian
distribution, also called the Normal distribution, has the following characteristics

that make it suitable for representing errors:
1. Continuity
2. An unbounded range

3. Symmetry about the mean (so positive and negative errors are equally likely)
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4. A “bell-shaped” distribution, which gives small probability to large errors and

largest probability to the smallest errors,

5. Tractability, ie a pdf that is easy to work with.

The Gaussian pdf for a random variable X with mean yx and variance o2 is given by
1 —(z—p)?
= . 2.92
px(s) = e &= (2.92)

For a random n-vector with mean g € IR"™ and nonsingular covariance matrix R,

the Gaussian pdf is

1 1 T p—1
px(x) = (%)g(det(ﬂ)))%eXp(—§(X—u) R™(x — p)). (2.93)

2.5.3 “Most likely” estimates

The following development broadly follows that of the paper by Lorenc [55].
We suppose that x/ is a “prior”estimate of a random n-vector X. If we know
that
X =x/+e, (2.94)

where e/ is a random n-vector of the error X —x/, and we know that e/ is Gaussian

and unbiased with nonsingular covariance matrix P/, then the pdf of X is given by
1
px(x) = by exp(— 5 (3x — /)7 (P/) 7 (x — ). (2.95)

where k; is a constant. We now suppose that we have a random p-vector Y that

satisfies

Y =CX 16, (2.96)

where ' € IR?*", and 6 is a random p-vector of the error Y — C'X, which is
Gaussian and unbiased, with nonsingular covariance matrix K. The conditional pdf

for Y given that X = x is

PYx=x(Y) = k2 exp(—%(CX — )R Ox —y)), (2.97)

where k; is a constant. We now suppose that we have a particular realisation, y° of

Y, and that we wish to find the “most likely” estimate x* of X given that Y = y°.
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To do this we need to know pxjy=yo(x), which by (2.79) is given by

Py (x) = PYARXL), 2.9%)

hence

ky ks
ks

exp(—S{Ox—y") T R (Cx—y) 4 (x=x)T (P (=),
(2.99)

PX|y=y°(X) =

where k3 = py(y”) is a constant since y° is given.

The “most likely estimate” of x* could be defined either as the mode or the mean
value of X, which correspond to the mazimum likelihood and minimum variance es-
timates respectively. Here it turns out that the maximum likelihood and minimum
variance estimates coincide [55], and are given by x which maximises (2.99). Maxi-

mizing (2.99) is equivalent to minimizing the function

J(x) = %(CX — ¥R Cx—y°) + %(x —xHT(PH 7 (x — xF), (2.100)

(since J(x) = —lnkf22 PX|Y=yo (X))

In summary, if X and Y are random vectors satisfying (2.94) and (2.96), then
the most likely estimate of X given that Y = y" and a prior estimate X = x/, is
given by x* € IR" which minimizes J in (2.100).
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Chapter 3

Sequential data assimilation

Sequential data assimilation schemes treat observations as they become available in
time, and then discard them. If a 3D data assimilation method, which is designed
to produce an analysis at a single time, is applied repeatedly, this can be seen as
sequential data assimilation. 4D sequential data assimilation methods, however,
are designed so that an analysis should gradually draw closer to the true model
state, as more observations are processed. In control theory, dynamic observers are
designed for this very purpose, and so observer theory is very relevant to sequential
data assimilation. An example of an observer originally designed for engineering
applications which is being investigated for use in data assimilation, is the Kalman
filter. The Kalman filter is designed to produce a solution that is, under certain
assumptions, statistically optimal. There are also other ways of designing observers
which give the solution other desirable properties.

In this chapter, we firstly give a brief outline of some 3D data assimilation
schemes. In Section 3.2, we give an introduction to the Kalman filter. We pay
particular attention to the assumptions made on observational error and model
error, and how the Kalman filter can be generalized to allow for serially correlated
model error, since we use these ideas later in the thesis. Then, in Section 3.3, we give
an introduction to dynamic observers of control theory, and give theory on design
of a robust observer using eigenstructure assignment. In Section 3.4, we discuss
how 3D data assimilation schemes can be extended to 4D schemes. We show how

the successive correction method can be expressed as an observer if observations
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are available frequently. Using observer theory, we are able to give conditions for
the linear, time invariant case under which the successive correction analysis will
converge in time to the true solution. In Section 3.5, we compare the Cressman
successive correction scheme with a robust observer in data assimilation for a simple
example. These experiments serve to illustrate how an observer which is designed for
temporal convergence to the true solution can perform much better than successive

correction scheme designed for an analysis at a single time.

3.1 Background on 3D data assimilation schemes

By “3D” data assimilation schemes we mean schemes that are designed to give an
analysis at a single time, and do not attempt to take into account the time-tendency
of the observations. This section gives a brief overview of a few 3D data assimilation
schemes that have been used in the past and to date, and which we use or refer to
in this thesis. We firstly outline successive correction methods, which are some of
the earlier schemes to have been proposed and implemented. We then introduce
the method of optimal interpolation, on which the schemes currently used in many
meteorological centres are based. Finally, we describe the 3D variational assimilation
(3DVAR) method which is being developed for operational use at several centres as
an intermediate stage in the development of 4D variational assimilation (4DVAR)
schemes.

The material in this section is intended to be only a brief outline of the methods
discussed. A more in-depth overview of data assimilation methods and further
references are given in the review paper by Ghil and Malenotte-Rissoli [32] and the

books by Daley [24] and Bennett [4].

3.1.1 Successive correction schemes

Successive correction schemes were introduced to meteorology in the 1950s for op-
erational objective analysis, by Bergthérson and Do66s [9], and by Cressman [21].
The Cressman scheme [21] was designed for systems with few observations, widely

scattered, which are to be fitted as closely as possible. This method was intend-
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ed to improve on the earlier polynomial spline methods [68], [35] by being more
suitable for use over larger areas with less dense data coverage, and by being com-
putationally simpler [21]. Successive correction schemes have been widely used in
data assimilation, [24].

We suppose we have a prior estimate x} of the true model state x¢, and obser-

vations given by
Yi = hk(X};)v (31)

where equation (3.1) is as defined in (2.6) assuming no observational error. The
successive correction method is an iteration on x; which brings it successively closer

to the observations y;. This iteration has the following general form, [55],

=X QU - ), =0, (32
with XECO) = x?, where ng) represents the i iterate of x5, W) € IR"** are weighting

matrices, ) € IR"™™" contains normalizing factors, and s is the total number of
iterations. The analysed state is then given by x} = ng). The weighting matrix in
effect smoothes the observational data into the model state by modifying the state at
grid points within some radius of influence of each observation point. Although the
weights in a successive correction method are generally empirically determined, some
methods, including the original method by Bergthorsen and D6os, use the statistics
of analysis error to determine the weights, and so are able to allow for observational

error [24]. The paper by Lorenc [55] shows how the successive correction methods

can be related to statistically optimal methods.

The Cressman scheme

The Cressman scheme [21] is one of the earliest schemes for objective analysis to
have been used operationally, and has been widely used since [24]. We give more
detail on this method, since we implement it for a simple example in Section 3.5.
In this method, the iteration is repeated with successively smaller radii of influence
RO, which has the effect of altering the large scale features of the motion on the

first iterations, and the smaller scale features on successive corrections [24]. The
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(1,m)™ element of the matrix W) is given by

: R(z) 2 _ g2
VVZ() = (TZ.L))—lm, [=1,...,n, m=1,.pg, (3.3)
where R{) is the radius of influence at the i iteration for observation m (ie, the

" component of y}), and dj,, is the distance between observation m and grid point

mt
[. In the original paper introducing this method, 4 iterations were carried out with

different radii of influence [21].

3.1.2 Optimal interpolation

The method of optimal interpolation (OI) has been widely used in operational data
assimilation for NWP in the 1980s and 1990s [42]. Important references for the
method include the papers by Gandin [30] and Lorenc [55]. The OI method was
designed for a system in which observations are linearly related to the model state.

We suppose that we wish to estimate x%, and that we have observations given by
Vi = CkX}; + 6y, (34)

where y; and 8, are defined as in (2.9). We suppose that the observational error
61 1s an unbiased, Gaussian random vector, with nonsingular covariance matrix Ry.

We also suppose that we have a prior estimate (or “background estimate”) x of

x!, and that the error (x} — x%) is an unbiased, Gaussian random vector with non-

singular covariance matrix P;. The OI method is based on finding the most likely
state x¢ at time ¢; from the prior estimate x} and the vector of observations y;.

From Chapter 2, Section 2.5, we have that the most likely estimate minimizes
1 T p—1 by, L T p—1
J(xi) = 500 = 207)" B (% = x07) + 5 (Cexe — ye)” B (Chxi —yi)- (35)
The OI analysis x} satisfies
X" = )+ Wilyr — Cixy), (3.6)
where the OI weighting matrix W, is specified by
W, = PkCg(CkPkCg + Rk)_l, (37)
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as discussed in [56]. The OI method is in fact not truly optimal since it does not
update the error covariance matrix P; of the background estimate in a way that
takes into account the earlier observations which have already been assimilated.
The Kalman filter does this, but the extra cost involved is large. The OI method is
sometimes more realistically referred to as statistical interpolation, [54]. Although
designed for a linear system, the method can be extended for use in a system in

which the observations are nonlinearly related to the model state,
yie = hi(x},) + 85, (3.8)

with yx, x, and 6, as defined in (3.4), and where hy : IR" — IRP* is a nonlinear
operator. This can be done by linearizing (3.8) about x}. We describe this approach
in a little more detail in the context of the nonlinear extension to the Kalman filter

in Section 3.2.

3.1.3 3D variational assimilation, and the PSAS method

The three dimensional variational assimilation (3DVAR) method takes a different
approach to minimizing the function (3.5). Rather than solving equations (3.6) and
(3.7), the approach is to iterate to the minimizing solution x}. The gradient of (3.5)

with respect to x; is
Vi d = Pt (xk = x3) + CF B (Chxi = yi), (3.9)

and this may be used in a gradient method to iterate to the optimal solution. We
describe a few such methods in Chapter 2, Section 2.4.

The 3DVAR method is currently being developed for implementation for opera-
tional data assimilation at several meteorological centres, with plans for extension to
the 4ADVAR method [73]. The “PSAS” method, or physical-space statistical analysis
system [42] represents another way of solving equations (3.6),(3.7). The approach

taken in this case is to solve for w; € IRP* the equation
(CkPkaT + Rk)Wk = (yk — CkXZ) (310)
using some suitable iterative method. The solution x{ is then given by
a __ b T
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In general, the dimension p; of the observation vector is much smaller than the
dimension n of the model state xj; for meteorological applications it might be t-
wo orders of magnitude less, and even less for oceanographic applications. The
advantage of the “physical-space” approach lies in this potential gain in efficiency.

The 3DVAR and PSAS methods may be extended to cases where the observations
are nonlinearly related to the model state, as in equation (3.8), as we described for
the OI method. Alternatively, the cost function J may be explicitly defined for
the nonlinear system, as we describe in the context of 4D variational assimilation in

Chapter 4.

3.2 The Kalman filter

The Kalman filter for a discrete linear model with observations linearly related to the
model state was developed by Kalman in 1960 [45]. The continuous time version
was developed by Kalman and Bucy in 1961 [46]. Here we concentrate on the
discrete version. Comprehensive background on the discrete Kalman filter is given
in the texts [14] and [44]. An introduction to the Kalman filter for data assimilation
applications can be found, for example, in [60].

The Kalman filter has been considered for application in meteorology and o-
ceanography, but is generally considered too expensive for operational implementa-
tion because of the large dimension of the problem [32]. However, several simplifica-
tions of the method have been suggested for data assimilation, [84]. Further, since
the Kalman filter provides, for a linear system and under certain statistical assump-
tions, a statistically optimal solution for 4D data assimilation, it is useful to exploit
links between the Kalman filter and other data assimilation methods. We describe
the assumptions made in Kalman filtering on observational errors and model errors
in some detail, since we refer to these same assumptions later in the thesis. We then
describe the Kalman filter, and give some detail on how it can be modified to deal
with serially correlated model error, since later in the thesis we discuss further how
to deal with serially correlated model error in variational data assimilation. Finally,

we discuss briefly how the Kalman filter can be used for nonlinear systems.
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3.2.1 The standard Kalman filter assumptions

We suppose that the true model state is defined by the linear stochastic dynamic
system

XII;-H = Akx}; + Bkuk + €k, (312)

where x! is a random n-vector representing the true model state at time 5, u;, € R™
is a vector of specified model inputs, A, € R**" B, € IR™™™ and ¢}, is a Gaussian
random n-vector representing model error, with nonsingular covariance matrix () €
IR™™"™. We suppose that the output of (3.12) at time #; is a random pg-vector yy
related to the state x} by

yi = Cix + 85, (3.13)

where C'y € IRP**" and 8}, is a Gaussian random pg-vector representing observational
error, with non-singular covariance matrix Ry € IR”**"*. We suppose that we have
a prior estimate, called a forecast in this context, X;; of xt, and that the forecast

error at time tj, defined to be

el =xf —xt, (3.14)

is a Gaussian random n-vector with zero mean and with nonsingular covariance
matrix Pg.
In the standard Kalman filter, the following assumptions are made about the

model error gy,

MET1 : it is unbiased, E{e;} = 0,

ME?2 : it is serially uncorrelated (white), ie Cov{es,e;} =0, j # k.
We make similar assumptions about the observational error &y,

OE1 : it is unbiased, £{6,} = 0,

OE2 : it is serially uncorrelated, ie Cov{é,6;} =0 j # k.

It is further assumed that model error and observational error are uncorrelated with

each other and uncorrelated with Xg,
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MOE :

Cov{er,8;} =0,  Cov{er,x}} =0,  Cov{dp,x}} =0, Vj.k (3.15)

We note that, from (3.12) and ME2, we have

Cov{x’, e} =0, vk > 7, (3.16)
and similarly, from (3.13) and OE2 we have

Cov{x’, 6z} =0, Vk > j. (3.17)

As mentioned above, we assume that the error covariance matrices (), Ry and
P,f are nonsingular. All covariance matrices for a random vector with itself are
symmetric positive semi-definite, and are positive definite if they do not contain
null variances or perfect correlations [81]. We assume that this is so. Assumption

ME1 that model error is unbiased is in fact not restrictive; if we have
g{é‘k}:ék 7£0, (318)

we can define

€k:§k—|-€k/ (319)

where E{e}'} = 0 and e; € IR" is now part of the deterministic model forcing,
and continue as before. Similarly, assumption OEl on observational error is not
restrictive. Assumptions ME2 and OE2 can also be relaxed, but doing so necessitates

extra computational cost and extra statistical information.

3.2.2 The Kalman filter

The Kalman filter finds the most likely estimate x§ of the state x{ from a prior
estimate X;; and a vector y§ of observations, which is a realization (or particular
outcome) of the random vector y;. The vector x§ is sometimes called the analysis.

From Chapter 2, Section 2.5, we know that x} minimizes the function

1 1
(ki) = 506 =3B ™ 00 = x) + 5(Cioxe = ) RT (Coxi = y0). - (3:20)
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A necessary condition for a minimum is that Vi, J(xx) = 0, ie
(PL)™'(n = x{) + CL R (Crxi — y7) = 0. (3.21)

[t can be shown [60] that the best estimate x§ is a unique, global minimum of (3.21),
and satisfies

x¢ = x| 4+ Kip(y) — Cix)) (3.22)
where K}, € IR"*P* is the Kalman gain matriz given by
K, = p/clc,plcl + Ry~ (3.23)
We define the analysis error at time t; to be
e} = x} — X} (3.24)
Subtracting x} from (3.22) and using (3.13) gives the following equation for e{,
el = el + K (Chxl + 8, — Crx)) (3.25)
= (I — KxCh)el + K6, (3.26)

Since efi and & are unbiased, ef is also unbiased. Further, it can be verified that
efi and & are uncorrelated because of equation (3.17), and hence e} has covariance

matrix

P = (I — K,.C)P{ (I — K,Cp)T + K Ry KT (3.27)
which can also be written [60]
P = (I — KyCy)P{. (3.28)

So far, we have specified the optimal analysis x} at time ¢; and its error covariance
matrix P. We now move on to the next step, and calculate the prior estimate or
forecast of xj_, as follows

X£+1 = Akxi + Bkuk. (329)

The forecast error covariance matrix Pg_l_l must now be calculated. Subtracting (3.12)

from (3.29) gives the following expression
el = Are} — ey (3.30)

43



It can be verified that e} and e are uncorrelated because of the relation (3.16).

Further, e£+1 is unbiased since e} and e are, and we have
Pl = AcPEAT 4+ Q) (3.31)

We can now apply the Kalman filter equations (3.22) and (3.23) to find xj_,,
which is the best estimate of xj,, given the observation vector yj,, and prior
estimate X£+1, and (3.28) to find its error covariance matrix.

In fact, since X£+1 is the best estimate of x, from the observation vector y}
and prior estimate Xi, then x{,, is the best estimate of xj; from the observations
yy and yj,, and prior estimate Xi. If observations yg, y{,...¥74 have been treated
in this way, then x}_, is the best estimate of x},, given observations yg,..,yp,; and

prior estimate x [44].

3.2.3 Serially correlated model error

If we wish to allow for serial correlation in model error, and abandon assumption
ME2, then the Kalman filtering equations can be modified in the way described
below. In Chapter 6 we give a fuller discussion on why this modification might
be needed. The following theory broadly follows a paper by Daley written in the
context of data assimilation [23], and the book by Jazwinski [44], in which the case
of serially correlated observation error rather than model error is treated.

To account for serially correlated model error in the system (3.12),(3.13), we
must assume that the serial correlation is known. We therefore suppose that we

have the following linear stochastic dynamic model for the evolution of model error,
ert1 = Grer + Qi (3.32)

where (), € IR"™™" represents the dynamic evolution of model error from time ¢,
to try1, and qg is an unbiased, Gaussian random n-vector, which is assumed to be
serially uncorrelated, and uncorrelated with the observational error. We assume
that qj has a nonsigular covariance matrix Sy. We note that from (3.32) and the

fact that qi is serially uncorrelated, we have
COV{&‘]‘,qk} = 0, vk Z j (333)
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The other assumptions on model error and observational error are as before, includ-
ing the assumption that model error and observational error are uncorrelated.

The analysis given for the standard Kalman filter in equations (3.22) and (3.23)
still holds for producing the best estimate or analysis x} based on Xi, y? and their
error covariance matrices. The expressions (3.27) and (3.28) for the analysis error
covariance are also unchanged, since the forecast error and observational error are
still uncorrelated. The expression for the new forecast error e£+1 given in (3.30) is
also unchanged, but because model error is now serially correlated, equation (3.16)
no longer holds, and model error and analysis error are now correlated. Hence, the
expression (3.31) for the new forecast error covariance matrix must be modified as

follows.

Pl = Cov{(Ase} —ep), (Aref — er)}

= AkP]gAg — AkCOV{ei, €k} — COV{Q%, €k}A£ + Qk, (334)
or, defining the covariance matrix of analysis and model errors as
P!? = Cov{ef,er}, (3.35)

we have

Pl = A PP AT — AL PR — PUAT 4 Qy (3.36)

It now remains to specify P;{; from P?. This is given by
P = (1 — KpCp) (AP — Qp)GY. (3.37)
Finally, Q41 1s calculated from @) as follows
Qi1 = GrQiGY + Sk (3.38)

So, for serially correlated model error, we have the standard Kalman filter equations,
except that the evolution of the forecast error covariance (3.31) is modified to (3.36),
and in addition we must propagate the covariance matrix of analysis and model
errors as expressed in equation (3.37), and the model error covariance matrix (3.38).

We note that serially correlated observational errors can be dealt with in a similar

way, if we assume model error is uncorrelated in time [23]. In this case the equation
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for the analysis error covariance propagation would be modified, and we would need
to work out the propagation of the covariance matrix of forecast and observational
errors. It is also possible to allow for serial correlations in both model error and

observational error [44], but at greater complication still.

3.2.4 The extended Kalman filter

We now consider the extension of Kalman filtering theory to the nonlinear, stochastic
dynamic system

x), = fr(x}, up) + e, (3.39)

with observations nonlinearly related to the state as follows
yi = hi(x}) + 85, (3.40)

where the true state x!, the output yy, the specified input u; and random errors
e, and &y are defined as in the system (3.12),(3.13), and fj, : R” x R™ — IR" and
h; : R" — IRP* are nonlinear operators.

There are various ways of developing an extended Kalman filter (EKF) for the
system (3.39),(3.40), [44]. Here we give a fairly brief treatment of the subject, using
one approach which is popular in the context of data assimilation for meteorology
and oceanography, [32]. This approach involves linearizing the system about the

forecast state Xi, to obtain a linear system of the form
Xpyp = Ap(x],up)xh + By(x], up)uf + €, (3.41)
v = Cixhx,+ 8, (3.42)

in which A, € R and C} € IRP**" are the Jacobians with respect to x; of f}
and hy, respectively, and By € IR"*™ is the Jacobian of f, with respect to ug, and

the errors ), and 8}, are assumed to satisfy the standard Kalman filter assumptions

ME1,ME2, OE1,0E2, and MOE. In the EKF, the nonlinear evolution
xf 0 = f(xt ) (3.43)

replaces (3.29), but the analysis (3.22) with (3.23) and the evolution of the co-

variance matrices given in (3.28) and (3.31) are carried out using the linearized
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system (3.41),(3.42). In this case, the equation for the forecast error covariance

propagation is correct to first order in ei.

3.3 Observer theory

In control theory, a dynamic observer uses model outputs (observations) to drive a
model state closer to the true state as characterised by the observations. For this
reason the sequential data assimilation methods can be expressed quite naturally in
terms of observers, because the approach in sequential assimilation is to gradually
drive the model state closer to the optimal solution over the assimilation interval.

The Kalman filter is an example of a stochastic observer, although in this case
the aim is not to drive the model to the observations exactly, but to the “most
likely” model state given appropriate error covariance information. Other forms of
observer can be formulated for data assimilation and a class of observers known
as “simplified Kalman filters” (SKF) are being developed for this application [84],
[32]. If a 3D method of data assimilation, such as a successive correction method,
is applied repeatedly, it could also be expressed in terms of observers, as we discuss
in Section 3.4.

We begin this section by introducing a dynamic observer for a nonlinear system,
and looking for criteria for its convergence to the true solution. In the case where
we restrict our attention to the linear, time invariant system, it is easy to express
conditions for convergence in terms of the eigenvalues of the observer. We discuss
how, under certain conditions, we can design the eigenstructure of the observer
system so that it behaves in a desirable way. Then we describe a method of observer
design that results in a robust observer system, which serves as an example of

observer design.

3.3.1 Dynamic observers

We consider the nonlinear model

Xp1 = f(X, uk) (3.44)
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with observations

yi = hp(x}) (3.45)

defined as in (2.1),(2.6), assuming no model error or observation error. A dynamic

observer for (3.44),(3.45) may be written in the form

Xk4+1 = fk(le Uk) + Gk()’k - hk(Xk))a (3-46)

where X is an estimate of the true model state x., and the feedback matriz G), €
IR™*P* must be chosen so that x; — x} as t; — oco.
Expanding (3.46) in a Taylors series about x}, and defining e, = x; — x| we

have

Xk+1 = fk(X};, uk) + Fk(X};, uk)ek + Gk(}’k — hk(X};) — Hk(x};)ek) + O(Qk), (347)

where Fj and Hj are the Jacobians of f; and hy with respect to x;, and o(ey)
represents the higher order terms. Now using (3.45) and subtracting (3.44) from
(3.47) we have the following equation for the error e, between the observer state

and true state

€ri1 = (Fk(Xk, uk) — Gkak (Xk))ek + O(Qk). (348)

The nonlinear observer (3.47) will converge to the true model state provided ey — 0
as 1 — oo, with the evolution of e, given by (3.48). An example of a nonlinear
observer, which uses a gradient method with an interesting link to the 4D variational

assimilation method, is given in [62].

The linear, time invariant case

For the linear, time invariant system
X1 = Ax} + Buy (3.49)

yr = Ox, (3.50)

as defined in (2.26),(2.27), a dynamic observer of the form (3.46) is

Xk+1 = AXk + Buk + G(yk — CXk), (351)
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and the error equation corresponding to (3.48) is
€ri1 = (A — GC)ek, (352)

and therefore

er = (A —GC)re. (3.53)

Hence, to satisfy the condition ey — 0 as {; — oo, the eigenvalues of (A-GC),

denoted by (A — G/C), must satisfy the condition
IAi(A—GC)| < 1 Vi=1,..,n. (3.54)

In certain cases it is possible to choose the feedback matrix ¢ so that the matrix
(A — GC) has any specified eigenvalues, and in particular, it is possible to ensure
that the condition (3.54) holds. Theorem 3.1 gives sufficient conditions for this to
hold [90].

Theorem 3.1 [f the system (3.49),(3.50) is completely observable, then it is pos-
sible to choose the matriz G in (3.51) so that the eigenvalues of (A — GC) take

prescribed values.

3.3.2 Eigenstructure assignment

The inverse eigenvalue problem of assigning eigenvalues to the system (3.51) allows
some freedom in choosing the corresponding eigenvectors in the case p > 1, and
since we have some freedom in choosing the eigenvectors also, our problem now
is one of eigenstructure assignment [28]. We now describe how we can choose the
eigenstructure of the dynamic observer (3.51).

We suppose that the conditions of Theorem 3.1 hold, and that the set of eigen-
values we wish to assign is

A= {)\17)\27---7)‘71}; (355)

where

NeC, |Nl<1l, and NEA=XEA for ¢=1,...,n. (3.56)
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We let D = diag{);} and let X be the modal matrix of right eigenvectors of (A—GC)
and Y be the modal matrix of (A7 — CTGT). Then our problem is to choose (7 and
X to satisfy

(A—GC)X = XD, (3.57)

or, equivalently, to choose Y and G7 to satisfy
(AT —cTah)y =Y D. (3.58)

For our purposes, we work with equation (3.58).

If we calculate the QR decomposition of O, we find that

R,
0

ch = [Qm QC] ) (3'59)

where Q. € R™?, Q. € R, [Q.,Q.] is orthogonal and R, € IRP* is upper
triangular, nonsingular since (' is assumed to have rank p. Substituting this into

(3.58) and rearranging gives
ITATY — QTY D R,GTY
@ @ = : (3.60)
QTATY —QTY D 0
from which we have
GT = R7'QT(ATY — YD)y, (3.61)
0=Ql(ATY —YD). (3.62)

Equation (3.61) is the equation for GT for a given Y and equation (3.62) gives us a
condition for choosing Y.

From (3.62) we have that for e = 1,....n
QI (AT = Xil)m; =0, (3.63)

where 7. is the 1'* column of Y and is the left eigenvector corresponding to eigenvalue
A;. Therefore,
mi € Ni= N(QI(AT = \il)), (3.64)

where N represents the right null space. This gives some restriction on the choice

of each column 7, of Y, but since N; has dimension p (by observability, [47]), there
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is still some freedom to choose the 5, if p > 1. We can use this freedom to ensure
that our selected eigenvalues are as insensitive as possible to perturbations in A, C'
and G and thus that the system is robust [47]. This can help to reduce the effects

of model error [79].

Eigenstructure assignment for robustness

The sensitivity of eigenvalue \; to perturbations in the components of A,C" and GG

is given by
[I€: 1T, 1

¢ = ASilImilL 3.65
'l )

where &; are the columns of X, and n7 the rows of Y7 [88].

We note that
1

P = 3.66
‘ | cos a (3.66)

where « is the angle between i, and §;, by the scalar product rule. Therefore ¢; is
smallest where « is smallest, which will be where 5, is parallel to &,. To optimize
the conditioning, then, we choose each 1, to be as close as possible to parallel to ;.
We have that ; is orthogonal to n, for all j # 7 [39]. If i, is to be parallel to §;, it
follows that 7, should also be orthogonal to n; for all j # 7. A necessary condition
for optimal conditioning is therefore that the vectors i, be as close to orthogonal
to each other as possible.

To summarize, our aim is to choose a set of vectors n,, the columns of Y so that

forall: =1,2,..n
a) 7, € N; = NV(QT(AT — X)) Vi=1,..,n
b) the 5, are linearly independent
c) the n; are as close to orthogonal to each other as possible.

Condition b) is included, because the inverse of Y is needed for evaluating G. The

set of vectors n; must be scaled so that ||n;]| = 1.
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A method for eigenstructure assignment

The method described here involves choosing a set of vectors 1, which satisfy con-
ditions a), b) and ¢) above, and follows a method given in [79].

Calculating the QR decomposition of (A — A\, 1)@, gives

(A= NDQ. =[5, 5] f : (3.67)
0

where [5;, S;] is orthogonal, S; is n x (n—p), S;isnxp,and R;is (n—p)x(n—p)
upper triangular and nonsingular. It follows by orthogonality of [Sﬂ, S;], that

QI(AT = X\ 1)S; = 0. (3.68)

C

Therefore, if 5, is in the space spanned by the columns of S;, then condition a) is
satisfied.
We now choose any set of linearly independent left eigenvectors i, satisfying

condition a), and modify these in turn to satisfy condition c). Let

Yo = {7717---7772'—17772'4-17---ann}- (3-69)

We want 1, to be as close to orthogonal as possible to this set. Calculating the QR
decomposition gives
. Vi
Y—i = [ZZ',ZZ'] 5 (370)
0

where [Z,Zi] is orthogonal, Y; is upper triangular and nonsingular, and z; is an
n x 1 vector. This gives us the vector z; which is orthogonal to Y_;, but z; may
not be in N;, which would violate condition a). Choosing 7, to be the orthogonal
projection of z; into N; ensures that 7, is as orthogonal as possible to the set Y_;

whilst satisfying condition a). So, after normalization we take

n; = 5i57 2:/||S:57 |- (3.71)

When all the columns have been modified in this way, the same procedure can
then be repeated to modify the 7, again, until |[(Y1)7!||r = 3, ¢; reaches a local
minimum. Minimizing ||(Y7?)™!||r is a way of minimizing all the ¢; together. The

feedback matrix (G can then be calculated from (3.61), using the Y derived.
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This method for improving the robustness of the system can not be guaranteed
to converge to the minimum possible value of ||(Y?)~!||f, but in practice it has been

found to reduce its value significantly.

An algorithm for a robust observer

1) Calculate the QR decomposition of C'T into

. R,
" = Q.. Q] (3.72)
0
2) Foreachi=1,..n,
calculate the QR decomposition of (A — A\, 1)Q. into
N R;
(A= \1)Q. = |S:. 5] (3.73)
0

3) Choose columns from each of the S; to be columns of the first guess Y, in such

a way that Y is invertible.

4) For ¢ = 1,...,n, modify the columns 5, of V" as follows:

4a) calculate the QR decomposition of Y_; = {9, ..,m;_1, M4y, .., M, } into
)%
0

Y—i = [ZZ',ZZ'] (374)

4b) project the vector z; into space S; to satisfy condition a) and then nor-

malize:

n; = 5:5] 7/ ||5:57 i) (3.75)
5) Repeat Step 4 until ||(YT)~!||r reaches a local minimum.

6) Using the Y found, let the feedback matrix be G where

GT = R'QT(ATY —YD)Y (3.76)
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3.4 Extending 3D schemes to 4D

3.4.1 Introduction

3D data assimilation schemes are designed for an analysis at a single time. This
approach was suitable in the earlier days of data assimilation, when observations
were available mostly at synoptic times. For many modern applications of data
assimilation, however, observations are available much more frequently.

The OI, 3DVAR and PSAS methods all have theoretical extensions to 4D schemes.
For example, the Kalman gain matrix K}, given in (3.23) is the same as the OI weight-
ing matrix Wy given in (3.7) with the matrix Py of the OI scheme playing the role of
the forecast error covariance matrix Pg of the Kalman filter. If the matrix P, of the
OI scheme is updated from Pj_; in the same way as the forecast error covariance
matrices of the Kalman filter, then the Ol scheme extended to 4D is equivalent to
the Kalman filter. Since updating the forecast error covariance matrices is a very
expensive part of Kalman filtering when the dimension of the system is large, in OI
applications the covariance matrices P, are usually kept constant, or a much simpler
updating is performed, [32].

Similarly, the 3DVAR method can be extended to the strong constraint 4D vari-
ational assimilation method by summing the observational part of the cost function
J given in (3.5) over the times that observations are available, and performing
the minimization subject to the constraint that the model equations hold. In this
method, it is only necessary to specify the covariance matrix Fy at time tg, as the
matrices P, do not need to be calculated explicitly.

These 4D data assimilation methods are much more expensive than the 3D
methods, however. Although much recent research in data assimilation has cen-
tred around the theory and development of these 4D schemes, it is likely that 3D
schemes will be used operationally at some centres for a while yet. There is also still
interest in simple schemes, such as the successive correction method [38]. Successive
correction methods are largely empirically designed, to “smooth in” observations to
a prior estimate of the state at a single analysis time. In the next subsection, we

discuss how ideas from control theory on observer design can be applied to provide
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a theoretical extension of successive correction schemes to 4D. This could provide
a way to make successive correction schemes more appropriate for use in a modern

application of data assimilation in which observations are available more frequently.

3.4.2 Successive correction schemes as observers

Here we suppose that a successive correction method is to be used for data assimi-
lation with observations available frequently, and we show how it may be regarded
as an observer. If an observer is applied over an assimilation interval, then the
analysed solution over that interval does not satisfy the model dynamics, but the
observer dynamics. Hence, considering a sequential data assimilation method as
an observer gives a different way of understanding some of the properties of the
analysed solution.

In particular, by considering a successive correction scheme using observer theory,
we are able to consider theoretical convergence in time of the scheme to the true
model solution. In the data assimilation literature, the issue of whether a successive
correction scheme converges generally refers to the question of whether the successive
iterations or corrections (at a single analysis time) bring the analysis close to the
true solution at that time [24]. In general, however, observations from more than
one time are needed to determine the true state uniquely. Here, we consider whether
the successive correction technique converges in time to the true model state.

We suppose that the evolution of the true model state is given by the linear,

time invariant system
X;,1 = Ax} + Buy, k=0,.,N—1 (3.77)
as defined in (2.17) and we suppose that we have observations available at every
timestep, related to the true model state by
yr = Cx}, E=0,..,N—1 (3.78)
as defined in (2.18).

The successive correction method, with a constant number s of corrections, finds

an analysis x¢ from a prior estimate x} using the following iteration
XEJ-H) = ng) + WDy, — ng)), 1=0,..,5—1, (3.79)
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with XECO) = x?, and x¢ = ng), and where the W) i = 1, ... s represent the weighting

matrices used in the successive corrections. After manipulation, the method can be

written for theoretical purposes in the form
x¢ = x5 + WO (y, — Oxb), (3.80)
where the matrix W) is given by the recursion
WD — W — oWy wo =1, -1, (3.81)

with WO = W,
From an analysis x} at time g, the prior estimate for the next timestep, XZ_H,

is found using the model equations
X, = Ax} + Buy, k=0,..,N—1. (3.82)

Substituting (3.82) into (3.80) gives
Xy = Axj + Buy + W (yy1 — Cx) ), (3.83)

which expresses the successive correction method in the form of a dynamic observer.
Subtracting (3.77) from (3.83) and using (3.78) gives the following equation for the

evolution of the error e, = x§ — x},

erp1 = Aej, + W (C(AxL + Buy) — C(AxS 4+ Buy)), (3.84)

or

erp1 = (A—WECAey. (3.85)

Hence, the successive correction scheme converges to the true model state x} in time
if the eigenvalues of (A — W(S)CA) have modulus less than unity. The weighting
matrix W plays a similar réle as the feedback matrix G in the observer (3.51).
The matrix C' in (3.52) has been replaced by the matrix product C'A in (3.85),
because (3.83) uses observations at time 41, rather than at time t; as the observ-
er (3.51) does.

If observations are available less frequently, then x}_ ; is specified by (3.83) when

observations are available, and is equal to x}_; given in (3.82) when observations
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are not available. If observations are available every r** timestep, then the error ey,

satisfies

e ity = (A —WECA)A e, (3.86)

and hence the successive correction scheme converges to the true model sate in time

if the eigenvalues of (A — W(S)CA)AT_l have modulus less than unity.

Discussion

In Section 3.3 on dynamic observer theory we discussed how the feedback matrix ¢
could be designed to ensure convergence in time to the true solution, and so that
the observer system has desirable properties (we considered good convergence and
robustness). This theory could be used to provide a choice of the weighting matrices
in the successive correction scheme which give it desirable dynamical behaviour. In
Section 3.5, we illustrate this point with a simple example in which the robust
observer described in Section 3.3 produces much better convergence in data sparse

areas than the Cressman successive correction scheme.

3.5 An example comparing the Cressman scheme
and robust observer

In this section, we compare the Cressman scheme, an example of a successive cor-
rection data assimilation scheme, with the robust observer described in Section 3.3,
which is designed for good convergence and robustness. We first describe the simple
model we use, and the observations we suppose are available. We then describe the

experiments that are carried out, and discuss the results.

3.5.1 The models and observations

The model we use here is also used in the experiments of Chapter 5, and so we

describe it in some detail.
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The theta method for the 1D heat equation

The 1D heat equation on z € [0,1], ¢ € [0,T], with a point heat source of strength

1

— 1
5 at z = 71,

1 1
vy = ov,, + §5(Z — 1), (3.87)

where ¢ is the Dirac delta function. For this equation, with initial condition
v(z,0) = a(z), (3.88)
and zero boundary conditions
v(0,) =0, wv(l,t)=0, (3.89)

the “theta method” discretisation for some 0 € [0, 1] is

oAt
:L'f"'l — :L'f = Az {(1 — 0)52:1;? + (952:1;?"'1} + s;At (3.90)
with initial condition
:1;? = a(jAz), (3.91)
and zero boundary conditions
af =0, 2% =0, (3.92)

where :L'f ~ v(jAz, kAt) for j =0,1,..,J, k= 0,1,.., N with Az = & and At = %,

and where 521;? denotes :1;?_1 — 2:1;? + :L';?H. The dimension of this system is n, where
n = .J — 1. Here, we consider only the explicit form of (3.90), so we take 6§ = 0.

As discussed in [39], the source term
1 1

s(z) = §5(Z — 1) (3.93)

can be represented in discrete form with s; ~ s(jAz) given by

=it j=4

s;=4 8 T )T (3.94)
0 otherwise.

The discretisation (3.90) (with § = 0) can be written as the matrix system,

X1 = Axp + s, (3.95)
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where the state x; at time ¢, is given by

xp = (2, 2k . BT, (3.96)

) n

The input s € IR" represents the source term and zero boundary conditions and is

given by
At
"3AzZTT

where the non-zero element of s is s; where j = J/4. The matrix A € IR™*" is given

by

s =(0,... L 0T, (3.97)

(1—=2p)  p
A= po (=2 g : (3.98)

where p = U%. The theta method with 6 = 0 is stable for 0 < p < 1.

Observational data

We suppose that we have p observations (1 < p < n) at each of N timesteps, given
by

yir = Ox4, k=0,..,N—1. (3.99)
The matrix C' represents a linear interpolation between the model grid and the p

observation positions on the interval [0, 1], specified in Table 3.1 below.

Table 3.1: The observation positions

0bs| | 0bsy | 0bss | 0bsy | 0bss | 0bsg | 0bsy | obsg

0.0310.120.19 | 0.26 | 0.37 | 0.42 | 0.45 | 0.56

0bsg | 0bs g | 0bsyy | obsyy | 0bsy5 | 0bsya | 0bsy5

0.571 0.60 | 0.67 | 0.71 | 0.73 | 0.83 | 0.92

The matrix C' is built up as follows: if observation ¢ (where 1 < ¢ < p) has the

position obs; which lies between grid points j and j 4 1, then
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o 7+1)Az—o0bs;
Ci; = (+1)Az—0bs;

Az ’
Ciiy1 = I?A;JA? (3.100)
Cip = 0 k#j, k#3541

If obs; lies between either the first or n'* grid point and its adjacent boundary point,
then row ¢ of (' has just one non-zero entry, since the boundary conditions are zero.

For example, with p =5, C is the 5 x n matrix

048 0 0

0.08 092 0 0
C=| 0o 0 09 004 0 .. : (3.101)
0O 0 0 084 016 0

0 0 0 0 0.08 092 0

3.5.2 Description of the experiments

We suppose that the evolution of the true model state xi is given by the model
Xpy 1 = Ax| +s, k=0,..,N—1 (3.102)
as defined in (3.95), with initial conditions
()2 =1, j=1,.,n (3.103)

We set N = 40 and T = 1, (hence At = &), and J = 16 (hence Az =

6> and
n = 15) and o = 0.1 (hence p = 0.32).

We suppose that we have p (error free) observations at N timesteps, and that

these are related to the true model state by
yr = Cx}, E=0,..,N—1, (3.104)

as defined in (3.99). We suppose that the true initial state (3.103) is unknown, and

that our “prior estimate” of the initial state, x5, is given by

(2")? = 2, j=1,..,n. (3.105)
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In these experiments, we compare the Cressman scheme, a successive correction
method for data assimilation which we described in Section 3.1.1, with the robust
observer we described in Section 3.3.3, for different values of p, the number of ob-

servations. The experiments carried out are as follows.

Data assimilation using the Cressman scheme

Since this is a simple example, the Cressman scheme is implemented using only one
correction (s = 1) using just one radius of influence R. The experiments are carried
out using different values for B: R = 0.1, R = 0.3, R = 0.5 and £ = 0.9, and

different values for p, the number of observations available at each timestep.

Data assimilation using the robust observer

We let A,, denote the eigenvalues of the model (3.95). In this experiment, different
sets of eigenvalues are assigned to the observer: A,, Ay and A.. The set of eigenvalues
A, are equally distributed between -0.5 and 0.5. The sets of eigenvalues A, and
A, represent the model eigenvalues reduced in modulus by a quarter and by a half,

respectively, ie the eigenvalues in the set A, multiplied by 0.75 and 0.5, respectively.

3.5.3 Results

The figures referred to here can be found at the end of this section.

The Cressman scheme

Figure 3.1 shows that when a large number of observations are used (p = 10),
complete convergence to the true solution is achieved in approximately 40 timesteps,
using R = 0.3 as the radius of influence. When R is reduced to 0.1, convergence
takes about 60 timesteps.

When fewer observations are used, convergence to the true solution occurs quick-
ly in data dense areas, but much more slowly in data sparse areas. Fig. 3.2 illustrates
this for the case p = 5, R = 0.3. In this case, the solution with data assimilation is

closer to the true solution in the data sparse areas than the solution without data
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assimilation is, but it does not have the spatial shape of the true solution. Fig. 3.3
shows the case p = 1, where only one observation is available right near one of the
boundaries of the domain, using R = 0.3. In this case, the data assimilation has only
a small impact on the results. Increasing R to 0.9, so that the radius of influence
extends all the way across the spatial domain, convergence is still slow, as Fig. 3.4

shows.

The robust observer

Very good results are achieved using eigenvalue set Ap, in which we assign to the
observer system (ie, to the matrix (A — C'(7)) the system eigenvalues multiplied
by 0.75. In this case convergence to the true solution is achieved in fewer than 20
timesteps using 5 observations, as Fig. 3.5 shows. Using eigenvalue set A,, in which
the eigenvalues to be assigned are evenly distributed between —0.5 and 0.5 gives
less pleasing results. From this it seems that it is important for good convergence
to reduce the modulus of all the eigenvalues, as we do when assigning eigenvalue set
Ay, but not when assigning set A,. We give more detail on experiments in assigning
different sets of eigenvalues in a report on observers and data assimilation, [39].
One pleasing aspect of these results compared with those obtained using the
Cressman scheme is that there is fast convergence in data sparse areas. Figure 3.5
illustrates this in the case p = 5, and Fig. 3.6 in the case p = 1, where eigenvalue
set Ay is used. Using eigenvalue set A, (so the eigenvalues are 0.5 times the size
of the system eigenvalues) gives slightly faster convergence in the cases where few
observations are used, and complete convergence is achieved in less than 30 timesteps

using only one observation, as Fig. 3.7 shows.

Discussion

The model used in these esperiments is not really ideal for testing, since solutions
converge quickly to a steady state. Even so, these simple experiments illustrate
some interesting points.

Although the Cressman scheme gives good convergence near the observation po-

sitions, convergence is slow in data sparse areas. The robust observer, however,

62



produces much faster convergence in data sparse areas. This serves as an example
of how designing the feedback matrix of an observer to ensure temporal convergence
to the true solution can improve on the empirical spatial smoothing of a successive
correction method. The robust observer design itself, involving eigenstructure as-
signment, however, would be too expensive for systems with very large dimension,

and hence for application to operational data assimilation.
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10 timesteps

o 0.5

30 timesteps

Figure 3.1: Data assimilation using the Cressman scheme with R = 0.3 using 10

observations. Solid line: true solution; dotted line: solution with no assimilation;

20 timesteps

0.5 1

40 timesteps

dashed line: solution with assimilation, crosses: observations.

10 timesteps

o 0.5

30 timesteps

Figure 3.2: Data assimilation using the Cressman scheme with B = 0.3 using 5

observations. Solid line: true solution; dotted line: solution with no assimilation;

20 timesteps

0.5 1

40 timesteps

dashed line: solution with assimilation, crosses: observations.
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10 timesteps

o 0.5

30 timesteps

Figure 3.3: Data assimilation using the Cressman scheme with B = 0.3 using 1

observation. Solid line: true solution; dotted line: solution with no assimilation;

20 timesteps

0.5

40 timesteps

dashed line: solution with assimilation, crosses: observations.

10 timesteps

o 0.5

30 timesteps

Figure 3.4: Data assimilation using the Cressman scheme with B = 0.9 using 1

observation. Solid line: true solution; dotted line: solution with no assimilation;

20 timesteps

0.5

40 timesteps

dashed line: solution with assimilation, crosses: observations.
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10 timesteps; t=0.125 20 timesteps; t=0.25
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Figure 3.5: Data assimilation using the robust observer with eigenvalue set Ay using
5 observations. Solid line: true solution; dotted line: solution with no assimilation;

dashed line: solution with assimilation, crosses: observations.
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Figure 3.6: Data assimilation using the robust observer with eigenvalue set Ay using
1 observation. Solid line: true solution; dotted line: solution with no assimilation;

dashed line: solution with assimilation, crosses: observations.
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10 timesteps;
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N
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t=0.375

Figure 3.7: Data assimilation using the robust observer with eigenvalue set A. using

1 observation. Solid line: true solution; dotted line: solution with no assimilation;

20 timesteps;

t=0.25

40 timesteps;

t=0.5

dashed line: solution with assimilation, crosses: observations.
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Chapter 4

4D Variational assimilation

4D variational methods of data assimilation were introduced to meteorology by
Sasaki in his paper of 1958 [75]. These schemes seek to find the model state which
minimizes some cost function over a particular assimilation interval, subject to con-
straints on the model state. Most typically the constraints require that the model
state should satisfy the dynamical model equations over the assimilation time period.

Sasaki put forward two approaches to variational assimilation. In the strong
constraint approach, the solution is constrained to satisfy the model equations ex-
actly. In the weak constraint approach, the model equations are required to hold
only approximately, allowing for model error. Sasaki’s papers [75], [76], [77], [78],
deal with methods of solving these minimization problems analytically for simple,
continuous models.

Various methods for solving the strong constraint problem are outlined in [32].
One method is to iterate on the model initial state rather than on the model s-
tate over the whole assimilation interval. This technique of “reducing the control
vector” which we outlined in Chapter 2, Section 2.3, significantly reduces the cost
of variational assimilation. In this case the initial state is the control vector. The
method was introduced to meteorology in the mid 1980s in the papers by Le Dimet
and Talagrand [51], Lewis and Derber [52], Lorenc [55], and Courtier and Talagrand
[18], [80]; and to oceanography by Thacker and Long [83]. It is currently being
developed for implementation as an operational data assimilation scheme at several

national meteorological centres [73].
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Derber [26] suggested carrying out 4D variational assimilation, adding to the
model equations a correction term which is constant over the assimilation interval,
and which approximates model error. This “correction term technique” is a modifi-
cation of the strong constraint method, in which the correction term is used instead
of, or as well as, the initial state as a control vector. The weak constraint approach,
which allows for model error without the approximation that model error is constant
over the assimilation interval, is a more difficult problem, however.

This chapter is organised as follows. In Section 4.1, we introduce the strong
constraint problem and describe the technique of reducing the control vector for
solving this problem. In Section 4.2, we give a discussion on the development of the
adjoint models which form a central part of the method. Then in Section 4.3 we
outline Derber’s correction term technique, and finally in Section 4.4 we describe
the weak constraint approach, which allows for model error. In this context we also
discuss the links between the 4D variational methods and other methods of data
assimilation, and state conditions under which the solution is statistically optimal.

Throughout the chapter, we consider the nonlinear model system given by
Xy = f(x}) + e, k=0,.,N—1, (4.1)

as defined in (2.4), where x; € IR" is the true model state at time 5, f; : R" —
IR™ represents the nonlinear evolution of the state from time #; to f;y1, and €5 €
IR™ represents model error. Here, for notational convenience, we do not indicate
dependence on the model inputs uy, which we suppose are fixed. We suppose we

have observations yj € IRF* at time ¢, related to the true model state by
Y& :hk(X};)—I-(Sk, kZO,..,N—l, (42)

as defined in (2.6), where hy, : IR" — IR"* is a nonlinear operator, and 8, € IR”* is the
observational error. Finally, we suppose that we have a prior estimate x}; € IR” of the
initial state, called a background estimate in the context of variational assimilation,
satisfying

X0 = %+ Bo (1.3)
where B, € IR" is the background error. At this stage, we do not make any assump-

tions about the statistics of the errors e, 65 and 3.
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4.1 The strong constraint approach

In the strong constraint approach, model error is neglected and we work with the

model

Xk+1 = fk(Xk), k= 0, ..,N — 1. (44)

We suppose that we have observations given by (4.2) and a background estimate of

the initial state given by (4.3).

4.1.1 The method

In the strong constraint approach to variational assimilation, we aim to minimize a

cost function J with three components,

j:jb‘I'jo—l_jm (45)

where J, penalizes distance from the background estimate, 7, penalizes distance
from the observations, and J. ensures that the solution has required smoothness
properties, so that the process of initialization (or part of it) mentioned in Chapter 1
can be incorporated in the optimization procedure. The work in this thesis does not
include the component J. for simplicity, although it is important in operational
applications of data assimilation [91], [94], [19], that use more complex models and
fewer observations than we use in our idealized experiments.

The strong constraint problem we address is

Problem S

Minimize, with respect to Xg, .., XN
1 BT p—1 1N T
J = §(X0 —xg)" Py (%0 — %g) 5 Z —y;) R Y(hy(xj) —yj),  (4.6)

7=0

subject to (4.4)
The matrices P;! € R™" and Rj_l € IRP’*P7 are symmetric positive definite
weighting matrices which reflect the accuracies of (xo—x5) and of (h;(x;)—y;). If the
inverse covariance matrices of the errors B, and é; are known and are nonsingular,

these can be used as weighting matrices, and under certain assumptions this choice
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leads to a statistically optimal analysis. We discuss this further in Section 4.4 where
we also consider model error. Some detail on how the matrices P; ' and Rj_l are
prescribed in practice is given in [13], [57].

We now use the theory of Chapter 2, Section 2.3, on reducing the control vector
to give a method for solving the constrained minimization problem Problem & . We
have the N +1 state vectors Xo, .., Xx as the unknown variables, and (4.4) specifies N
constraints on these. If we use x¢ the control vector, we can determine the remaining
N state vectors Xy,.., Xy uniquely from the N constraints (4.4).

The constrained minimization problem Problem S is equivalent to the uncon-
strained optimization problem of extremizing the Lagrangian function

N-1
L=JT+ Z% AT (X1 — (%)), (4.7)
-
with respect to xg, X1, .., Xy, and Aq,.., Ay, where Aq,.., Ay € IR" are N vectors of
Lagrange multipliers. A necessary condition for an extremal is that the gradient of
L with respect to xg,Xy,..,Xn, and Aq, .., Ay should vanish. Using the method of
reducing the control vectors, this necessary condition can be achieved by iterating on
the control vector x¢, as follows. From a guess of the control vector, the model states
X1,..,Xy are calculated using the constraints (4.4). This ensures that V}\kﬁ = ( for
kE =1,..,N. The adjoint vectors Ay must now be chosen to ensure Vi, L = 0 for

k=1,..,N,ie,

0 = Ve, J +A— Fl(x0)Ap,  k=1,.,N—1, (4.8)
0 = An, (4.9)

where Fi(x;) € IR™" is the Jacobian of f(x)) with respect to xj. Since
Vi, J = H] (x) Ry (hi.(xx) — y), (4.10)

where Hg(x;) € IRP**"™ is the Jacobian of hy with respect to xj, the Lagrange

multipliers must satisfy

e = () Xen — Hy (i) Ry (hi(xi) —yi), k=1, N =1, (4.11)

Av = 0. (4.12)
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We note that, since xy,..,Xy have been calculated from the current guess of the
control vector, the vectors Ay of Lagrange multipliers can be calculated recursively
backwards from the condition (4.12).

The system of equations (4.11), (4.12) is known as the system of adjoint equations
for the model (4.4), or as the adjoint model. In this context, the Lagrange multipliers
are known as adjoint variables, and we refer to the vectors Ay of adjoint variables
as adjoint vectors.

We can now evaluate the gradients of £ with respect to the control vectors. The

gradient with respect to the initial state is given by
V£ = Vi J — Fl(x0) A (4.13)
= Py '(x0—xg) + Hy (x0) 5" (ho(x0) — yo) — Fy (x0)A1 (4.14)
= P;l(xo—x3) — Ao, (4.15)

where the additional adjoint vector Ay € IR" is defined via the relation (4.11) with
k = 0. This gradient can be used in a descent algorithm, such as one outlined in
Chapter 2, Section 2.4, to improve our guess of the control vector. We summarize

this procedure in the following algorithm.

Algorithm IS

1. From a guess of the control vector xg,

calculate the model states x1,..,xy using the model equations (4.4).

2. From the end condition (4.12), calculate the adjoint vectors An_1, .., Ao using

the model states calculated in Step 1.
3. From Ag, calculate Vi, £ using (4.15)

4. Use the gradient V¢ L in a gradient algorithm to obtain a better guess of the

control vector xg, and repeat until convergence criteria are satisfied.

4.1.2 The incremental approach for Problem &

Although the method of reducing the control vector significantly reduces the expense

of 4D variational assimilation, further reductions in its expense are still required to
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make it feasible for operational implementation. The incremental approach [20]
was suggested to allow flexibility to incorporate simplifications which will reduce
the expense of the method. We first describe the incremental approach, and then
describe the approximations that can be made to reduce expense.

Expanding the nonlinear model (4.4) in a Taylors series about the “background”
state x% obtained from a model run using the model with x} as the initial state, we

have for a small perturbation éx;, of xy,
Xh 1+ 6% = Fu(x}) + Fir(x})6xk + o(6xy), k=0,.,N—-1, (4.16)

where Fj(x}) is the Jacobian of f;, with respect to x; evaluated at x}, and o(éxy)
represents the higher order terms in the expansion. Since (4.4) holds at x%, we have,

after neglecting higher order terms,
‘Sxk-l—l = Fk(XZ)(SXk, (417)

which is referred to as the tangent linear model (TLM). For mid-latitude meteoro-
logical models, Lacarra and Talagrand [48] have shown that the the TLM is a fair
approximation to the full nonlinear model for periods of up to around 48 hours.

The observations yy, are related to the perturbation §xi = (x} — x%) as follows

hy(x2) + Hy(x2)6x + 65, k=0,.,N—1. (4.19)

%

The incremental approach to solving Problem & proceeds as follows. Firstly, a
background run is performed from a background guess x5 of the initial state, using
the full nonlinear model (4.4) to calculate the terms x}. The minimization problem
is then to find the optimal increment or perturbation §xq to x}, by minimizing a

cost function of the form
L 7,0 1= b T p—1 b
J(6%0) = 56}(0 Py iéxo + 5 Z (Hj(xj)éxj —d;) R (Hj(xj)éxj —d;) (4.20)
7=0
subject to the constraints (4.17), k = 0,.., N — 1, where
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Since all the constraints (4.17) are linear, we now have a cost function which is
quadratic in the control vector §x¢, and so a unique global minimum to this problem
exists if the Hessian of J with respect to 6x¢ (satisfying the constraints (4.17)) is
positive definite. We give conditions for this to hold in Chapter 5, Section 5.2. The

adjoint equations are, in this case,

Ak = FkT(XZ))\k-l—l — HE(XZ)RI;I(Hk(XZ)(SXk — dk), k= 0, ..,N — 1,(422)

Ay = 0, (4.23)

but using (4.21) and (4.19) we see these are the same as the adjoint equations (4.11)
of the full, nonlinear system, except that the higher order terms of (4.19) have been
neglected in the forcing in (4.22), and that the Jacobian F}, is evaluated at x?.

If 6xj is the control vector which solves the incremental problem, then xjj :=
x} + 8x5, (and hence the model states x},..,x} found from this initial state) is a
good approximation to the solution of the full, nonlinear mimimization problem,
provided the TLM is a “valid” approximation to the full nonlinear model.

The incremental approach can be used to further reduce the cost of 4D variational
assimilation by performing the background run to calculate the x% using the full
nonlinear model (4.4), but carrying out the iteration on §xq at lower resolution. The
iteration at lower resolution could also be performed using a simplified (and hence
less expensive) version of the TLM. Research is also being carried out on variants
of the incremental approach. These include applying the incremental approach at
lower resolution, perhaps using multi-grid strategies (this is the so-called multi-
incremental approach), and interspersing several “inner loop” iterations with an
“outer loop” nonlinear run, in which a new background field for the next inner
loop iterations is obtained. One question being looked at both theoretically and
practically, is whether the low resolution inner loop iterations give improvements
which correspond to an improvement at full resolution, and whether these methods
do converge to a solution of the full nonlinear problem.

Several centres planning to implement the adjoint method for large models are
developing simplified or modified tangent linear models for the minimization using

the incremental approach. This gives a way of overcoming some of the problems of
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the adjoint method, for example by ensuring that the modified linear model is fully
differentiable. At the UK Meteorological Office, the linear version of the full model
being developed for use in data assimilation is called the “perturbation forecast”
model, since it is not actually tangent linear to the full model [49]. Other centres
are developing tangent linear models with simplified physics as an intermediate step

to developing a complete tangent linear model [94].

4.2 Development of adjoint models

4.2.1 Properties of adjoint models

Before proceeding with a discussion on the practical development of an adjoint
model, we note a further theoretical property of the adjoint equations. We suppose
®(k,7) is the state transition matrix associated with the (unforced) tangent linear
model (4.17). (Chapter 2, Section 2.1 gives background on state transition matrices.)
We have

oxy, = Pk, j)bx,, for all &> j, (4.24)
where

D(kj) = Fror(xh) Fioa(xhy) Fy(x1). (1.25)

J

If we let W(y, k) be the state transition matrix for the unforced version of adjoint

system (4.22), ie for the system
A= FEx) A1,  k=N-—1,..,0 (4.26)
with end condition (4.23), we have

A=W, kA, forall k>, (4.27)

where

\I}(]7 k) = F]T(X?)FJJ:I—I(X?—I—I)FkT—l(Xz—l) (428)

Hence, we have the following [2], [51],

W(j, k) =0T (k,j)  forall k>j. (4.29)
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Since ®T(k, 7) is the adjoint operator of ®(k,j) with respect to the Euclidean inner
product, we see one reason why the adjoint equations are so-called.

Hence we have the following property,

<A 0%, > = < Ap, ®(k, j)6x; > = < 0T (k, j) A, 6%, > (4.30)

= <A, 8x; >, forall k> (4.31)

where A, and S\j solve the unforced adjoint equations (4.26), and where 8x; and

6%y, solve the tangent linear model (4.17).

4.2.2 Adjoint model development

Clearly, the derivation of the adjoint model is a major part in the setting up of the
adjoint method. Here we outline a few different approaches to the derivation of the
adjoint model which might be used in the wider context of optimization problems.

One approach is to work with a continuous, rather than a discrete version of the
model. In this case, the calculus of variations is the appropriate theory for finding
conditions for extrema of an optimization problem (we give some background on the
calculus of variations, and an overview of this approach in the report [40]). Using
the method of Lagrange multipliers (which in this case are functions) to deal with
the model constraints, the adjoint model is given by the Fuler Lagrange equations,
and an expression analogous to equation (4.15) can be found for the gradient of the
Lagrange functional with respect to the initial state. This leads us to a continuous
analogue of Algorithm IS, involving the model equations, the adjoint equations and
the gradient of the Lagrangian functional with respect to the initial state. In general,
these will have to be discretized in some appropriate way so that the problem can
be solved numerically. In application to data assimilation, this approach has been
used in [6], for example.

A disadvantage of this approach, however, is that in general, the discretized ad-
joint equations will not in fact be the true adjoint equations of the discretized model
equation [50]. Hence, the gradient calculated at each iteration will be inaccurate,
and so it might not be possible to obtain a sufficiently accurate estimate of the

optimal control vector.
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The approach most generally taken in the development of adjoint models for
data assimilation is that it is better to find the adjoint of the discrete model, so that
theoretically at least, we can obtain an exact expression for the required gradient,
[19]. We use this approach in the work described in this thesis, and work out the
adjoint of the discrete models which we wish to use “by hand”. For very large and
complex models, however, this would be a much more difficult task.

A different approach to deriving the adjoint model is to work directly from the
model computer code. Each assignment statement in the computer code can be
treated as a constraint to be multiplied by a Lagrange multiplier. Differentiating
each model statement with respect to the model variables gives the conditions on
the Lagrange multipliers (or adjoint variables) which constitute the adjoint model.
The paper by Chao and Chang [15] gives a different perspective on what it means
to find the “adjoint” of computer code, and also gives a little more detail on the
practical procedure of developing the adjoint code.

There is much research underway to produce computer software to automate
the process of finding the adjoint of computer code. Developments in this field
of computational differentiation [37], [11] are of particular interest for developing
adjoint models in meteorology and oceanography, which is a tedious and error prone

task.

4.3 The correction term technique

The method we refer to as the “correction term technique” was suggested by Derber
[26]. In this approach, a constant correction term is used instead of, or as well
as, the model initial state as the control vector in 4D varaitional assimilation. In
Derber’s paper, the technique is called “variational continuous assimilation”, and
the correction term was seen as a correction to the time derivatives of the model. In
this approach, the correction made by the assimilation is evenly distributed over the
entire assimilation interval, rather than concentrated at the initial time. This gives a
solution of the data assimilation problem which is continuous from one assimilation

interval to the next.
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The other advantage of the correction term technique is that it can account for
schematic model errors, and it is suggested in [26] that by application to many cases,
this method could yield an estimate of the model’s systematic error in each timestep.
Further, the correction term found for an assimilation interval could be used in a
subsequent forecast to counteract model error here too.

In the correction term technique, the model error is approximated by
€L = Sie, kZO,..,N—l (432)

where the s, € IR are predetermined constants, and e € IR" is a constant correction

term to be determined. Hence we work with the model
Xpt1 = Fp(Xk) + sker, k=0,..,N—1. (4.33)
As before, we suppose we have observations
yi = hp(x}) + 8y, k=0,..,N—1, (4.34)

as defined in (2.6). The correction term is used as a control vector instead of, or as
well as, the initial state.
Including the correction term e in the model equations, Problem & is modified

to

Problem C7T

Minimize, with respect to Xg,..,XN, €

Z_: (hy(x;) —y;) R (hy(x;) —y;)  (4.35)

=0

DN | —

1
J = §(X0 —xg)" Py (%0 — xg) +

subject to (4.33).

We now summarize how the adjoint method for 4D variational assimilation us-
ing the initial state as a control vector can be modified to the correction term
technique. In this case, xo and e can be used as control vectors, since from them,
the model states x1, .., Xy can be determined. Minimizing (4.35) with respect to the
constraints (4.33) is equivalent to extremizing the Lagrangian function

N-1
L=T4 3 A = £i(x;) — sje). (4.36)

i=0
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Enforcing V}\kﬁ =0 for k = 1,.., N yields the model equations (4.33), and enforcing

Vx, L =0for k=1,..,N yields the same adjoint equations as before

Ak = F)z;(xk))\k-l—l — H){k (Xk)Rlzl(hk(Xk) — Yk)7 k= 1, ..,N — 1, (437)

Ay = 0.

As before, the gradient of £ with respect to the initial state is

VXO/:, = PO_I(XO — Xg) — Ao,
and the gradient of £ with respect to the correction term e is

N
Ve/: = — ZS]‘_l)\]‘.
7=1

(4.38)

(4.39)

(4.40)

Algorithm IS can easily be modified to use the correction term instead of, or as well

as, the initial state as a control vector.

4.4 The weak constraint approach

We finally consider the weak constraint approach to 4D variational assimilation in

which we allow for model error without the approximation that it is constant in

time, and so we consider the model

Xp41 = fu(xk) + €k, k=0,..,N —1.
We again suppose that we have observations given by

vi = hy(x}) + 8%, k=0,..,N—1,
and a background estimate x}, satisfying

Xg = %o + Bo-

4.4.1 The general least squares problem

(4.41)

(4.42)

(4.43)

The classical least squares approach to estimating the true model state on the as-

similation interval [to,y] involves minimizing the errors B, 6, and e [8], and is as

follows [44].
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Problem LS

Minimize, with respect to Xg, .., XN, €0, .., EN_1

[N

J = %(XO = xo) By 0 = xg) + Z__: (h;(x;) = y;) B (hj(x)) —y;))

[N

N-1
+- > el Qe (4.44)
7=0

subject to (4.41),

where the symmetric, positive definite weighting matrices Py ' € IR™*", R;' €
IR?**™ and Q3" € IR™™ are based on our knowledge of the sizes of the errors 3, &x
and ey respectively. Problem LS is equivalent to the weak constraint minimization

problem formulated by Sasaki [75].

Statistically optimal solutions to Problem LS

We assume now that the model errors €, the observational errors §; and the back-
ground error 3, are unbiased Gaussian random vectors, and that the matrices Q, Ry
and Fy are their respective error covariance matrices. We assume that the errors e
and é; are not serially correlated, are uncorrelated with each other and with 3,, and
uncorrelated with the true model state. These are the assumptions made on model
error and observational error in the standard Kalman filter described in Chapter 3,
Section 3.2. In this case, minimizing (4.44) with respect to Xo,..,Xn,€0,.., EN—1
subject to the constraints (4.41) is equivalent to finding the mazimum likelihood
Bayesian estimate of xq,..,Xy given the observations yg,..,yn—1 and with prior
estimate x}, which is given by the mode of the joint conditional pdf of xg, .., Xy,
[44].

If the model evolution described in (4.41) is linear, and the observations (4.42) are
linearly related to the model state, then the conditional pdf of xg, .., xx is Gaussian,
and so unimodal. Further, in this case, the mode coincides with the mean, and hence
the maximum likelihood Bayesian estimate is the same as the minimum variance
estimate [44], [55]. In this case, a solution of Problem LS is a statistically optimal
or “most likely” solution in the sense of both maximum likelihood and minimum

variance.
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In the nonlinear case, however, a cost function J with multiple minima corre-
sponds to a pdf which is multimodal. As Jazwinski notes [44], maximum likelihood
estimation is of questionable value unless the pdf is unimodal and concentrated
about the mean.

We note that Problem & of Section 4.1 is a special case of Problem LS with the
model error terms ey, set fixed at zero. If the errors 8, and 3, are as specified above,
then the strong constraint approach provides the statistically most likely solution
if there is no model error. We discuss how the correction term technique can be

interpreted statistically in Chapter 6.

4.4.2 Methods for solving Problem LS

The purpose of this subsection is to overview the main approaches to solving a prob-
lem of the form of Problem LS which have been suggested for data assimilation in
meteorology and oceanography. This highlights the well-known links between these
methods, discussed for example in [55], [82] and [61], which we wish to exploit for a

better understanding of how to deal with model error in 4D variational assimilation.

The Kalman filter

We outlined the standard Kalman filter for a linear model with observations linearly
related to the model state, and under given statistical assumptions, in Chapter 3,
Section 3.2. In that section, we stated that the Kalman filter solution xj at time
ty is the most likely estimate of x given the observations yy, ..,y and background
estimate x}. In this linear case, the Kalman filter estimate is the same as the solution
to Problem LS at time ¢y, ie, at the end of the assimilation interval [to, 5], [44]. The
Kalman smoother is a generalization of the Kalman filter which gives an estimate
x; at time f; which is the most likely given the observations yy,..,yn, and so is
equivalent to a solution of Problem LS, [61] although this requires still greater cost.

One major advantage of the Kalman filter as a method of solving Problem LS
in the linear case is that it produces at each timestep the error covariance matrix
of the analysed state. Hence, at time ¢y, we have not only the optimal estimate of

the state, but also its error covariance matrix. This provides the background error
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covariance matrix P for the next assimliation interval, and also gives us a way of
calculating the accuracy of a forecast initiated at time ty.

In this advantage of the Kalman filter lies also (arguably) the biggest drawback
for its application in operational assimilation in meteorology and oceanography,
compared to other methods of finding the same statistically optimal solution. This
drawback is the huge cost of propagating the error covariance matrices in time, which
involves O(n?) operations [32]. Hence for operational meteorological models, where
the dimension n of the state is O(10°) — O(107), the Kalman filter in unsimplified
form is considered too expensive [32], [72]. Various simplifications of the Kalman
filter have been proposed, however, [84]. We note that several centres planning to
implement variational assimilation schemes operationally are also proposing the use
of a simplified Kalman filter to solve the problem of specifying the covariance matrix

Py for the beginning of a new assimilation interval.

The representer method

The representer method was suggested for oceanographic applications of data as-
similation by Bennett et. al. [7] and for meteorological assimilation by Bennett et.
al. [6] and by Amodei [1]. For a linear system, it provides a method for solving
the Euler-Lagrange equations which constitute necessary conditions for a solution of
a continuous analogue of Problem LS. The method involves iterating on elements
of the “space of observations”. This is similar in principal to the PSAS algorithm
outlined in Chapter 3, Section 3.1, which is for analysis at a single time only. In the
nonlinear case, solutions to the (nonlinear) Euler-Lagrange equations are found by
solving a sequence of linear Euler-Lagrange equations using the representer method.

Since the dimension of the observation vector is generally much smaller than the
dimension of the state vector at any time, this method is potentially much more
efficient than other approaches to solving Problem LS. In oceanography, where the
number of observations is O(10?), the potential advantage of this method is greater
than in meteorology. In meteorology, where the number of observations at just one
time might be O(10°), this method is still too expensive [5], but might become

feasible in the future.
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The adjoint method

We consider here the technique of reducing the control vector for solving Prob-
lem £S. In this case, we have N + 1 state vectors plus N model error vectors as
variables, and N sets of model constraints (4.41). If we use x¢ and eq,..,en_1 as
N + 1 control vectors, we can uniquely determine the remaining variables, the N
state vectors Xy, ..,xy from the N constraints (4.41). The constrained minimization
problem Problem LS is equivalent to the unconstrained optimization problem of
extremizing the Lagrangian function

N-1

L=7T+ Z;) A1 (i — £5(x)) — &), (4.45)

-
where A1, .., Ay € IR" are N vectors of Lagrange multipliers.

Using the method of reducing the control vectors described in Chapter 2, Sec-
tion 2.3, the solution can be found by iterating on the control vectors x, and
€0, ..,EN—1, as follows. From a guess of the control vectors, the model states xy, .., xy
are calculated using the constraints (4.41). As before, this ensures that V)\kﬁ =0
for £ = 1,..,N, and again, enforcing Vx, £ = 0 for £ = 1,.., N, yields the same

adjoint equations

e = () Xen — Hy (i) Ry (hi(xi) —yi)s k=1, N — 1, (4.46)

Ay = 0. (4.47)
As before, the gradient with respect to the initial state is given by
Vi £ = Pyl (x0 — x5) — Ao, (4.48)

where the additional adjoint vector Ao € IR" is defined via the relation (4.46) with
k = 0. The gradient with respect to the model error vector e for £k =0,.., N — 1 is
given by

Ve, £ =Q7 er — iy, k=0,..,N—1. (4.49)

These gradients can be used in a descent algorithm, such as one outlined in Chap-
ter 2, Section 2.4, to improve our guess of the control vectors. We summarize this

procedure in the following algorithm.
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Algorithm ISME

1. From a guess of the control vectors xq and e, ...,en_1,

calculate the model states x1,..,xy using the model equations (4.41).

2. From the end condition (4.47), calculate the adjoint vectors An_1, .., Ao using

the model states calculated in Step 1.
3. From Ay_1, .., Ag, calculate Ve . L, .., Ve, L and Vy L using (4.49) and (4.48).

4. Use these gradients in a gradient algorithm to obtain a better guess of the

control vectors Xg,and €y, ..,ex_1, and repeat until convergence criteria are

satisfied.

In practice, this algorithm is expensive for operational data assimilation, since
it involves iterating on N control vectors of dimension n. A second problem is that
the conditioning of the problem minimizing the cost function simultaneously with
all these control vectors could be very poor, [5], [83].

We mention here, however, an attempt to solve a similar problem by Thacker
and Long [83] in the context of a simple oceanographic model. Rather than trying to
recover the model error vectors e, they attempt to recover unknown model forcing
terms (wind stresses) from the data, although they mention that model error is
accounted for via uncertainty in the forcing. They look at the question of data
sufficiency, and find that if forcing is to be recovered with the initial state, a huge
amount of extra data is needed, much more than they could expect to be available in
practice. They also mention that the problem of recovering model forcing with the

initial state is ill-conditioned and requires many iterations of the descent algorithm.
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Chapter 5

The correction term technique

We described the “correction term technique” for 4D variational assimilation in-
troduced by Derber [26] in Chapter 4 Section 3. Here we take a further look at
both theoretical and practical aspects of using a correction term as a control vector,
instead of or as well as using the initial state as a control vector.

In Section 5.2, we look for conditions for uniqueness of the solution to the 4D
variational assimilation problem using the initial state, the correction term and both
together as control vectors. Using the initial state as the control vector, uniqueness
depends on the condition of complete N-step observability of the system. We show,
however, that in general conditions for a unique solution using the correction term as
a control vector are different, and so it might be possible to determine uniquely the
initial state from the data and not the correction term, or vice versa. In each case
adding a background estimate of the control vector to the cost function guarantees
uniqueness in the case of data insufficiency. This point has been considered in data
assimilation using the initial state as the control vector [8], but not in published
work using the correction term technique. We look at uniqueness of the solution
using both control vectors together by using the technique of state augmentation,
and by relating conditions for observability of the augmented system with conditions
for observability of the original system.

In a practical context, we compare the performance of the different control vec-
tors using a simple linear model. We compare the ability of each control vector to

compensate for errors in the initial state and for model error which is constant in
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time. We also examine the impact of the number of observations on the results,
and the use of a background estimate of the correction term. The experiments are
described in Section 5.3, and the results are presented and discussed in Section 5.4.
In Section 5.5 we summarize the theoretical and practical results of the chapter.
In Chapter 6 we extend the ideas given here on accounting for model error in
4D variational assimilation, and in Chapter 7 we discuss further how each of these
control vectors can account for different types of model error in the context of a less

simple model.

5.1 Background

In this section, we summarize use of the correction term technique in meteorology,

and highlight research areas.

5.1.1 Use of the technique in the literature

The correction term technique, which we described in Chapter 4, Section 4.3, was
suggested by Derber [26]. The experiments described in this paper showed better
results were obtained using the correction term than were obtained using the initial
state as the control vector. It was acknowledged that the comparative success of the
correction term technique might in this case have been partly due to the fact that
the model used was known to be inaccurate. It was also pointed out, however, that
since 4D variational assimilation might be performed using simplified models, the
correction term approach has potential. It was mentioned briefly that an attempt
at using both control vectors simultaneously had not been successful. In this paper,
the cost function to be minimized penalizes distance to the observations only.

The correction term technique was later applied by M. Zupanski, [94], who in-
terpreted the correction term as representing model bias. The experiments carried
out were on a full regional forecast model, but with approximate adjoint equations
(and hence inaccurate gradient calculations). The cost function consisted of two
terms, one to penalize distance from observed data (which came from OI analyses),

and the other to penalize spurious gravity waves. The results showed that using the
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correction term as the control vector worked better than using the initial state as
the control vector.

M. Zupanski [94] extended Derber’s work by trying to use both control vectors.
Using both simultaneously did not work as well as hoped, which was believed to be
because of problems with preconditioning. Better results, as characterised by greater
cost function reduction during the assimilation and greater reductions of rms errors
in the ensuing forecast, were claimed by using first the initial state and then the
correction term as a control vector. It was acknowledged, however, that minimizing
the cost function first with respect to one control vector and then with respect to the
other constitutes a different optimization problem to minimizing the cost function
with respect to both control vectors simultaneously. As in Derber’s paper [26], it was
found that using the correction term determined by the assimilation in a subsequent
forecast improved the forecast.

The correction term technique was also used by D. Zupanski and Mesinger [93]
in a paper primarily on the problems of assimilating precipitation data. Here the
correction term and initial state were used simultaneously as control vectors. This
paper does not give details on experiments with different control vectors, but men-
tions that using both control vectors reduced the cost function 20 percent more than
using just the initial state as a control vector. Here, the largest components of the
correction term recovered were nearest to the model boundaries.

The correction term technique was also investigated by Wergen [87] in a more
idealized context, using a linearized one-dimensional shallow water model. The pa-
per considers more generally the impact of model error on variational assimilation,
and gives a very interesting discussion on allowing for model error in variational
assimilation. Using the initial state and the correction term simultaneously, it was
found that the correction term could very successtully recover omitted constant forc-
ing terms. In this case, using the recovered forcing terms in the ensuing forecast was
also successful. In this context, Wergen refers to the correction term technique as
variational tuning, and points out that this approach provides a way to tune simul-
taneously several model parameters and so obtain the proper interactions between

the various parameters.
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In the experiments of Wergen’s paper, an extra term, constraining the correction
to the mass field to be small, was added to the cost function. The aim was to make
the approach more like Sasaki’s weak constraint method [75], but the mass field only
and not the other two fields was constrained in this way, “for simplicity”. The other
papers mentioned above included no constraint on the correction term in the cost
function. In rather testing experiments in which the model error consisted of a 50
percent phase error in the Rossby modes, using both control vectors together gave
better results than using the initial state only during the assimilation period of 24
hours. The results of the ensuing forecast were also improved for the first 12 hours,
but after this were worse than if just the initial state was used as the control vector.

From these results Wergen points out the danger that allowing for model error
in variational assimilation allows freedom which could yield a solution which is close
to the data but physically unrealistic, and that use of the correction terms in a
subsequent forecast will be detrimental if they do not compensate for the real model
error. He concludes that the problem of how to incorporate statistical information
on model error into variational assimilation, in a way consistent with the Kalman

filter, is a very important issue.

5.1.2 Research issues

We now discuss some issues on using the correction term as a control vector that
are worth further investigation. Firstly, no background estimate for the correction
term is used in the work described above. It is known however, that when the
initial state is used as a control vector, including a background estimate of this is
essential to guarantee a unique solution in certain cases [8]. We might ask, under
what conditions is it necessary to use a background estimate of the correction term?
Further, are these conditions the same as when a background estimate for the initial
state is necessary?

Another question is, if a background estimate for the correction term is included
in the cost function, how should this be weighted against the other terms in the cost
function? In particular, how can this weighting be chosen so that the solution will

be statistically optimal?
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Moving on from these theoretical issues, Wergen’s question [87] of whether the
constant correction term can “compensate for the real model error” is worth further
investigation. This is important, since using the correction term technique means
altering the model equations in some way. Therefore it would be worth checking
whether the correction term found in the assimilation seems to be a credible rep-
resentation of model error. This could mean checking the size of the correction
term, checking which model variables have been corrected, and which locations the
corrections refer to.

We might expect the constant correction term to compensate well for constant
model errors, but how well does it compensate for model errors which are not con-
stant, especially model error which is known to depend on the model state? Perhaps
a useful question to address is, on what timescale can the correction term correct
for model error? It might also be profitable to investigate how we can modify the
correction term technique to better deal with model error which is not constant in
time.

Finally, in the research described above, using both the initial state and the
correction term together as control vectors was not always successful. It is important
to find preconditioning to improve the efficiency of the method using both control
vectors. It is also worth investigating the importance of a background estimate for
each of the control vectors in this case, too.

In the remainder of this chapter, and in Chapters 6 and 7, we address some of

these issues both theoretically and also practically using simple models.

5.2 Uniqueness and observability

In this chapter, we consider theory only for the linear case. At first this may seem
restrictive, since in an operational context, models are generally nonlinear and ob-
servational data is often nonlinearly related to the model state. However, the 4D
variational assimilation problem is generally being planned for implementation using
the incremental approach, in which the full problem is reduced to the minimization

of a quadratic function with linear constraints (or a series of such minimizations).

89



This approach is justified because of the validity of the tangent linear model over
the assimilation length scales and is necessary because of limitations of computa-
tional resources (Chapter 4, Section 4.1). Further, and importantly, the incremental
approach gives us a minimization problem with a unique solution under certain
conditions which we specify here.

We consider the general linear model (2.8). For convenience, we suppose there is
no forcing of the form Bjpuy; this does not alter the results of the theory but avoids

unnecessary complication. Hence, we suppose the true model state satisfies
Xk+1 = Aka + €. (51)

We approximate model error by

Er = Bke (52)

where e € IR™ is the correction term, and the matrices By, € IR"*™ are prescribed,

with Rank(Bj) = m. Hence the model we use for assimilation is
Xk+1 = Aka + Bke. (53)

In the method proposed by Derber [26], the correction term e has the same
dimension as the model state, and the matrices B), are replaced by prescribed scalars
Sg. Introducing the matrices By however allows us to use a correction term with
dimension m less than the state dimension n. This could lead to increased efficiency
if we know in advance that model error is concentrated in certain locations.

As before, we have observations available over N timesteps related to the true

model state by

Y = CkX}; + (Sk, k= 0, LN — 1, (54)

as defined in (2.9).
We now formulate the general data assimilation problem we wish to address
in this chapter, that of estimating the model states and constant input over the

assimilation interval, using the observational data (5.4).
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Problem Ajrscr

Minimize with respect to Xg,..,Xn; €,

N—
C X —yi) RO x; —y;) (5.5)

[\Dl»—\

7=0
subject to (5.3).

In (5.5) the matrices Rj_l € IR»*Ps are assumed to be symmetric positive def-
inite, and to represent the relative accuracies of the observational data. Ideally,
they should be the inverse observational error covariance matrices. We consider
modifications of Problem Ajscr involving background terms later.

Since Rank(Ax) = n and Rank(By) = m for all k£ by assumption, specification
of x¢ and e uniquely determines the model state at all subsequent times. Hence xq
and e can be used as control vectors, and we view Problem Ajscr as that of finding
an optimal initial state (IS) and correction term (CT).

If we consider the correction term to be fixed (for example, if we assume that
there is no model error, or that model error is represented by a known bias), the
initial state is the control variable and we have the familiar strong constraint 4D
variational assimilation method outlined in Chapter 4, Section 4.1. Here we will

refer to this as Problem Ajs.

Problem A;g

Minimize J defined in (5.5) with respect to Xo,...Xn, subject to (5.3), with e fized.

The problem addressed by correction term technique, using the correction term
only as the control vector, we refer to here as Problem Agr. In this case we assume

the initial state is known.

Problem Aqr

Minimize J defined in (5.5) with respect to X1, ...Xn; €, subject to (5.3), with x¢ fized.

One of our objectives in this chapter is to give conditions under which Problems

Arsor, Ars and Ao have a unique solution.
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Our approach here, rather than using Lagrange multipliers to reduce the problem
to an unconstrained problem is to substitute the model constraints (5.3) directly into
the cost function. We do this for theoretical purposes in this chapter, but use the
Lagrange multiplier technique for our practical examples. We express the state x;
at time t;, in terms of the control vectors xy and e, which is possible using the state
transition matrix.

From Chapter 2 equation (2.16) we have
k-1

xp = ®(k,0)x0 + > _ ®(k,j + 1)Bje, k=1,.N, (5.6)

=0

where the state transition matrix is given by

O (k, j) = ]ﬁAZ», k> j, (5.7)
®(j,j) =1. (5.8)

For convenience, we write (5.6) as

xp = Opxo + Bre,  k=0,..N, (5.9)
where
N k—1
By => 0(k,j+1)B;, k=1,.N, (5.10)
7=0
By =0, (5.11)
and
O, = ®(k,0), k=0,..N. (5.12)

Incorporating the model constraints, we find that the cost function 7 can be written

in terms of xg and e as

L 1Nt . ~ .
T =5 2 (Cil®xo+ Bje) — y;) B (Ci(®;%0 + Bje) —yj), (5.13)
7=0
which after manipulation gives
N 1Nt B N I
J =3 ;{XOT@JTC}Rj 'C;®;x0+ e Bl CTR;'C;Bje
]:
+2(C®x0 — y,;) BTN (CiBie —y;) — v By} (5.14)

This can be verified by noting that for any vectors a,b,c € IR", the following
identity holds.

(a+b—-c)(a+b—-c)=ala+b’b+2(a—c)(b—c)—c’e. (5.15)
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5.2.1 Using the initial state as the control vector

In this subsection we consider Problem Ajs, which consists of constrained mini-
mization of (5.5) subject to (5.3), with e fixed, so throughout this subsection e is
assumed to be given.

Our aim is to find conditions for a unique minimum x4 of Problem A;s. In terms

of the initial state xg, (5.14) can be written

S . R
j = §X(1;A15X0 + b?SXO + Crs, (516)

where brg € IR", ¢1s € IR, and the Hessian matrix Ars € IR™*" is given by
N N-1
As =Y ®TCTR'C;;. (5.17)
7=0
From the theory of Chapter 2, Section 2.3, a necessary condition for xy to be a

minimum is that onj vanishes, ie,
A[on + f)[s =0. (518)

Any xo satisfying (5.18) is a minimum since Ays is positive semi-definite, and
it is unique if and only if A;g is positive definite or equivalently if and only if
Rank(zzljs) = n. We now link this condition of uniqueness to the observability of
the system.

The observations (5.4) may be related to xo and e using (5.9) as follows.
Y = Ck(q)kXO—I-Bke)—l-(Sk, kZO,..,N—l, (519)

which may be written as

Onxo =Yy — Tne + Dy, (5.20)
where
Co®o 0
Oy = Cl‘q)l . Ty = CI‘BI , (5.21)
Cn_1®noq Cn-_1Bn_1
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and

Yo bo
5

w=| 7|, ox=| T (5.22)
YN 6]\7_1

We note that Oy = O%;, the N-step observability matrix at time ¢y defined in
equation (2.20).

If there is no observational error, then the right hand side of (5.20) is known. In
Chapter 2, Section 2.2, we defined complete N-step observability at time ty as the
ability to determine uniquely the state xq from the observations y, and specified
inputs Bre, k = 0,..,N — 1. It was proved in Theorem 2.2 that the system is
completely N-step observable at time t¢ if and only if Rank(Oy) = n, and therefore
N-step observability is a necessary and sufficient condition to determine a unique
initial state xo in this case. We note, however, that only if the model (5.3) is a
perfect representation of the evolution of the true model state x%, will the solution
xo of (5.20) represent the true initial state xp.

In practice, the observational error is not negligible. It is therefore not possible
in general to estimate x exactly from the data, since the observational errors are
unknown. Hence we attempt to find a least-squares estimate for xo, which can be
done by solving Problem Ajs. If the observational errors é§; are unbiased, Gaussian
and uncorrelated in time with covariance matrices Cov{éy,6r} = Rj, and if the
model (5.3) is a perfect representation of the evolution of the true model state, then
this least squares estimate of Xq is the most likely estimate of x}. If these assumptions
on the observational error statistics and on the model accuracy do not hold to a good
approximation, then our estimate xq will not be a good approximation to the most
likely estimate.

The question of whether Problem A;g has a unique solution depends on complete

N-step observability, as we now show.

Definition 5.1 We say that the linear time varying system (5.3),(5.4) containing
observational error is completely N-step observable at time t; if the corresponding

system with no observational error is completely N-step observable at time ;.
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Theorem 5.1 Problem Ajs has a unique solution if and only if the system (5.3),(5.4)

is completely N-step observable at time tg.

Proof

From the previous discussion, it suffices to show that Rank (12115) = n if and only if
Rank (On) = n.

Since the matrices Rj_l are positive definite, they can be written uniquely as follows
- T

where U; € IRP/*Ps are positive definite matrices.
Defining U to be the positive definite block diagonal matrix with block elements
Uo,..,Un_1, 1€
Uo

Ux

-
Il

(5.24)

Un_1
we have

Ars = OLUTUO. (5.25)

Suppose that Rank(;l[s) < n. Then there exists a non-zero vector v € IR" such

that
viArsv =0, (5.26)
= UONv =0 (5.27)
= Rank(On) < n, (5.28)

since U is positive definite.

Similarly, suppose Rank(Ox) < n. Then there exists a non-zero vector u € IR” such

that
Onu = 0, (5.29)
= uTAjsu =0, (5.30)
= Rank(zzljs) < n. (531)
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Hence, Rank(zzljs) = n if and only if Rank(Ox) = n. a

Theorem 5.1 is a recasting for our data assimilation problem of a known result
in filtering theory that the time-varying system (5.3),(5.4) is completely observable
if and only if Ass is positive definite for some N, [44].

We now specialize to the time-invariant case, which is given by
X1 = Axy + Be, (5.32)

v = Cxp + 85 (533)

The following Corollary links the concept of complete observability of the time in-
variant system (5.32),(5.33) to uniqueness of Problem A;s. We note however, that

Theorem 5.1 also applies to the time invariant case.

Definition 5.2 We say that the linear time varying system (5.32),(5.33) is com-
pletely observable if the corresponding system with no observational error is com-

pletely observable.

Corollary 1 For the time invariant system (5.32),(5.33), if N > n then Prob-
lem Ars has a unique solution if and only if the system (5.32),(5.33) is completely

observable.

Proof

This result follows from Theorem 5.1, since it N > n, complete N-step observability
at time ty of a time invariant system is equivalent to complete observability of that

system, by Theorem 2.3, Part b. O

The paper by Zou, Navon and Le Dimet [91] included a proof for the continuous,
time invariant case that complete observability is a sufficient condition for a unique
solution of the problem, and stated that similar results may be obtained for a discrete
model. In the discrete case, however, the number N of timesteps in the assimilation

interval is important to whether the problem has a unique solution. Corollary 5.1
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does not tell us whether complete observability is sufficient for uniqueness if N < n,
but Theorem 5.1 does. Since in most applications of data assimilation in meteorology
and oceanography, the number of timesteps over which observations are available is
far less than the dimension of the system (ie, N << n), this is an important point.
Hence, using the concept of complete N-step observability is important for our
application not only because it allows generalization to a time-varying system, but
also because it can be used to give a condition for uniqueness of the data assimilation
problem that depends on the length of the assimilation interval, and the particular
time to at which the assimilation is started.

We now show that if the system is not completely N-step observable at time ¢,
we can ensure a unique solution by adding a background term to the cost function. It
has often been stated in the data assimilation literature that a background term can
make up for data insufficiency [6], [73], [55]. Bennett and Miller [8] show for a linear
model, expressed in terms of Fourier coefficients, that a background estimate of the
initial state is sufficient for uniqueness. They also argue that unless there is sufficient
independent data, such a background term is in fact necessary for uniqueness.

We consider the following minimization problem.

Problem B;g

Minimize with respect to Xg, .., XN

1N

1
T = 550 = x5 B (xo = %)+ 5 3 (O =y TR (O —y)) (534)
7=0

o |

subject to (5.3) with e fized.
In (5.34), x} € IR" is a background guess for xg, and Py' € IR™*" is a symmet-
ric positive definite weighting matrix, ideally approximating the inverse covariance

matrix of the errors (xo — x3). Equation (5.34) can be written

A T PPN " b p—13T ~ 1 T

j = §X0 (PO + A[s)Xo + (b[s — XOPO ) X0 + Crs + Q(XO) P X07 (535)
so in this case the Hessian of J with respect to xg is (Po_l + 12115). We have

Theorem 5.2 Problem B;s has a unique solution.
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Proof

The Hessian matrix (P " + 12115) is the sum of a positive definite and a positive

semi-definite matrix, and hence is positive definite. a

5.2.2 Using the correction term as the control vector

Here we consider the case where X is fixed and the correction term e is the control
vector, and seek conditions for a unique solution of Problem Acqr.
In this case, we wish to express the cost function J in terms of the correction

term. From (5.14) we have

I .
j = §eTACTe + bgTe + 6CT (536)

where bor € R™, é¢cr € IR, and Acr € R™™ is the Hessian of J with respect to
e, given by

N-1

i ST AT =11,

=0

Hence, Problem Acr has a unique solution if and only if Acr is positive definite.
In Subsection 5.2.1, we related the observational data to the initial state and

correction term. In the case that observational error can be neglected, we have from

equation (5.20),
’TNe = YN — ONXO. (538)

By analogous arguments to those given in the proof of Theorem 2.2, if x4 is known,
then e satisfying (5.3) can be uniquely determined from the observations if and only
if Rank(7x) = m. However, unless (5.3) is a perfect representation of the true model
evolution, then the solution obtained using this value of e does not represent the
true model state.

We note that (5.3) now has the same form as the general linear model (2.7), in
which the time-varying input u; has been replaced by the constant input e. In the
context of control theory, the problem of determining unknown or required model
inputs from the outputs is referred to as system inversion, and this has been studied

since the late 1960’s [71]. Some theory for the time invariant continuous case is
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given in [70], [71], and [64]. Our problem is rather different, however, since we only
look for a constant input, and because we consider the discrete, time-varying case.

Since observational errors are not negligible in reality, we seek a least squares es-
timate of the correction term e from the observational data by solving Problem A¢7.

We now give conditions under which this problem has a unique solution.

Theorem 5.3 Problem Acr has a unique solution if and only if Rank(Tn) = m.

Proof

With the matrix U defined as in (5.24), we have
Aoy = TXUTU Ty (5.39)
Since U is positive definite, we have, by the same argument as in Theorem 5.1, that
Rank(ACT) =m if and only if Rank(7y) = m. (5.40)

a

It is interesting to note, however, that complete N-step observability is neither
a necessary nor a sufficient condition for a unique solution of Problem Acr. Hence,
given the same set of observations, it is possible that Problem A;s has a unique
solution but Problem Agp does not, and vice versa. We show this by means of
simple counter-examples, in the case where m = n and the matrices Bj, are equal
to the identity matrix. We note that the result does not rely on the fact that the
observations yo contain information about the initial state, but not the correction

term.

Theorem 5.4 Complete N-step observability at time ty is neither a necessary nor

a sufficient condition for a unique solution of Problem Acr.

Proof

The result will be proved using simple counter-examples in the case n = m = 2,

p=1,and N =3 and for £k =0, 1, 2.
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We consider the system (5.3) with

11 I 1
AO — y Al - y (541)
0 1 -1 1

and By = [ for £ =0,1.
To show that complete N-step observability is not a necessary condition for a unique

solution of Problem Aqr, we give an example in which
Rank(O3) < 2, Rank(7;) = 2. (5.42)

We suppose that the data set is given by (5.4) with

Co — (0, 1), Cl — (0, 1), 02 — (1, 1) (543)
In this case
Co 0 1
03 = ClAO = 0 1 ’ (544)
Cy A1 Ag 0 2
0 0 0
T = o =10 1], (5.45)
Cy A + O, 1 3

and so (5.42) holds.

To show that complete N-step observability is not a sufficient condition for a unique

solution of Problem Aqr, we give an example in which
Rank(O3) = 2, Rank(7;) < 2. (5.46)

If the data set is now given by

Co — (0,0), Cl — (1,3), CQ — (1, 1), (547)
we have
0 0 0 0
Os=|1 4], T3=|(1 3|, (5.48)
0 2 1 3
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and so (5.46) holds. 0O

We have, however, the following special case as an example where complete
(N —1)-step observability is a necessary and sufficient condition for a unique solution
of Problem Acr. We consider again the time invariant system (5.32),(5.33). The
experiments we describe in Section 5.3 are for a time invariant system, and so

Theorem 5.5 is relevant for this case.

Theorem 5.5 For the time invariant system (5.32),(5.33) with m =n and B non-
singular, Problem Acr has a unique solution if and only if the system (5.32),(5.33)

is completely (N — 1)-step observable.

Proof

We need to show that Rank(7y) = n if and only if Rank(On_1) = n.
We let 7' = Ty B™!, and note that since B is nonsingular, Rank(7y) = n if and
only if Rank(7") = n.

For the time invariant system, we have

0
C
C
CA )
On-1 = ‘ ) T = C(A+1) (5.49)
CAN_2
CAN=24+ AN=3 + 4+ 1)

Since each row of 7' can be written as a linear combination of rows of On_;, we
have that Rank(7’) < Rank(Opn_1). Further, since each row of On_; can be written
as a linear combination of the rows of 7', we have that Rank(On_1) < Rank(7").
Hence Rank(On_1) = Rank(7’) = n if and only if Rank(7y) = n, which proves

the result. O

Finally, we show that a unique solution to Problem Agr can be guaranteed
provided we add a background term to the cost function. In this case, Problem Acr

is modified to

101



Problem Bqr

Minimize with respect to Xq,..,Xn; €

N-—
Z Cix; —y;) TR (C5x; — ;) (5.50)

=0

[\Dl»—\

T = Sle—e Qe

subject to (5.3) with xq fized.

In (5.50), e’ € IR™ is a background estimate for e, and Q=! € IR™*™ is a sym-
metric, positive definite matrix, ideally representing the inverse covariance matrix
of (e —e”).

Although it is known in the data assimilation literature that a background term
is needed in some cases to give uniqueness to Problem Ajg, the applications of Prob-
lem Acr (ie, applications of the correction term technique) mentioned in Section 5.1
did not use a background term for the control vector. Wergen [87] added an extra
term to the cost function which acted as a background term which constrained just
one of the three model fields to be close to zero.

In analogy to the working of the previous subsection, the Hessian of J with

respect to e is (Q7' + ACT), and the following result holds.

Theorem 5.6 Problem Bor has a unique solution.

Proof

The Hessian matrix (@~ + ACT) is the sum of a positive definite and a positive
semi-definite matrix, and so is positive definite. Hence Problem Bor has a unique

solution. O

It could also be deduced from the results in Bennett and Miller’s paper [8] on the
importance of a background estimate of the initial state, that when terms represent-
ing model error are estimated, a background estimate for these terms is sufficient

for uniqueness in the linear case.
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5.2.3 Using both the initial state and the correction term

as control vectors

We notice that the system (5.3),(5.4) can equivalently be written as

Xk+1 — Aka + Bkek, (551)
€11 = €, k= 0, ..,N — 1, (552)

with observations
yk:CkXZ—I-(Sk, kZO,..,N—l. (553)

It is helpful to rewrite this system as the augmented system
Wit1 = Mka, (554)

yi = Cow} + 85, (5.55)
where wy, € IR"™™, M, € R x(4m) and ¢ € R are given by
Xk Ak Bk .
Wi = , M. = , Cy = ( Cr 0 ) . (556)
e 0 I

In this augmented system, wy. is the augmented state vector and wy is the augmented

control vector. The augmented state transition matrix is (i)(k,j), and we have
. . o, By
O(k,0) =), = . (5.57)
0 I

Problem Ajrscr can now equivalently be written

Problem Ajrscr

Minimize with respect to Xg,..,Xn; €

Z —y)) " RN (Ciw, — ;) (5.58)

=0

[\Dl»—\

subject to (5.54).

In this form, we see that Problem Ajscr is just Problem Ajs applied to the sys-
tem (5.54), and so the theory of Section 5.2.1 applies here. From Theorem 5.1 we
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know that Problem Ajscr has a unique minimum if and only if the N-step observ-

ability matrix Oy has rank (n 4+ m), where
Co

N C19,
On = ‘ . (5.59)

Cna®ya

We now consider observability of the augmented system (5.54),(5.55) in terms
of observability of the original system (5.3),(5.4). Observability of the augmented
system concerns the ability to determine wy or equivalently xq and e from the obser-
vations, and observability of the original system concerns the ability to reconstruct

Xo from the same observations. We now show that the following result holds.

Theorem 5.7 Necessary conditions for Problem Arscr to have a unique solution

are that the original system (5.3),(5.4) is completely N-step observable at time t,
and that Rank(Ty) = m.

Proof

From Theorem 5.1, Problem Ajscr has a unique solution if and only if Rank(@N) =
(n+m), with @N given in (5.59).
Since

Ch®p = (C @y, Ci By, k=0,.,N—1 (5.60)

we have

Oy = (O, Tx). (5.61)
Let v € IR"™™ be arbitrary, and suppose
@NV = ONV1 + TNVQ, (562)

with v; € IR"™ and v, € IR™.
If Rank(Ox) < n, then there exists a non-zero vector vi such that Oyvi = 0. Hence

with this choice of v; and with v, = 0, there exists a non-zero vector v such that

CN)NV =0.
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Hence, Rank(Oy) = n, or equivalently by Theorem 2.2, complete N-step observ-
ability is a necessary condition for a unique solution of Problem Arscr.
By a similar argument, we have that Rank(7x) = m is also a necessary condition

for a unique solution of Problem Ajscr. O

One simple example for which Problem A;scr has a unique solution is the case
where Cy and Cy both have rank n, (as is the case in our experiments where we use
the full set of observations), as we now show.

We suppose v € IR™™ is arbitrary and that Oyv = 0. Then by (5.62)

Onvy + Tyvy =0, (5.63)
and by equation (5.60)
Ce®vi 4 CrBrvy = 0, k=0,..,N—1. (5.64)
With £ = 0 we have
Covy =0, (5.65)

and hence vi = 0 since Cy has rank n. With v; = 0 in the equation for £ = 1 we
have

0131V2 = ClBOV2 = 0, (566)

and since By has rank m and (' has rank n, we also have vo = 0. We have shown
that in this case,

Onv=0=v=0, (5.67)

so in this case the augmented system is completely N-step observable, and hence
Problem Ajrscr has a unique solution.

The necessary conditions given in Theorem 5.7 are not in general sufficient for
a unique solution of Problem Ajscr. We show this for the linear, time-invariant

system (5.32), (5.33), which can equivalently be written as the augmented system
Wit1 = MWk, (568)
yi = Cwj, + 65, (5.69)
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where

A B .
M= , cz(g 0). (5.70)
0 I

The following result is also applicable to the system we use in the experiments

we describe in Section 5.3, and we use it later.

Theorem 5.8 For the time invariant system (5.68), (5.69) with m = n and B

nonsingular, Problem Ajscr has a unique solution if and only if Rank(C') =n.

Proof

By Theorem 5.1, Problem Ajscr has a unique solution if and only if the augmented
system (5.68), (5.69) is completely N-step observable. We show that if Rank(C') < n,
the system (5.68), (5.69) is not completely observable, and hence not completely v-
step observable for any v by Theorem 2.3 Part a.

By the negation of the Hautus condition (Theorem 2.4), the system is not com-

pletely observable if there exists a non-zero vector v € IR** and A € C such that

(M —=X)v = 0, (5.71)
Cv = 0, (5.72)
or equivalently
(A — )\])Vl + BV2 = 0, (573)
(I—=X)vy = 0, (5.74)
Cvy = 0, (5.75)

where vy, vy € IR".
Suppose that Rank(C') < n. Then there exists a non-zero vy such that Cvy = 0.

Let vy be given by
vy = B7HA = M)vy, (5.76)

and A = 1. Then (5.73)— (5.75) or equivalently (5.71), (5.72) hold for a non-zero
vector v, and A = 1. Hence, if Rank(C') < n the augmented system is not completely

observable, and Problem Ajscr does not have a unique solution.
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The fact that Problem Ajscr has a unique solution if Rank(C') = n follows from
our previous remarks which showed that this is true for the general time-varying

system with Rank(Cy) = n, Rank(Cy) = n. O

By Theorem 5.2, we know that we can guarantee a unique solution to Prob-
lem Ajscr by adding a background estimate of the augmented control vector wq to

the cost function, and so we formulate the following problem.

Problem BISCT

Minimize with respect to wq, .., Wy

Z —yi) RN Cwy —y;)  (5.77)

=0

[\Dl»—\

1 R
J = 5(wo— wo)! Py H(wo — wy)

subject to (5.54).
In (5.77), wi € IR™*™ is a background estimate of wg, and Pyt e RO x(ndm) i
symmetric, positive definite. By Theorem 5.2, Problem B;scr has a unique solution.
We now show that if the original time-varying system (5.3), (5.4) is completely
N-step observable, and if we use a background estimate of e only, we are again
guaranteed a unique solution. We formulate the following modification of Prob-

lem Ajscr.

Problem CISCT

Minimize with respect to wq, .., Wy

N
7= Mew— Qe )+ LY (Cw, ) R O,y (5T)

=0

subject to (5.54).
In (5.78), e€® and Q! are as defined in Problem Beor. We now give conditions
under which Problem Crsor has a unique solution.

Theorem 5.9 Problem Crscr has a unique solution if and only if the original sys-

tem (5.3),(5.4) is completely N-step observable at time t.
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Proof

We note that (5.78) can equivalently be written

1N—1 ~
T =5 2 (Dyw;—2)" S7H(Dw; = 2), (5.79)

J=

o

where D; € R(PsFm)x(ndm) Sj_l e RPitm)x(e4m) and z; € IR¥*"™ are given by

C; 0 R0 :
D= "’ T o= s

J

0 I 0 %Q_l eb

Since the matrices S; ' are symmetric, positive definite, we can apply Theorem 5.1
to see that Problem Cjscr has a unique solution if and only if the observability

matrix @N has rank (n +m), where

Do®,
. D,®
Oy = N (5.81)
Dn_1®n_4

It therefore suffices to show that Rank(@N) = (n+m) if and only if Rank(Oy) = n.
We note that

. Cy 0 o, B, Cy®i OBy
D&y = = . (5.82)
0 I 0 I 0 1
v
Let v € IR™™ be arbitrary with v = ' , vi € IR", and vy € R™. We have
Va
Onv=0 ifandonlyif Dydyv=0 k=0,.,N—1, (5.83)

which holds if and only if

qu)kvl + CkBkVQ = 0, (584)
vo = 0, k=0, N—1, (5.85)

ie, if and only if
qu)kvl =0 kZO,..,N—l, (586)
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or equivalently

Onvy = 0. (5.87)

Hence, there exists a non-zero vector v € IR"*™ such that Onv = 0 if and only if
there exists a non-zero vector v; € IR” such that Onyvy, = 0. It follows that @N has

rank (n +m) if and only if Oy has rank n, which proves the result. O

In Section 5.5, we present a summary of the theoretical results in this chapter.
We now compare the performance of the initial state, correction term and both

together as control vectors practically, in experiments with a simple model.

5.3 Description of the experiments

The aim of these experiments is to compare the performance of variational assimi-
lation using the different control vectors: the initial state, the correction term and
the augmented control vector containing the initial state and the correction term.
This is done for a “perfect model” with unknown initial state, and for an “imperfect
model” in which the source term is unknown. We also investigate the impact of p,
the number of observations available at each timestep, on the results, and the im-
pact of including a background term in the cost function, constraining the correction
term to be small. Finally, we try using a correction term of dimension m less than

the dimension n, which corrects just an area close to the source term.

5.3.1 The model and observations

The model

In these experiments, we use the heat equation model with a source term on the

time interval [0, 1], which we described in Chapter 3, Section 3.5, given by
Xpp1 = Axy + s, k=0,..,N—1. (5.88)

We take N =80, T =1, J =16 and 0 = 0.1, so At = &, Az = L n =15 and
p=0.32.
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The true model state

We suppose that the true model state x!, satisfies (5.88) started from the true initial
state x} is given by

(22) =1, j=1,..,n. (5.89)

Model error

As a source of model error, we suppose that the constant source term is omitted

from the model equations. Hence, in the “imperfect” model, s is set to zero.

Observations

We suppose that we have error free observations at p of the 15 grid points at every

N

timestep on the interval [0,0.5], ie for 5~ = 40 timesteps, and that after this no

further observations are available. Hence, the observations are given by
N
1

yr = Cx}, k=0,.., 5 L (5.90)

where the observational matrix ' € IRP*" has a simple form since the observation
positions coincide with the grid points. The positions of the observations used in

each case are shown in the figures.

5.3.2 The minimization problem

Our aim is to estimate the true model state x}, from the observations (5.90) using
the model

X1 = AXp + s + Be, k=0,..,——1, (5.91)

N
2
where e € IR™ is the correction term and B € IR"*" is the identity matrix if m = n,
and if m < n, then B is a transformation matrix which limits the effect of the
correction term to a limited area of the model domain.

We minimize the cost function

X_q
1 12
J = §eTQ_le +5 Y (Cx;—y) "R Cx; —y)), (5.92)

7=0
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subject to (5.91), where R™! = 21 € IRP*?, and Q™' = ¢I € IR"*". The matrices
R™! give equal weight to all observations, and are not supposed to represent error
covariances. The value of ¢ is sometimes taken to be zero, in which case we do not
constrain the size of the correction term to be small.

The adjoint model is

N
A = ATy — CTR7Y(Cxy — 1), k= 5 - 1,..,0, (5.93)

with
)\g = 0. (5.94)

The gradients of the Lagrange function £ associated with J with respect to the

control vectors are

Vel = —Ao, (5.95)
L1

Vel = Q7'e—B" > A, (5.96)
7=1

We verified that the system (5.90),(5.91) is completely observable even when
just one observation is used, using the Matlab package for calculating matrix rank.
Hence, we are guaranteed a unique solution even when both control vectors are used
provided ¢ > 0, by Theorem 5.9.

The minimization algorithm used in these experiments is the conjugate gra-
dient method (CGM). In Chapter 2, Section 2.4 we outlined this method for an
unconstrained minimization problem. In Subsection 5.3.3 below we explain how we

implement the CGM for our constrained minimization problem.

5.3.3 The CGM for a constrained minimization problem

We aim to solve the constrained minimization problem Problem Ajscr or one of
its variants. As we saw in Section 5.2, this can be written as an unconstrained
minimization problem explicitly in terms of the control vector u, in the following

form

J = %qulu +blu+¢ (5.97)

111



where the control vector u might be the initial state, correction term or the aug-
mented vector consisting of the initial state and the correction term. Unless stated

otherwise, the stopping criterion used in the conjugate gradient descent is
|Vud || < 107°. (5.98)

If this stopping criterion is not satisfied within 100 iterations, the descent process is
terminated anyway.

For this unconstrained minimization problem, we use the conjugate gradient
method (CGM) outlined in Chapter 2, Section 2.4. The CGM algorithm can be
written in terms of u®, the kth iterate of the control vector, as summarized below,

where < .,. > represents the Euclidian inner product in R":

u = uf — prdF, (5.99)
where
dFtt = —pftt 4 gRdk, (5.100)
r* = VoJ = Auf 4 b, (5.101)
with
k dk k+1 Adk
ok = sr.d > gk = <r,ad > (5.102)
< d*, Ad* > < d*, Ad* >
and with
d’ = —r° (5.103)

In practice we do not have an explicit form of the Hessian matrix A. We must
therefore find a way of implementing (5.99)-(5.102) which does not use explicit
knowledge of the Hessian. The Hessian A appears in the expressions for the residual
r¥, and in the inner products < r*t!, Ad* > and < d*, Ad* >. We now discuss how

these terms may be evaluated without explicit knowledge of A.

Calculating the residuals r*

Firstly, we notice that the residual r” is the gradient of J with respect to the control
variable uf. The gradient of J with respect to u* is the same as the gradient of the

Lagrangian £ with respect to u* as defined in (5.95),(5.96).
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Calculating < r#t!, Ad* >

From (5.99) and (5.101) we have
AdF = (rF — MY/ ok (5.104)

Everything on the right hand side of (5.104) is known by the time we need to evaluate

< it Ad* >, SO AdF can be evaluated easily.

Calculating < d*, Ad* >

This expression can be built up using the following iteration. Starting from

& = d, (5.105)
¢ = RTCE, (5.106)
oo = (5o, (5.107)
forizl,..,%—lwelet
& = vi(&io1) (5.108)
¢, = RTCE, (5.109)
o = o +¢/ ¢ (5.110)
where
Yi(&i) = A&, if u=xo, (5.111)
Yi(&io) = A& +BE il u=e, (5.112)
A B _ Xo
Yi(&iy) = &, if u= : (5.113)
0 I e
Then we have
<d" Ad*>=oy . (5.114)

5.3.4 The experiments

We investigate the performance of data assimilation using the initial state, the cor-

rection term and both together as control vectors for each of the following cases.
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Case a: Perfect model, unknown initial state
In this case, the first guess of the initial state is
j=1,..n, (5.115)

rather than (5.89).

Case b: Imperfect model, known initial state

The source term s is assumed to be zero in this imperfect model, but this time the

true initial state is known.

Case c: Imperfect model, unknown initial state

Here we use the imperfect model of Case b with the first guess initial state specified

in Case a.

Data assimilation is carried out over the time interval [0, 0.5], where observations
are available. We then suppose that no more observations are available, and see
whether any benefits of the assimilation are maintained in a model run continued
on the time interval [0.5,1]. This type of experiment in allows us to ascertain
whether the assimilation results in an improved “forecast”, which is the ultimate
aim of operational applications of data assimilation [87]. This is especially important
when we are testing the correction term technique, because as Wergen found [87], an
improved solution during the assimilation interval does not always give an improved
forecast using this technique.

The simplicity of the linear, time-invariant model, with small state dimension,
the fact that it is completely observable for all values of p and the fact that the
observations contain no noise and that the model error we examine is constant in
time means, of course, that the situation we examine here is very different to that
of operational NWP. Further, the fact that the model is strongly dissipative means
that some aspects of the results will not hold in general, as we will point out.

However, this setup allows us to examine the relative efficiency of the various

control vectors in using the observational data to correct for wrong initial conditions
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and for model error which is constant in time. The results from these experiments

should enable us to make conclusions which will apply more generally.

5.4 Results

The figures referred to in the text may be found at the end of this section.

5.4.1 Experiments using the initial state as the control vec-

tor

We carry out data assimilation using the initial state as the control vector for a
perfect model with unknown initial state, and for an imperfect model with known

initial state. Here e is set fixed at zero.

Experiment 1a: Perfect model, unknown initial state

From the theory of Section 5.2.1 we know that, since the system is completely ob-
servable and we have perfect model and perfect observations, it should be possible to
reconstruct perfectly the true initial state and hence the true solution for subsequent
times from the observations.

Fig. 5.1 shows that with 5 observations (p = 5), the true initial state is recon-
structed exactly. This requires 20 iterations of the minimization algorithm. The
results at ¢ = 0.5, at the end of the assimilation interval, match the true results
exactly, and so, since the model is perfect, the “forecast” started at ¢ = 0.5 still
matches the true solution at ¢ = 1.

If fewer observations are used, fewer iterations of the descent algorithm are need-
ed to satisfy the stopping criterion. Fig. 5.2 shows the results for p = 1. Here the
match to the true solution at the initial time is very poor, but at subsequent times
is good, and the forecast initiated at ¢ = 0.5 matches the true solution exactly. This
illustrates that since the model is strongly dissipative, the solution is not very sen-
sitive to the initial state. Even using a stricter stopping criterion, it is not possible
to obtain a more accurate result in the case p = 1, because of numerical round-off

error.
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Experiment 1b: Imperfect model, known initial state

In this case we still expect that the minimization problem has a unique solution,
but the optimal initial state found will not be the true one, but that which gives
the solution of the imperfect model which is closest to the observations.

The true initial state is known, and the minimization iterations are started from
this value. If a different start guess for the initial state is used, the same results
are found, but this generally takes a couple of iterations more. Fig. 5.3 shows that
when the full set of observations are used (p = 15), a smooth initial state is found
with a higher value at the position of the source point. If fewer observations are
used (Fig. 5.4 shows the results when p = 5), the initial state obtained is no longer
smooth, but matches the true solution at the observation positions. However, the
model dissipation soon acts to smooth out the solution.

The best results in each case are in the middle of the assimilation interval, at
t = 0.25. This tendency of the variational assimilation method to give a closest fit to
observations in the middle of the assimilation interval has often been noted [19]. In
this case of an imperfect model, the method does not produce the true initial state
but finds one for which the ensuing solution throughout the assimilation interval is
closer to the observations. In this way, the effects of model error, rather than building
up in time, have been spread throughout the assimilation interval, as noted in [87].
Although the assimilation has improved the results at ¢ = 0.5, the benefits at t =1
are much smaller, because the forecast has been carried out with an uncorrected

imperfect model.

5.4.2 Experiments using the correction term as the control

vector

Here we carry out data assimilation using the correction term as a control vector,
and with xy fixed. Comparison of these results with those using the initial state as
the control vector gives a comparison of the efficiency of the two control vectors in
each situation. We also examine the use of the background term %eTq]e in the cost

function, with different values of g. We look first at the situation of the imperfect
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model with known initial state, since this problem is more naturally treated by using

the correction term as a control vector.

Experiment 2b: Imperfect model, known initial state

Since the system is completely observable and % > n-+1, we know that Problem Aqor
has a unique solution. Since in Case b the initial state is known and model error is
constant in time, this method should find a correction term which exactly represents
the model error, and hence be able to reproduce the true solution.

Fig. 5.5 shows this to be so when p = 5 using ¢ = 0. If the correction term
found is used in the forecast started at the end of the assimilation interval (¢ = 0.5),
the forecast using this corrected model matches the true solution exactly. The
number of iterations taken in this case is 17, very similar to the number taken in
Experiment la using the initial state as the control vector; and as in that case, the
number of iterations decreases when fewer observations are used. When only one
observation is used with ¢ = 0, (Fig. 5.6), the results are still good.

Experiments were also carried out using the background term with ¢ = 1. For a
given value of p, fewer iterations were needed to satisfy the stopping criterion than

using ¢ = 0, but the results were very slightly less accurate.

Experiment 2a: Perfect model, unknown initial state

Again, we expect a unique solution, but not the true solution. The method will find
the correction term for which the model started from a wrong initial state is as close
as possible to the observations.

In these experiments the correction term is not included in the forecast following
the assimilation. This is because the correction term is supposed to compensate for
the errors in the initial conditions throughout the assimilation period, and since the
model is perfect, an improved solution at the end of the assimilation interval (at
t =0.5) will give an improved forecast.

If p = 15, ie, the full set of observations are used, (Fig. 5.7), the solution is
closest to the true solution about halfway through the assimilation interval. At the

end of the assimilation interval, it is hard to judge whether the assimilation has
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produced a better solution than the first guess, as one over-estimates and the other
under-estimates the true solution, as is the case throughout the forecast.

The results using ¢ = 0 are very poor if fewer than the full set of 15 observations
are used, however. The results in these cases are very close to the true solution at
the observation positions, but have large spikes where observations are missing, as
Fig. 5.8 shows in the case p = 5. If more observations are used, the result is closer to
the true solution in more places, but the spikes in the data voids are larger. In this
case, the solution does not make sense since the correction term produces a solution
close to the true solution only at the observation positions.

Using a background term with ¢ = 1 improves the situation by getting rid of the
large spikes, but the solution still is not smooth. This is shown in Fig. 5.9 for p = 5.
As in Experiment 2b, introducing this background term reduces the number of
iterations needed before the stopping criterion is reached, from 35 to 10 iterations in
this case (p = 5). Using a stricter stopping criterion does not produce better results.
Increasing the value of ¢ to 10 gives a smoother solution in just 10 iterations, and
a very smooth solution in just 6 iterations if ¢ is increased to 50 (Fig. 5.10). In this
last case, it happens that the solution at the end of the assimilation interval is very
close to the true solution, and stays close to it in the forecast.

These results show that although a background term for the control vector is not
necessary for uniqueness, it is very important in practice to constrain the correction
term to be close to zero to obtain a smooth solution, rather than a solution which is
merely close to the true solution at the observation positions. We note that the poor
results shown in Fig. 5.8 would have shown a reduction in the cost function and in
the rms errors of the forecast period. This means that using the criteria of some of
the earlier work on the correction term with no background in the cost function, we
might have concluded that these results represented an improvement on the results

with no assimilation.

5.4.3 Experiments with both control vectors used together

We now carry out data assimilation using the augmented control vector consisting

of the initial state and the correction term. We aim to find a way of doing this
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which gives the benefits obtained using each of the control vectors separately, while
keeping the extra cost at an acceptable level. As illustrated above, there are some
situations in which using the initial state as the control vector, and other situations
in which using the correction term as the control vector works particularly well. If
we do not know before starting the assimilation which control vector is better for
the situation, we would like to be able to use both together and obtain the same
benefits as if the preferable control vector had been chosen. This is examined here
by looking at Cases a and b using the augmented control vector. We then look
at Case ¢, the more general situation of an imperfect model with unknown initial
state, to see whether by using the augmented control vector we can obtain the true
solution in this case.

From the theory of Section 5.2, we know that for our time invariant system, the
minimization problem with no background term using both control vectors has a
unique solution if and only if the full set of 15 observations are used (Theorem 5.8),
but that since the system is completely observable for any number of observations,

using ¢ > 0 ensures uniqueness (Theorem 5.9).

Experiment 3a: Perfect model, unknown initial state

In this case we want results to be as the case where we use only the initial state as
the control vector. As expected, when 15 observations are used, the results match
the true solution exactly. However, this takes more iterations (27 iterations) than in
the same case when only the initial state is used as the control vector (10 iterations).

When no background term is used, the results using fewer than 15 observations
are rather like the poor results of Experiment 2a using only the correction term
as the control vector and no background term (¢ = 0), although in this case the
solution does not deviate so far from the true solution in data void areas. Using
a background term (¢ > 0) solves this problem, however, and an exact match to
the true solution is achieved using ¢ = 5. With p = 1, exactly the same results are
obtained as in the case where the initial state is the only control vector; the same
rather inaccurate initial state is found, but an exact match to the true solution

is obtained at later times. Using both control vectors together it is necessary to
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perform many more iterations of the descent algorithm than using just one control
vector. In this case, 90 iterations are used in the case p = 5, though fewer iterations
are needed when fewer observations are used, (26 iterations for p = 1).

Increasing ¢ reduces the number of iterations required, however. These results
show that when both control vectors are used, the background term is essential for

sensible results, and that an appropriate choice of ¢ is important to save extra cost.

Experiment 3b: Imperfect model, known initial state

In this case, we want the results to be as in the case where only the correction term
is used as the control vector. Again, an exact match to the true solution is achieved
using 15 observations. In the light of the previous results and the theory, we might
have expected that using fewer observations and no background term it would not
be possible to obtain reasonable results. However, results in this case are as good
as those obtained in the case where only the correction term is used as the control
vector, apart from a very slight inaccuracy in the initial state. Although we are not
guaranteed a unique solution in this case, the first guess of the initial state is correct,
so from a first guess which is close to the true solution, the true solution is found.
As above, the number of iterations needed is larger than in the case where only one
control vector is used, although the increase is not so large, (27 iterations rather
than 17 iterations using just the correction term in the case p = 5). This time,
however, adding the background term with ¢ = 1 significantly increases the number
of iterations needed. Further increasing ¢ in this case leads to a deterioration in the

results, and does not decrease the number of iterations.

Experiment 3c: Imperfect model, unknown initial state

In the experiments without the background term (¢ = 0), the results are much as
in Experiment 3a. A perfect match to the true solution is obtained using the full
set of 15 observations, but if fewer observations are used, the solution is close to the
true solution at the observation positions but not where observations are missing.
The case for p = 5 is shown in Fig. 5.11. Using different starting guesses in this case

gives different solutions, which demonstrates that the minimization problem does
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not have a unique solution using ¢ = 0 and p < 15.

Adding the background term (using ¢ > 0), ensures uniqueness and results in
good solutions, although for smaller values of p the results are not completely smooth
at the beginning of the assimilation interval. Figs. 5.12 and 5.14 show the results
for p = 5 and p = 10, respectively, with ¢ = 1. In all cases the match to the true
solution is very good at the end of the assimilation, and the forecast initiated at this
time using the correction term found in the assimilation maintains a perfect match
to the true solution.

Increasing the value of ¢ to 10 gives a smoother solution for smaller values of p,
and reduces the number of iterations needed. However, further increasing ¢ to 50
leads to a less accurate match to the true solution as Fig. 5.13 shows in the case

p = 5, and little further reduction in the number of iterations needed.

5.4.4 Reducing the dimension of the correction term vec-

tor

In this example, model error is due to the omission of a source term which is only
nonzero at one gridpoint. We now suppose we know that model error is localized,
and suppose that we know approximately this location. In this case we are able to
reduce the dimension of the correction term to m < n (provided the correction term
is not also supposed to correct for errors in the initial state). When using m < n,
we suppose that the correction term covers an area centred on the location of the

source term.

Experiment 4b: Imperfect model, known initial state

Using values of m < n improves the efficiency of the method. As before, using the
correction term as the control vector it is possible to perfectly reconstruct the true
solution from the observations using p = 5 and ¢ = 0. If m < n, however, these
results are achieved using fewer iterations, just 4 iterations for m = 5 and just 3
iterations for m = 3. Before, using m = n = 15, 17 iterations were required for the

same results.
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Using only one observation, the results were slightly more accurate using m =5
than using m = 15, as comparing Fig. 5.16 with Fig. 5.15 illustrates. In this case, the
observation is not in the area the correction term covers. The number of iterations

required was reduced from 7 iterations for m = n = 15 to just 2 iterations for m = 5.

Experiment 4c: Imperfect model, unknown initial state

Here again reducing the dimension of the correction term improves the efficiency
of the method. Fig. 5.17 shows the results using both control vectors and using
m = n = 15 and 5 observations with ¢ = 1. This requires 77 iterations of the
descent algorithm. Fig. 5.18 shows that the results using m = 3 are just as good,

and in this case only 31 iterations are required.
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Figure 5.1: Variational assimilation using the initial state as the control vector.
Assimilation on the interval ¢ € [0, %] using 5 observations, followed by a forecast
on the interval ¢ € [1,1]. Solid line: true solution; dotted line: background solution

(no assimilation); dashed line: solution with assimilation; crosses: observations.
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Figure 5.2: As Fig. 5.1, but using only 1 observation.
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Figure 5.3: Variational assimilation using the initial state as the control vector.
Assimilation on the interval ¢ € [0, %] using 15 observations, followed by a forecast
on the interval ¢ € [1,1]. Solid line: true solution; dotted line: background solution

(no assimilation); dashed line: solution with assimilation; crosses: observations.
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Figure 5.4: As Fig. 5.3, but using only 5 observations.
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Figure 5.5: Variational assimilation using the correction term as the control vector,

with ¢ = 0. Assimilation on the interval ¢ € [0, %] using 5 observations, followed

by a forecast on the interval ¢ € [%, 1]. Solid line: true solution; dotted line: back-

ground solution (no assimilation); dashed line: solution with assimilation; crosses:

observations.
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Figure 5.6: As Fig. 5.5, but using only 1 observation.
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Figure 5.7: Variational assimilation using the correction term as the control vector,

1

with ¢ = 0. Assimilation on the interval ¢ € [0, ] using 15 observations, followed

2

by a forecast on the interval ¢ € [%, 1]. Solid line: true solution; dotted line: back-

ground solution (no assimilation); dashed line: solution with assimilation; crosses:

observations.
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Figure 5.8: As Fig. 5.7, but using only 5 observations.
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Figure 5.9: Variational assimilation using the correction term as the control vector,

1

with ¢ = 1. Assimilation on the interval ¢t € [0, ] using 5 observations, followed

2

by a forecast on the interval ¢ € [%, 1]. Solid line: true solution; dotted line: back-

ground solution (no assimilation); dashed line: solution with assimilation; crosses:

observations.
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Figure 5.10: As Fig. 5.9, but using ¢ = 50.
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Figure 5.11: Variational assimilation using both the initial state and the correction

term as the control vectors, with ¢ = 0. Assimilation on the interval ¢ € [0, %] using

5 observations, followed by a forecast on the interval ¢t € [%, 1]. Solid line: true

solution; dotted line: background solution (no assimilation); dashed line: solution

with assimilation; crosses: observations.
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Figure 5.12: As Fig. 5.11, but using ¢ = 1.
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Figure 5.13: As Fig. 5.11, but using ¢ = 50.
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Figure 5.14: As Fig. 5.11, but using ¢ = 1 and 10 observations.
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Figure 5.15: Variational assimilation using the correction term as the control vector,

with ¢ = 0. Assimilation on the interval ¢ € [0, %] using 1 observation, followed by

a forecast on the interval ¢ € [1 1]. Solid line: true solution; dotted line: back-

ground solution (no assimilation); dashed line: solution with assimilation; crosses:

observations.
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Figure 5.16: As Fig. 5.15, but with the dimension of the correction term vector

reduced to m = 5.
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Figure 5.17: Variational assimilation using both the initial state and the correction

term as the control vectors, with ¢ = 1. Assimilation on the interval ¢ € [0, %] using

5 observations, followed by a forecast on the interval ¢ € [%,1].

2

Solid line: true

solution; dotted line: background solution (no assimilation); dashed line: solution

with assimilation; crosses: observations.
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Figure 5.18: As Fig. 5.17, but with the dimension of the correction term vector

reduced to m = 5.

131



5.5 Summary and conclusions

In this chapter we have looked at both theoretical and practical aspects of using
the correction term as the control vector compared with using the initial state as
the control vector, and also of using both control vectors together. Here we briefly
summarize the theoretical results of Section 5.2, and give conclusions from the ex-

periments described in Sections 3 and 4.

5.5.1 Summary of the theoretical results

In Section 5.2 we considered from a theoretical point of view, uniqueness of the 4D
variational assimilation problem using each control vector. We were particularly
interested to see when it is possible to determine each control vector from the obser-
vations alone, exactly in the case of observations with no error, or in a least squares
sense in the case of imperfect observations.

The issue of uniquely determining an initial state from observations is addressed
in the concept of observability. The paper by Zou et. al. [91] includes a proof
that in the continuous, time invariant case, complete observability of the system is a
sufficient condition for a unique solution of the 4D variational assimilation problem,
Problem Ajs. Here we used the concept of complete N-step observability at the
initial time tg, which is both a necessary and sufficient condition for uniqueness in
the discrete, time varying case. This result is applicable to an assimilation system
in which the number and type of observations vary in time. Even when applied to
a time-invariant system, this result linking uniqueness to complete N-step observ-
ability tells us more than the corresponding result on complete observability if the
number N of timesteps in the assimilation interval is smaller than the dimension n
of the model state.

We then addressed the issue of whether it is possible to determine uniquely a
constant model input (a correction term representing model error in our context)
from observations on an assimilation interval. Interestingly, in this case complete
N-step observability at time g is neither a necessary nor a sufficient condition

for uniquely determining a constant input from the observations, as we showed
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using simple counter-examples. This means that in some cases it is possible to
uniquely determine the correction term but not the initial state from a given set
of observations, and vice versa. However, we also gave an example for the time-
invariant case in which it is possible to uniquely determine the correction term
from the observations if and only if it is possible to uniquely determine the initial
conditions.

If both control vectors are used together, it is possible to write the original system
in terms of an augmented system, in which the augmented initial state, consisting
of the original initial state and the correction term, is the augmented control vector.
Hence, a necessary and sufficient condition for being able to determine both the
original initial state and the correction term from the observations is that the aug-
mented system is completely N-step observable at time #y5. We looked at conditions
for complete N-step observability of the augmented system in terms of complete
N-step observability of the original system and showed, in particular, that for a
time-invariant system, it is possible to determine the augmented control vector from
the observations if and only if a full set of observations is used. In the time varying
case, however, it is possible to determine the augmented control vector from the
observations if there is a full set of observations at times #g and ;.

In each case, adding a background estimate of the control vector to the cost
function can guarantee a unique solution when the observational data cannot. This
is known for data assimilation using the initial state as the control vector, but a
background term was not included in published work on the correction term tech-
nique. We also showed that if both control vectors are used, then if the original
system is completely N-step observable, it is only necessary to add a background
estimate of the correction term.

In general, it is not possible to check complete N-step observability in the context
of operational data assimilation in NWP or in oceanography, although in some
cases we know whether or not this condition holds. In other applications of data
assimilation, however, it is possible to check this condition. However, even when
we do not know whether or not a system is completely N-step observable, these

theoretical results give us insight into the comparative ability of the variational
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assimilation method using different control vectors to obtain information from the
observations. In particular, we showed that conditions for determining the initial
state and those for determining the correction term from the observations are the
same in a time-invariant system with N large enough, although they are not the
same in general; that a necessary but not sufficient condition for both control vectors
to be uniquely determined from the data is that each of them can be determined
individually; and that in the time-invariant case it is not possible to determine both

control vectors unless a full set of observations is used.

5.5.2 Conclusions from the experiments

The experiments described in this chapter show that just as it is possible to recon-
struct the true solution from an unknown initial state with a perfect model and a
sufficient number of perfect observations, so it is possible to reconstruct the true
solution from an imperfect model with known initial state and a sufficient number
of observations if model error is constant in time. In these experiments, when only
one or two observations were used at each timestep, the solution was inaccurate,
even though the theory shows that we should be able to obtain exact results in
these cases also. This is probably due to numerical rounding error in the descent
iteration procedure.

From these results, we can conclude that the correction term technique might
work well to compensate for sources of model error which are approximately constant
over the assimilation interval, such as forcing terms which do not depend on the
model state, and misspecified, constant boundary conditions. When an imperfect
model is used, using the correction term obtained in the assimilation in a subsequent
forecast greatly improves the forecast, as found in earlier studies on the correction
term technique.

If the initial state is the only control vector and an imperfect model is used, then
the best fit to the true solution is in the middle of the assimilation interval, and
there is little gain in accuracy in an ensuing forecast since this is carried out with an
imperfect model. Similarly, using only the correction term as the control vector can

compensate for the effect of errors in the initial conditions, although in this context
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the correction term should not be included in an ensuing forecast.

In all experiments with unknown initial state in which the correction term was
used as a control vector, using a background term with a large weight constraining
the correction term to be small (ie, a large value of ¢) was vital for sensible results
where fewer than the full set of observations are available, although the background
term is not needed for uniqueness in all these cases. This fact was revealed because in
our idealized experiments we were able to compare our results with the true solution
away from the observation positions. Previous published work on the correction term
technique did not include the background term.

Using a background term was also useful, although not necessary, when the
correction term was being used to correct for model error, since including it speeds
up the descent procedure slightly. In this case, however, using a value of ¢ which
was too large had a detrimental impact on the results. This problem of needing a
small value of ¢ to deal with the constant component of model error, and a large
value of ¢ to deal with other forms of forecast error, such as errors in the initial
state, might not be such an issue in cases in which the errors dealt with are not so
drastic. In these experiments we used very large model error and initial state errors
for exaggerated results.

Using both control vectors together it was possible to obtain very good results
in the presence of a wrong initial state, an imperfect model, or both. However,
this was at the cost of significantly more descent algorithm iterations, typically 60-
80 iterations with both control vectors compared with just 15-25 using just one of
them, although these results were required to satisfy a very strict stopping criterion.

Reducing the dimension of the correction term control vector increased the effi-
ciency of the method, since fewer iterations of the descent algorithm were required
in this case. This is particularly significant when both control vectors are used
together, since in this case the high number of iterations required was reduced by
around a half. Reducing the dimension of the correction term might be appropriate
if the correction term is only required to counteract the effects of model error which
are known to be localized to some area.

From these experiments, two immediate issues arise which require further atten-

135



tion. The first is the problem of reducing the number of iterations needed when
both control vectors are used. This could be achieved by suitable preconditioning of
the descent process, but we do not take this any further in this work. Secondly, the
question arises of how well the correction term technique would work in the presence
of model error which is not constant in time, especially model error which depends

on the model state. We examine this in the experiments of the next two chapters.
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Chapter 6

Accounting for model error in

variational assimilation

We start this chapter with a discussion on the problem of how to account for model
error in data assimilation. In particular, we note that the assumptions made on
model error in Kalman filtering theory have theoretical and practical limitations.
We consider a more general form of model error which has serially correlated and
serially uncorrelated components, and we give several different examples of how we
might represent model error.

We show that the technique of state augmentation provides a useful tool for
accounting for model error in data assimilation. Using this technique, the aim
in data assimilation is to estimate serially correlated components of model error
along with the model state. This leads to a generalised form of Problem LS of
Chapter 4, in which we allow for serially correlated model error. In this context, it
is possible to give a statistical interpretation of the correction term technique. The
state augmentation approach also provides a way to generalize the correction term
technique to represent model error that changes with the state evolution, rather than
model error that is constant in time. We refer to this as the “evolving correction
term technique”.

We conclude this chapter with experiments using a simple model in which the
model error changes with the model state. In this case, the usual correction term

technique does not compensate for the effects of model error at all, but using the
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evolving correction term as a control variable produces a significant improvement in
the results.
The theoretical part of our work described in this chapter has been published in

a shorter form in [41].

6.1 Background on representing model error

In 4D variational assimilation using the strong constraint approach, which is cur-
rently being developed for operational application in meteorological centres, model
error is neglected. Recently, however, the problem of how to account for model error
in variational assimilation in a cost effective way has begun to receive more attention
[61].

Studies in predictability which explicitly attempt to represent the effects of model
error on forecast error, [12],[22],[85] show that the impact of model error on forecast
error in meteorological models is indeed significant. The study in [22] leads to the
conclusion that the predictability limit of a forecast might be extended by two or
three days if model error were eliminated. However, there is a lack of quantative
information on model error in such forecast models, even of its size relative to that
of the model state. Hence, the problem arises of how to represent model error in
data assimilation.

The Kalman filter does account for model error, and in the Standard Kalman
filter model error is treated as serially uncorrelated, unbiased random error. In Chap-
ter 4, Section 4.4 we also discussed other approaches to weak constraint variational
assimilation which make the same assumptions about model error. An interesting
paper by Dee [25] however, questions the validity of this representation of model
error. Using an analysis of model error similar to that given in Chapter 2, Subsec-
tion 2.1.2 here, he argues that since model error in general depends on the model
state, it is likely to be serially correlated. In Chapter 3, Section 3.2 we gave back-
ground on how the Kalman filter can be modified to deal with serially correlated
model error, but this involves a large increase in the expense of the method, which

(unless in simplified form) is already thought to be too expensive for operational
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application in data assimilation.

Another major problem with using a stochastic representation of model error
in data assimilation is that it is very difficult to model the error covariance matrix,
since the statistics of model error are largely unknown. Dee [25] argues that it is this
huge information requirement, rather than the large computational cost, that is the
real obstacle to successtful implementation of the Kalman filter. He further argues
that it doesn’t make sense to expend huge amounts of effort in propagating the
error covariance matrices when the statistical assumptions made on model error are
suspect. He concludes that until further information about the statistics of model
error are available, the advantages of the Kalman filter over other data assimilation
schemes are “strictly hypothetical”.

Here, we are concerned with how to account for model error in variational as-
similation. The weak constraint approach to variational assimilation does allow for
model error, and in Chapter 4, Section 4.4 we reviewed some of the methods for
solving this minimization problem which have been proposed for data assimilation.
Generally, these methods make the same statistical assumptions on model error as
made in the Kalman filter, and so the theoretical problems raised above apply here
too.

The correction term technique provides a way of allowing to some extent for
model error in variational assimilation. In Chapter 5 we saw that this works very
well for model error that is constant in time, but this is of course not generally the
case. Papers on the use of the correction term technique refer to the correction term
as representing “model bias” or as representing “average” model error, but published
work has not provided a theoretical statistical interpretation of the analysis the
correction term technique provides, as has been done in the case of the strong
constraint approach (ie, that under certain statistical assumptions it represents the
“most likely solution”, if the model can be assumed to be perfect).

In Section 6.2 of this chapter, we consider a general representation of model
error that can be used to represent each of the forms of model error that have
been suggested for use in data assimilation, and which could also represent other

forms. We consider how the technique of state augmentation can be used to estimate
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a serially correlated component of model error along with the model state. In
Section 6.3 we give a generalised version of Problem LS (the general least squares
problem for variational assimilation introduced in Chapter 4) which allows for the
state augmentation approach. In this context we can interpret the correction term

technique in a statistical way.

6.2 State augmentation
We consider the nonlinear model
Xk+1 :fk(Xk)—I-é‘k, kZO,..,N—l (61)

as defined in (2.4), where x;, € IR" and e, € IR" are the model state and the model
error at time ;. In Chapter 5 on the correction term technique, we considered an

approximation of the model error term €, of the form
Er = Bke, (62)

where the B, € IR"*™ are prescribed matrices, and e € IR™ is a constant correction
term to be determined. In the correction term technique, e is used as a control vector
in the minimization. If both the initial state xg and the correction term e are used
as control vectors, we saw that it is convenient for theoretical purposes to write the
system as an equivalent augmented system. This technique of state augmentation is
sometimes used in the control theory literature as a way of estimating, along with
the model state, unknown, constant model parameters, as discussed in the text by
Jazwinski [44] Chapter 8, Section 4, or of estimating a serially correlated component
of random model error, as discussed in the text by Gelb [31] Chapter 3, Section 8.
As we will show in this chapter, this technique therefore provides a convenient way

to account for serially correlated model error in data assimilation.

6.2.1 A general formulation of model error

We now consider a more general form of model error than (6.2), which also has a

random component. Following [31], we consider a stochastic form of model error,
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which is made up of serially correlated errors and serially uncorrelated random

errors. We therefore write

Er = Bkek + q;g, (63)

where the vectors q, are serially uncorrelated, random n-vectors, the matrices By €
IR™™™ are prescribed matrices as before, and the vectors e, € IR™ represent the
sertally correlated component of model error. We suppose that we know how the

error e evolves in time, and for now write this in a very general form,

ert1 = gr(Xp, er) + qi, (6.4)

where g : IR" x IR™ — IR™ is some function to be specified, and the vectors q} are
serially uncorrelated random m-vectors.

As we discussed in Section 6.1, we know very little about the form of the model
error, and in practice will have to specify (6.3), (6.4) in a very simple form which
reflects any knowledge of model error we do have. We give a few such examples in
Subsections 6.2.2 and 6.2.3. Using this general formalism, however, we can allow for
model error which depends on the model state, and for other types of model error
discussed earlier.

The model system can now be written

Xpp1 = fr(xk) + Brer + qp, (6.5)

€11 = gk(Xk7 ek) + qgv k= 07 () N —1 (66)
or as the equivalent augmented system
Wk_|_1 = fk(Wk) —|— qk, k = 0, ..,N — 1 (67)

Xk ~
in which wy, = e RU™ is the augmented state vector, f, : RUT™ —
€k
IR is a nonlinear function, and qy is a random (n 4+ m)-vector. The aim of the
data assimilation problem for the augmented system is to estimate the augmented

state wy. Before discussing how to do this, we first give some examples of how we

may represent the model error term.
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6.2.2 Examples of how model error can be specified
i) Serially uncorrelated model error

Setting all the ey in (6.3) to zero we have

ek = (6.8)

in which case model error is a serially uncorrelated random vector, as assumed in

the Standard Kalman filter.

ii) Constant model bias error

Setting

Er = Bkek—l—qz, (69)

€11 = €, (610)

allows for a constant vector of unknown “dynamical parameters” as discussed in
[44]. If this form of model error is purely deterministic (ie, g} = 0), this represents
the correction term technique of Chapter 5. In Derber’s paper [26] introducing the
correction term technique, the matrices Bj were the n x n identity multiplied by a
time-varying scalar and by the time-step length At, to reflect the role of this form
of model error as a correction to the time derivative of the model equations. As
discussed in Chapter 5, we expect this form of model error to be appropriate for

representing constant errors in the forcing or in the boundary conditions.

iii) Model error evolving with model evolution

In Section 6.1, we discussed that model error is likely in general to depend on the true
model state, and hence to change with the flow. In this case model error evolution

might be approximated by

Er = Bkek—l—qz, (611)
€11 = erk, (612)

where (), € IR™*™ represents a simplified form of the model state evolution. This

might be an appropriate approximation to model error evolution if model error
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represents truncation error. This is similar to the form of serially correlated model
error which was suggested in the paper by Daley [23] in formulating a Kalman
filter allowing for serially correlated model error, which we discussed in Chapter 3,

Section 3.2.

The matrices By in (6.3) allow for a serially correlated component of model
error with dimension m which may be less than or greater than the dimension n
of the model state. In Chapter 5 we showed how using m < n can lead to greater
efficiency in the correction term technique if the source of model error is known to
be localized. We now consider how including the possibility that m > n can allow
for greater flexibility in the specification of model error.

We may partition the serially correlated component of model error in r sub-

vectors of dimension s (where rs = m), and write

er = Brer+q, (6.13)
errr = ge(Wi) +qp, (6.14)
where this time
of)
Br=BY,B® B, e=| : |, (6.15)
el

where eg), o egf) € IR* and B,gl), - B,(f) € IR"**. The following examples illustrate
how this generalization might be useful.
iv) Model error growing in time

Here, rather than using a constant correction term to represent model error as in
the correction term technique, we allow for a correction term which can increase or

decrease linearly in time. In this case model error has the form

Er = Bkek—l—qz, (616)
€11 = €, (617)
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with
el
B, = (BW, AtBY), e = : (6.18)

ef?

This form of model error is referred to in [31] as a “random ramp”, since its initial
size and rate of change are to be determined.

v) Combination of Examples i) and ii)

We suppose the model error has the form

Er = Bkek—l—qz, (619)
€11 = erk, (620)
with
(1)
(S] ~ Gk 0
B, = (Bl(€1)7Bl(€2))7 e, = ’; . G = 7 (6.21)
egg) 0 1

where (i, is as defined in (6.12). In this we can allow for model error with a constant

component and a component which changes with model evolution.

vi) Spectral form of model error

In this case we suppose that model error has the form

Er = Bkek—l—qz, (622)
€11 = €, (623)
with
o
) k k

By = (B,gl),B,gz) sin (ﬁ) ,B,(f) cos (ﬁ))’ e, = e;f) , (6.24)

e

k

where 7 is a constant which might be chosen bearing in mind the timescale on which

model error is expected to vary, for example a diurnal timescale.
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vii) Piecewise constant model error

Here we suppose that the assimilation interval [tg,tx] is broken into r subintervals
over which model error is represented by different constant correction terms. For
convenience, we suppose here that N is a multiple of r, so that we can represent

model error as

er = DBrer+q, (6.25)
€1 = eg, (6.26)
with
o
By = (sWBW (BB JWpRrhy e = : (6.27)
egf)

(v)

where the scalars s;’ are given by

1 for kzﬁi_—:ﬂ,..,g—l

s = (6.28)

0 otherwise.

If r=N, B, =1 and q), = 0 then we estimate N serially uncorrelated model error

terms.

6.2.3 Problem LS for the augmented system

Using our most general form of model error, the nonlinear system is

Xpr1 = [(xk) + Brer + q, (6.29)
€11 = gk(Wk) + qg k= 07 "7N - 17 (630)

which can equivalently be written in as the augmented system
Wiyt = f(We) +qe, k=0, N—1, (6.31)

Xk . q | .
where wj, = € IR™"™ is the augmented state vector, q; = is a
€k qai

random (n + m)-vector, and fj : R™™™ — IR"*™ is a nonlinear function describing
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the evolution of the augmented state vector. We suppose that as before, we have

observations given by
Y = hk(Xk) + (Sk, k= 0, ..,N —1 (632)

as defined in (2.6). We define hy, : R — R?* by ﬁk(wk) = hy(xy). We assume
that the quantities wo, qx and 8y, £ = 0,.., N—1, are not correlated with each other.
We suppose that q; has a positive definite covariance matrix Sy € IR™*™, and that
we have a prior estimate or “background” estimate wj of wg, and that the covariance
matrix of the errors (wo—w}) is given by the nonsingular matrix Py e RmFm)x(ndm),
As before, we suppose that the covariance matrix of the observational error 6y is
given by the positive definite matrix Rj, € IRP**7*,

For this augmented system, with observations (6.32) and prior estimate w}, the

general least squares problem for estimating the augmented state wy, ..., wy is

Problem LS A

Minimize, with respect to wq, .., Wx, o, --, QN _1

1 L 1N—1 N .
J = 5(“’0 —wo) Py (wo — wg) + 5 > (hi(w;) —y;)" B (hy(w;) —y;)
7=0
1N—1 .
-1
A s, 633
]:

subject to (6.31).

Problem LS A is a generalization of Problem £S which allows for a more general
form of model error. Hence, if the errors {qx} and {8} are Gaussian and unbiased,
and if the system (6.31), (6.32) is linear, then the solution of Problem LSA repre-
sents the “most likely solution” as defined in Chapter 4, Section 4.4. The methods
outlined in Chapter 4 for solving Problem LS could also be applied to this gen-
eralised version. If the Kalman filter is used to solve Problem LSA for a linear
system, then if model error is assumed to have the form given in Example iii) of
Section 6.2.2, we have the method of accounting for serially correlated model error
in Kalman filtering outlined in Chapter 3, Section 3.2. This approach, however,

involves propagating extra covariance matrices, and so is much more expensive than
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the standard Kalman filter. It is possible to allow for serially correlated model error
in the Kalman filter without actually estimating the serially correlated component
of the model error ey, [44], [23]. In this case the state dimension is still only n,
but we are not able to improve an initial estimate of the e; during the assimilation,
as we do using the state augmentation approach. The representer method seems a
promising way of accounting for model error in 4D data assimilation at a reasonable
cost. If applied to Problem L£SA rather than Problem LS , however, this method
can also allow for serially correlated model error.

It we neglect the serially uncorrelated part of the model error, q, then we can

use the augmented initial state wy as the control vector, as we discuss next.

6.3 A generalized correction term technique

In the strong constraint approach to 4D variational assimilation outlined in Chap-
ter 4, in which the initial state is used as the control vector, model error is neglected.
Since model error is not negligible in reality, this method finds only an approxima-
tion to the optimal solution. If we attempt to estimate an augmented state which
includes serially correlated components of model error, however, it should be possi-
ble to obtain a better approximation to the optimal solution. We therefore attempt
to solve Problem LS A neglecting the random errors qi. The accuracy of the solu-
tions we obtain will depend on how well the serially correlated component of model
error we estimate represents the actual model error.

In this case, we estimate the model state x; and a correction term e, representing

Xo
serially correlated model error, using wg = as a control vector. This can

€0

be seen as a generalization of the correction term technique in which the correction
term e; may evolve in time.

Hence, the correction term technique provides an optimal solution to Prob-
lem LS A assuming that model error is represented by a constant bias and does
not have a serially uncorrelated component. Viewing the correction term technique

as a method of solving Problem L£SA again points out the theoretical importance
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of including a background term for eg in the cost function.

Adjoint equations and gradients

We now follow the development of Chapter 4, Section 4.1 to solve Problem L£SA
with qz = 0 using the augmented initial state wq as the augmented control vector.

In this case, the Lagrangian is given by

1 - 1= s
L = §(W0—W8)TP (wo — wg) + 5 h (w;) —y;) B (hy(w;) —y,)
J=0
N1 .
+ D Vi (Wi —£5(w;)), (6.34)
J=0

where the v, € RUT™ are vectors of Lagrange multipliers.

The adjoint equations are given by
= B (Wivip — Hi (W) R (hg(wi) — i), k=N —1,.,1  (6.35)
with
vy =0, (6.36)

where F), € R *(+m) and H,, € RP**™) are the Jacobians of f), and hy with
respect to wyg.

The gradient of £ with respect to the augmented control vector wy is
Vw £ = Pyl(wo — wh) — v, (6.37)

where v is defined by (6.35) with & = 0. Algorithm IS of Chapter 4, Section 4.1
may now be applied to this case.
In terms of the original system and model error equations (6.29),(6.30), the

augmented equations can be written

Ak = B () + GE(We) g — Hi By (he(xi) = yi) (6.38)

e = Bixp + T (wopy  k=0,.,N—1 (6.39)

with
Ay = 0, (6.40)
py = 0, (6.41)



where A, € IR", u, € IR™, and where G}, € IR™*" is the Jacobian of g, with respect
to Xy, and I'y € IR™*™ is the Jacobian of g; with respect to e,. With

Pyt = N (6.42)
0 G

where Py € IR™™" and Qg € IR™*™ are the covariance matrices of (xo — Xg) and

(eo — €})) respectively, equation (6.37) becomes

Vi £ = Pyl (x0 — x5) — Ao, (6.43)

Ve, £ = Q5 (eo — €)) — g, (6.44)

with Ag and g, defined by (6.38) and (6.39) with & = 0.

Reduced work with a non-evolving correction term

We now note that if (6.30) has the trivial form

€it1 = €k, (6.45)
then (6.39) may be rewritten
k-1
Bnok = Y BN i Anom + s (6.46)
m=0
and hence
N-1
ho= Y BLA, (6.47)
7=1
SO
N-1
Ve, £ = Qy'(e0—ep) — > Bl A (6.48)
7=1

Hence, because the model error evolution has a trivial form here, equations (6.45)
and (6.39) can be eliminated, and the gradients of £ with respect to a guess of each
control vector found from a run of the original model and adjoint equations only.

Hence, there is very little extra computational effort in the procedure for calcu-
lating the gradient of £ with respect to ey along with the gradient with respect to
Xg. This is an important point, since the model run and adjoint run represent the

most expensive part of the descent iteration process. More storage is needed for the
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extra control vector ey and its gradient, although the dimension m of these might
be much less than n. The increased dimension of the augmented control vector also
means that the part of the descent algorithm which uses the gradient information
to improve a guess of the control vector will be more expensive. A larger problem,
however, is that the conditioning of the problem using the augmented control vector
approach will be altered, and as a result, more iterations and hence more model
and adjoint runs may be needed, as we found in the experiments of Chapter 5 using

both control vectors.

6.4 Using an evolving correction term

6.4.1 Introduction

In the experiments of Chapter 5, we saw that the correction term technique is
successful in correcting for model error which behaves like a constant forcing term.
Here, we consider the upwind discretization of the linear advection equation in
which model error is present due to dissipation. The model error can be expressed
as truncation error, and since this depends on the true model state, it will change
in time with the model state. In this section, we consider the generalized correction
term technique supposing that the correction term representing model error evolves
with the model equations.
The model has the form
X1 = AXp, (6.49)

and we try to compensate for model error using an evolving correction term e;, € IR",
where
Xk+1 = AXk + €L, (650)
€11 = Aek. (651)
We consider using the initial state xg, the initial correction ey and both together
as control vectors. We note that when the initial correction eq is used as a control

vector, the dimension of the augmented model system and its adjoint is twice that

of the original system and its adjoint. We noted in the previous section that this can
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be avoided if the correction term is constant. We must assess, therefore, whether the
benefits in correcting for model error using the evolving correction term are worth

the extra effort.

6.4.2 Description of the experiments

We first introduce the linear advection model and its discretization using the upwind
scheme. We then specify what observational data is available, and the minimization

algorithm used, and then state the experiments that are carried out.

The Upwind Scheme for the Linear Advection Equation

The linear advection equation on z € [0,1], ¢ € [0,1], with periodic boundary

conditions is given by

v v
with
v(0,1) = v(1,1). (6.53)

We suppose we have initial conditions given by

—05  z<0.25,
v(z,0)=a(z) =9 0.5 0.25<z<0.5, (6.54)
05  z>05.

The upwind scheme for the linear advection equation (6.52) with (6.53) for ¢ > 0 is

At
pitt — gk = —cA—(xf ) j=1,..J, k=0,1,..N, (6.55)
z

with Az = 2, At = & and :ch ~ v(jAz, kAt), or

L
J?

o = (1= )k + ek, (6.56)

J

where y = c%, with z& defined to be z%, and with

:1;? = a(jAz). (6.57)
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The scheme can be written as a matrix system as follows,
Xk+1 = AXk, (658)
in which x; € IR”" is the state at time t, where n = .J, and A € IR™*" is given by

(I—p) 0 p

A= ‘” (1‘_ 2 ‘0 . (6.59)

0 po(1—p)

The upwind scheme is first order accurate and stable provided g < 1.

We run the model (6.58) with ¢ = 1, using N = 80, J = 40, so At = & and
Az = 41—0. Hence, u = % and the model state has dimension n = 40. Since ¢ = 1, the
square wave represented by the initial conditions is advected all the way round the

model domain to its starting position on the time interval [0, 1].

The true model state

With g = 1, the upwind discretization yields the true solution of the pde (6.52) on
the model grid, ie, there is no model error. So, to compute the true model state x%

on the model grid specified above, we used the model (6.58) with ¢ = 1, choosing
At = & Az = &, and with initial conditions (6.54).

807 807

Observations

We suppose that we have error free observations at p of the 40 grid points at every
timestep on the interval [0, %], ie for % = 40 timesteps, and that after this no further
observations are available. Hence, the observations are given by
N
1

yr = CxL, k=0,.., 5 L (6.60)

where the observational matrix ' € IRP*" has a simple form since the observation
positions coincide with the grid points. The positions of the observations used in

each case are shown in the figures.
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The minimization algorithm

The minimization algorithm used is the conjugate gradient descent method, imple-
mented as described in Chapter 5, Section 5.3.

The experiments

We minimize the cost functional

1 _ 13 _
J = §eoTQoleo +3 > (Ox;—y) " RH(COx; —y)), (6.61)
7=0
subject to
Xk+1 — Axk—l—ek, (662)

N
=
2

€11 — Aek, k= 0, cey 5 (663)

where R™! = £ € IR”*”, and Qo' = ¢l € IR™™". As in the experiments of Chapter
5, the matrices R™! give equal weight to all observations, and are not supposed to
represent error covariances. The value of ¢ is sometimes taken to be zero, in which
case we do not constrain the size of the correction term to be small.

1

In the experiments, assimilation is carried out on the interval ¢ € [0, 7] over

which observations are available. The solution at time ¢t = % is then used to initiate
a forecast over the interval [1,1].

Starting from the correct initial conditions, and using y = %, the upwind scheme
(typically of schemes which are first order accurate) exhibits numerical dissipation,
which smears shocks. This model error becomes less severe as the grid is refined
(keeping p = %) The aim of the experiments is to compare the performance of
different control vectors in compensating for model error during the assimilation
interval. We further investigate whether the assimilation produces an improvement

in the subsequent forecast in each case. We investigate the following cases using the

different control vectors.

Case a) Imperfect model, known initial state

The performance of assimilation using the initial state and the evolving correction

term as control vectors is compared for different values of ¢ and p. We also see
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how performing data assimilation using the evolving correction term as a control
vector compares with reducing model error by increasing the spatial and temporal

resolution of the model.

Case b) Imperfect model, unknown initial state

The performance of assimilation using the initial state, the evolving correction term

and both together as control vectors is compared for different values of ¢ and p.

6.5 Results

The figures referred to in the text can be found at the end of this section. In
each case the impact of the assimilation may be judged by comparing the solution
with assimilation (dashed line) to the background solution (dotted line) in which no

assimilation is performed.

6.5.1 Case a): Imperfect model, known initial state
Using the initial state as a control vector

When the full set of 40 observations are used, the initial state recovered is close to
the true initial state, except that peaks are introduced at the corners of the square
wave, as Fig. 6.1 shows. Hence, the impact of the numerical dissipation which smears
down the corners, is less at later times in the assimilation. As noted in Chapter 5,
when the initial state is used as a control vector in the presence of model error,
the solution is closest to the true solution in the middle of the assimilation interval.
Using the initial state as the control vector modifies the impact of model error by
distributing its effects throughout the assimilation interval. At the the end of the
assimilation interval, the solution is closer to the true solution than the model run
started from true initial state, and as a result, the forecast remains slightly closer
to the true model state.

If 20 observations are used at every timestep of the assimilation interval (Fig. 6.2),

the results are similar to when the full set of observations is used, except that in
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this case, as well as having peaks at the corners, the initial state also contains er-
roneous spikes away from the observation points, which are soon smoothed away as
the solution evolves. As discussed in the context of the experiments of Chapter 5,
the minimization is not sensitive to these errors in the initial state. When fewer
than 20 observations are used, these spikes in the recovered initial state are larger,
although the solution at later times is still good. This is illustrated in Fig. 6.3 which
shows the case when p = 5. Even though the impact of this erroneous initial state
is soon eliminated, it is clearly not a desirable solution, and should be treated either
by including a background estimate of the initial state, or by imposing some other

smoothness condition.

Using an evolving correction term as the control vector

The results using a full set of observations with ¢ = 10 are shown in Fig. 6.4.
Convergence is achieved in 25 iterations in this case. With ¢ = 0 the results look very
similar, but the stopping criterion had not been satisfied when the minimiziation was
stopped after 100 iterations. As found in the experiments of Chapter 5, convergence
occurs more quickly using larger values of ¢. Increasing the value of ¢ to 100 produces
visibly less accurate results, however.

Fig. 6.4 shows how the correction term compensates well for the effects of model
error, and produces a solution which is better than the background solution starting
from the true initial state, throughout the assimilation interval. Compared with
the solution produced using the initial state as the control vector, the reduction in
model error in the middle and at the end of the assimilation interval is achieved to
a similar extent, but this time there is no corresponding increase in model error at
the beginning of the assimilation interval.

There are two other advantages in this approach. Firstly, it provides a way
of improving a subsequent forecast by including the evolving correction term in
the forecast. Fig. 6.4 shows a considerable improvement over the original solution
during the forecast period, although this does involve the extra cost of evolving the
correction term as well as the full model state. The second advantage is that the

solution obtained behaves well even when fewer observations are used, and there are
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no erroneous spikes in the data sparse areas. Fig. 6.5 shows the good results obtained
using 20 observations, and ¢ = 10 in 22 iterations. When only 5 observations are
used, the results are still good, as Fig. 6.6 shows.

In this example it is not possible to benefit by reducing the dimension of the
correction term, (by using m < n as in the examples of Chapter 5), because the
wave and hence the impact of the model error travels across the whole of the model
domain on the time interval we consider. In other applications, however, in which
we may wish to treat the impact of numerical model error near a discontinuity which
only travels over part of the model domain during the assimilation interval, it would
be possible to reduce the dimension of the correction term so that it influences this
area only.

The results of these experiments show that, if the initial state is known to a
good enough approximation, using the evolving correction term as a control vector
provides a better way of dealing with this type of model error than using the initial
state, although the amount of work needed at each iteration in is approximately
doubled.

In these experiments, model error is due to lack of resolution, and a more efficient
way of correcting for this type of model error is of course to increase the resolution.

We compare the results using the evolving correction term with the model solution

1

at twice the spatial and temporal resolution, keeping yu fixed, ie using Az = g,

At = llﬁ. The results of these experiments are shown in Fig. 6.7 (using the full
set of observations) and in Fig. 6.8 (using 20 observations). During the assimilation
interval, the quality of the solution using the evolving correction term is very similar
to the solution (without assimilation) at double spatial and temporal resolution. The
forecast using the evolving correction term is slightly better than the forecast using
double resolution.

Carrying out data assimilation using the evolving correction term to correct for
model errors due lack of resolution involves more work than simply increasing the
model resolution. However, these experiments indicate that the evolving correction

term could be efficient in compensating for model error which travels with the model

solution.
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6.5.2 Case b): Imperfect model, unknown initial state
Using the initial state as a control vector

The results using the initial state as the control vector are the same whether the
true initial state is known or not, but the minimization procedure requires a few

more iterations if it is not known.

Using an evolving correction term as the control vector

It the first guess of the unknown initial state is taken to be zero, the evolving
correction term must make up for very large errors. Fig. 6.9 shows the results using
the full set of observations, and Fig. 6.10 shows the results using p = 20. The
solution produced is the right shape, under-estimating the true solution in the first
half of the assimilation interval, and over-estimating it in the second half. In these
experiments it is not appropriate to include the evolving correction term in the

forecast period.

Using both control vectors

Fig. 6.11 shows the solution produced using the full set of observations and ¢ = 1.
However, the stopping criterion had not been reached when the minimization was
terminated after 100 iterations. The solution improves on the solution started from
the true initial state, and on the solution obtained using the initial state only as the
control vector. Using the evolving correction term in the forecast reduces the effect
of model error as before. If the value of ¢ is increased to 10, the initial state control
vector appears to have too much influence, and the solution is less accurate at the
initial time. Using larger values of ¢ also results in a deterioration of the quality of
the forecast, and does not succeed in reducing the number of iterations of descent
algorithm to less than 100. Fig. 6.12 shows that fairly good results are still achieved
using 20 observations. Fig. 6.13 shows that the results using only 5 observations are

poorer, but still an improvement on the background solution.
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initial conditions

20 timestep; t=0.25

40 timesteps; t=0.5

80 timesteps; t=1
1 1
0.5 ]
Or. 1
\e
N . .\' "
—-0.5} =~ = e
-1 -1
o 0.5 1 o 0.5 1

Figure 6.1: Variational assimilation using the initial state as the control vector.

Assimilation on the interval ¢ € [0, %] using 40 observations, followed by a forecast

on the interval ¢ € [1,1]. Solid line: true solution; dotted line: background solution

(no assimilation); dashed line: solution with assimilation; crosses: observations.

initial conditions 20 timestep; t=0.25
1.5

40 timesteps; t=0.5

80 timesteps; t=1
1 1
0.5 ]
Or. 1
\e
N O
—0.5} ~ .,
-1 -1
o 0.5 1 o 0.5 1

Figure 6.2: As Fig. 6.1, but using 20 observations.
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20 timestep;

t=0.25

40 timesteps;

t=0.5

80 timesteps;

t=1

Figure 6.3: As Fig.

initial conditions

6.1, but using 5 observations.

20 timestep;

t=0.25

80 timesteps;

t=1

o 0.5
40 timesteps; t=0.5
1
0.5
Or.
\*,
Nt .
—-0.5} = =
-1
o 0.5

Figure 6.4: Variational assimilation using the evolving correction term as the control
vector, with ¢ = 10. Assimilation on the interval ¢ € [0, 2] using 40 observations,
followed by a forecast on the interval ¢ € [£,1].

line: background solution (no assimilation); dashed line: solution with assimilation;

crosses: observations.

1
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initial conditions 20 timestep;

t=0.25

-1
o 0.5 1 o 0.5 1
40 timesteps; t=0.5 80 timesteps; t=1
1 1
0.5
Or.
\-,
AN .
-0.5 = -t St
-1 -1
o 0.5 1 o 0.5 1
Figure 6.5: As Fig. 6.4, but using 20 observations.
initial conditions 20 timestep; t=0.25
1 1
0.5¢
o L
—-0.5
-1 -1
o 0.5 1 o 0.5 1
40 timesteps; t=0.5 80 timesteps; t=1
1 1
0.5¢
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e
[ .
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o 0.5 1

Figure 6.6: As Fig. 6.4, but using 5 observations.

160



Figure 6.7: As Fig. 6.4, but this time the background solution (no assimilation) is

initial conditions

0.5 1

40 timesteps; t=0.5

performed at twice the resolution.

initial conditions

0.5 1

40 timesteps; t=0.5

20 timestep;

t=0.25

80 timesteps;

t=1

20 timestep;

t=0.25

80 timesteps;

t=1

Figure 6.8: As Fig. 6.7, but using 20 observations.
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initial conditions 20 timestep; t=0.25

o 0.5 1 o 0.5 1

40 timesteps; t=0.5 80 timesteps; t=1

Figure 6.9: Variational assimilation using the evolving correction term as the control
vector, with ¢ = 1. In this case the true initial state is unknown. Assimilation on
the interval ¢ € [0, %] using 40 observations, followed by a forecast on the interval ¢ €
[2,1]. Solid line: true solution; dotted line: background solution (no assimilation);

dashed line: solution with assimilation; crosses: observations.

initial conditions 20 timestep; t=0.25

40 timesteps; t=0.5 80 timesteps; t=1

Figure 6.10: As Fig. 6.9, but using 20 observations.
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initial conditions 20 timestep; t=0.25

40 timesteps; t=0.5 80 timesteps; t=1

Figure 6.11: Variational assimilation using both the initial state and the evolving
correction term as control vectors, with ¢ = 1. In this case the true initial state
is unknown. Assimilation on the interval ¢ € [0, 1] using 40 observations, followed
by a forecast on the interval ¢ € [%, 1]. Solid line: true solution; dotted line: back-

ground solution (no assimilation); dashed line: solution with assimilation; crosses:

observations.

initial conditions 20 timestep; t=0.25

40 timesteps; t=0.5 80 timesteps; t=1

Figure 6.12: As Fig. 6.11, but using 20 observations.
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initial conditions 20 timestep; t=0.25

40 timesteps; t=0.5 80 timesteps; t=1

Figure 6.13: As Fig. 6.11, but using 5 observations.
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6.6 Summary and conclusions

Summary of the theory

We began this chapter with a discussion on why it is important to account for
model error in data assimilation, and on some of the limitations of the approach
taken to model error in the standard Kalman filter. We then considered a general
representation of model error made up of serially correlated and serially uncorrelated
components, and gave examples of different representations of model error which
might be suitable in different situations. We suggested that the technique of state
augmentation could be used in data assimilation to estimate the serially correlated
components of model error along with the model state. This leads to a generalization
of the least squares problem of Chapter 4 to deal with serially correlated model error.

The correction term technique can be interpreted as giving an optimal solution
to this general data assimilation problem in the case that model error is a constant
bias error with no sequentially uncorrelated component. We also suggested a gener-
alization of the correction term technique to allow for model error that changes with
the state evolution, or to allow for more general forms of model error by including

more than one correction term.

Conclusions from experiments with the evolving correction term

In Section 6.4 we used the generalized correction term technique with an “evolving
correction term”. We applied this to the linear advection equation with the upwind
scheme discretization, an example in which the model error is numerical dissipation.
For this example, using a constant correction term does not correct for the effects
of model error at all. Using the initial state as the control vector, however, does
compensate to some extent for the effects of model error. In this case, an initial state
is found that over-exaggerates the corners of the wave, which to some extent com-
pensates for the effects of the dissipation later in the assimilation interval. Although
the solution at the end of the assimilation interval has been slightly improved by
the assimilation, the benefits of this improvement are only very small by the end of

a subsequent forecast interval.
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Using the evolving correction term as a control vector compensates for the effects
of model error better than using the initial state as the control vector. In this case,
the evolving correction term compensates for the effects of model error throughout
the assimilation interval, and also gives a improvement in the subsequent forecast.
Another advantage of using the evolving correction term as the control vector is
that the solutions produced are still smooth when fewer observations are used. The
evolving correction term can also compensate to some extent for a wrong initial
state, giving the best solution in the middle of the assimilation interval. In this
case, however, it is not appropriate to include the evolving correction term in a
subsequent forecast. Using both the initial state and the evolving correction term
as control vectors however compensates very well for unknown initial state and
model error during an assimilation interval, and for the effects of model error in a
subsequent forecast, but the number of iterations required in this case remains high.

In this example, the effects of model error could more efficiently be corrected by
refining the resolution of the model than by performing data assimilation using the
evolving correction term technique. However, these simple experiments have shown
that the evolving correction term technique could be used to compensate for the

effects of model error which are likely to change with the model evolution.
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Chapter 7

Experiments with a shallow water

model

Here we describe experiments using a 1D nonlinear shallow water model which
includes topography and rotation. In these experiments we aim to investigate to
what extent the conclusions of the experiments in Chapters 5 and 6 hold in the
context of more complex dynamics. We compare using the initial state, a constant
correction term and both together as control vectors. In particular, we aim to see
whether the constant correction term can compensate for model error on a significant
timescale, when the model error depends on the model state, and hence changes in
time. Further, since the correction term technique involves changing the model
equations by adding on the correction term, we want to check that the correction
term produced in the assimilation does in fact represent an approximation of model
error. These experiments are carried out in an idealized context with a full set
of observations which are not corrupted by noise. We also begin to look at the
situation in which fewer, noisy observations are available. Finally, we check whether
assimilation using the correction term technique can result in a better forecast than
assimilation using the initial state as the control variable. This is important to
check, because in Wergen’s study [87] using the correction term technique produced
good results during an assimilation interval, but had a detrimental impact on the
ensuing forecast. A briefer description of the results from these experiments has

been published in [41].
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7.1 The shallow water model

The shallow water equations are often used in test problems in meteorology and
oceanography because they describe flow which exhibits several features present in
the flows of atmospheres and oceans. We consider the one-dimensional shallow water

equations including rotation and bottom topography, which are given by

Ju ou  0¢ oH
ov ov
06 96 Oou

where @ and ¢ represent the spatial and temporal independent variables, v = u(x,t)
and v = v(x,1) are the eastward and northward components of velocity, and ¢ =
é(x,1) is the geopotential given by ¢ = gn(x,t) where ¢ is the acceleration due to
gravity and n(xz,t) is the depth of the fluid. The height of the bottom topography
is represented by H = H(x), and f is the Coriolis parameter. Periodic boundary
conditions are assumed. The model equations are nonlinear, and describe flow which
may develop hydraulic jumps.

The discretization we use is a finite difference discretization developed by Parrett
and Cullen [69], and we refer to it as the PC scheme. It was developed to give a
good representation of hydraulic jumps. Artificial diffusion is added to the model
equations to eliminate the spurious oscillations which are generated by second order
finite difference schemes near jumps. Also, the discretization is carried out on the
model in flux form, since a non-conservative version of the same discretization was
found to produce errors in the position and amplitude of the jumps.

Hence, the discretization is carried out on (7.1)-(7.3) written in flux form with

artificial diffusion added,

0(;tu)+9(¢u;l- 9% _ f¢v_g(aa_f)¢+ls’a;(ff>, (7.4)
o(¢v) | Ol¢uv) 02 (¢v)
T TR AL R e (79)
9¢  ou) _ 079
E—I_ oz A dz?’ (76)
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for x € [0,2x L], ¢ € [0,T]. The discretization is carried out with Az =+, At = <,
with discrete variables approximating the continuous variables as follows,
gbf ~ d(JAx, kKAL), uf ~ u(jAx, kAL), vf ~ v(jAx, kAL), (7.7)

for k =0,..N, 7 =0,..,J — 1. The discretization uses centred time and space
differencing, except for the diffusion terms, in which forward time differencing is

used for stability. The discrete model is

B At
mf—l—l = mf ! _E{(ufﬂ + uf)(mf-l—l + mf) - (uf + uf—l)(mf + m§—1)
+((¢F1) — (65}
At
_QE{(¢§+1 + ¢§)(Hj+1 — H;) + (¢§ + ¢§_1)(Hj —H; 1)}
At
+2Atfnh + QAxQI((mfg} —2mit 4 b (7.8)
k-|—1_k—1_At{k key(o ky (ko ok k E )
n;tto=mn; 5AL (vipr + )Ml +my) = (vf + vy )(my +mj_y)
At
—ZAtfmf + ZszK(nf_l__ll — an_l + nfjll) (7.9)
3 At At _ _
¢§+1 = ¢f ! _E(mf-l—l - mf—l) + QAJ/,Q[X( f—|—11 - 2¢f ! + f—ll) (710)

fork=1,..,N—1,5=0,..,J — 1, with periodic boundary conditions, so

ub =l ok =0k ok = oF, k=0,.N—1, (7.11)

where
mfz fuf, (7.12)
nt = gkl (7.13)

for k=0,..,.N—1,5=0,..,J — 1. The first time-step equations are specified using
forward time differences,

At

my = md = {(w )y ) = (] ) (m] 4wy
+((641)" = (654)7))

A
g (68 + S (Hyn — Hy) + (60 + 60 )(H — Hy )
At

+2At fnf + 2A

" K(m?_l_l — Zm? + m?_l) (7.14)
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At

n; = n? _QAJ}_{(U?—I_I + v?)(m?H + m?) - (U? + v?—l)(m? + m?—l)}
At
—2At fm + 2@[((7@?“ —2nf +nj_y) (7.15)
At 0 At

¢; =) ——(mip —mi_ ) +2—5K(¢), — 267 +¢],)  (T.16)

A At
where the initial conditions are to be specified.
Since discrete models which include artificial diffusion do not always converge
to the correct solution of (7.1)-(7.3), the PC scheme was compared in [69] with
a method (Glimm’s method) which has been proved to converge to the physically
correct solution. The PC scheme was found to give good agreement to corresponding
solutions of Glimm’s method for several test cases involving hydraulic jumps.
After coding up this model in Fortran 77, we tested it by comparing results
with those obtained in two of the examples given in [69]. We describe one of these
examples here, since it was modified to provide the example to be used for our
experiments. The Coriolis parameter is set at the value for 30° North, ie f =
7.292 x 107°s7t. We use a spatial discretization of 100 grid points, so J = 100.
In the first experiment of the paper, there is no topography, but a hydraulic jump

evolves for certain Rossby and Froude numbers from smooth initial conditions given

u(x,0) = Ucos(z/L), (7.17)
v(x,0) = 0, (7.18)
$(2,0) = Gy + U{(U/8)cos(2x/L) + (¢ — U?/8)% cos(x/L)},  (7.19)

where the length of the domain is 27 L, ¢,, = ¢gn,, where 7,, is the mean depth of

the fluid, and U is a constant. In our case, we ensured the required Rossby number
1

Ro=U/fL =1 and Froude number I' = U/¢3 = 1 were satisfied by choosing the

constants L, U and ¢,, as

U = 1ms™, (7.20)
b = 1m*s™2 (7.21)
L = 7.292 x 10°m. (7.22)
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Since Ax = 2xL/J, we have Ax = 4.58 x 10*m, or approximately 46km. We chose

1

&, s0 At = 4.58 x 10%s (which is approximately one hour

a timestep to satisfy % =
15 minutes). As in the paper [69], we chose K = 2.5 x 10*m?s™".

Results from this test case were plotted in non-dimensional form, and seen to
give good agreement with the corresponding figures in [69]. Our model was also

tested on the examples given in [69] which include topography, and found to agree

with the results in the paper in these cases, too.

7.2 The data assimilation problem
We define the model state x;, € IR*/ at time 5 to be the vector
X, = (mh, . omb_ nk o nk ek s )T (7.23)

and we define the correction term to be the vector e € IR* given by

(m) (m) (n) (n) _(4) (¢) )T‘ (7.24)

e:(eo 3.9€7-1,€0 5-s€5-15€0 5, €71

We suppose that we have observations over timesteps #o to ty_1. The data assimi-

lation problem we address is to minimize
Lo
J=J 4+ §eQ e (7.25)

with respect to the control vector or vectors being used, subject to the constraint
that the model equations (7.8)-(7.16) hold, where the observational part of the cost
function 7, is to be specified later. The matrix Q7' is given by ¢I where I is the
identity matrix, and different values of ¢ are used in the experiments. We suppose
that there are a large number of observations, and so do not include a background

of the initial state in the cost function.

7.2.1 The adjoint model

We wish to minimize the cost function J subject to each of the model equation-
s (7.8)-(7.10) with (7.14)-(7.16) and the relations (7.12),(7.13), and we introduce a

Lagrange multiplier for each of these model equations.
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As usual, we let £ denote the Lagrangian function associated with J. Hence

L is made up of J plus the sum of all the Lagrange multipliers multiplying their

respective model constraints. We let )\f multiply (7.8), pf multiply (7.9) and ,uf
multiply (7.10) for k =1,..,N —1, 7 =0,...,J — 1. We let \Y multiply (7.14), p!

multiply (7.15) and g multiply (7.16) for j = 0,..,J — 1, and finally we let 1/]’4g
multiply (7.12) and pf multiply (7.13) for £k = 0,.., N =1, 5 =0,..,J — 1. We

assume that the boundary conditions (7.11) are substituted directly into the model

equations.

The adjoint equations are given by

3 At _ _ _ _
M= B O < ) — 0k )

J
+2(phy — b))

A -
— oz (O oI ] = P = (057 + 0T — P}
A
“2ALfp] 4 2 KO =200 ) - )
N
t mET (7.26)

J

Al
Pl = P 2ALFNE 4 22 [ (phEL — 2p8 4kt —

Az?
0T,
—I—W’ (7.27)
J
_ At _
Nf o= Nf—l—l _E()‘f—l _)‘f+1)¢§ !
At
AL U+ N, = Hym) (O 4+ M) (H — )
t _ _
1200 Kt ot )~ 4t
0T,
—I_W’ (7.28)
J
l/k _ At {(mk—l_l_mk—l)()\k_)\k )_(mk—l_l_mk—l)()\k_)\k )}
J Qquﬁk_l J+1 J J J+1 J J J J=1/1>
J
(7.29)
ko At {(mk) k—1v( .k kN (o k-1 B (ph = pb_ )}
P, = ZA:zjqbk_l (m]‘+1 +m; )(pj p]‘+1) (m]‘ +mj; )(pj pj—l)v
J
(7.30)
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for k=N,..,1,7=0,..,J — 1 with

AN =0, pNtt=0, =0, (7.31)

M =0, pY =0, p =0, (7.32)

J

for j=0,....,J —1.

7.2.2 The gradients of £ with respect to the control vectors

The partial derivatives of the Lagrangian £ with respect to the variables making up

the initial state xq are given by

oL At
ot —A0— A — QAxZJx(A}H —2X 4+ A _4), (7.33)
oL At
gr = TP gr g W =20 R, (7.34)
oL At
a5l =17 = 15— g N e = 205 + ). (7.35)

Hence, the gradient of £ with respect to xg is

oc oc  oc oc oL oc

07 0 ) 00" 0 ) 00" 0
Omg  Omg_y Ong Ong_y O¢y 095,

Vi £ = ( )T (7.36)

The partial derivatives of £ with respect to the variables in the control vector e

are
oL 1 m N-1
o7 = ¢ tebm) 3™k, (7.37)
e]' k=1
oL N-1
= Q—le(”) — Pk, 7.38
aegn) J Pt J ( )
oL _ iy
W = @ 165@ - Z ,Ufa (7.39)
e]' k=1
and the gradient of £ with respect to e is
oL oc oL oc oL oL
Vel = ( , o ) ) (7.40)

Oeg " DYy Del? e Del” T Dl
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7.3 Description of the experiments

7.3.1 The true model state

For our experiments, we suppose that the true model state is defined by a run of
the model with certain parameters and initial conditions. We use the values of
foJ, L, Az, At, and K specified in Section 7.1, but this time we use different
initial conditions and a non-zero bottom topography. This low spatial resolution
was chosen so that the dimension of the control vector would not be too large. It
was noticed, however, that when the model was run at twice the spatial resolution,
the results were not significantly different. In Experiments 1 and 2, the model is
run for 100 timesteps (N = 100), and we take the assimilation interval [0,7] to
represent 100 timesteps.

The bottom topography is as given in [69], by

) <a, (7.41)

L L

H(:z;):Hc(l—(x—g)z/az) 0< (:1;—5

where H. is half the initial water depth. We take @ to correspond to a length of ten
grid points. The shape of the bottom topography is shown in Fig. 7.1.

We define the true model initial state to be given by a fluid depth of 1m, and

zero velocities, so we have (taking ¢ = 10ms™?)

m? = 0m’s™>, (7.42)
n? = 0m’s™>, (7.43)
qb? = 10m*s~2, (7.44)
for j = 0,....,J — 1. From this initial state, motion is initiated as fluid flows down

from the ridge in the centre of the domain. A wave travels in each direction across
the domain. This is illustrated in Fig. 7.1 which shows the true solution at the initial

time and also after 50 and after 100 timesteps.

7.3.2 Observations

In Experiments 1 and 3, we suppose that we have a full set of observations, ie,

observations of all the model state variables for all 100 timesteps. These observations
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are the same as the true model state. In Experiment 3, we also carry out experiments
in which we suppose that observations are available only for the first 50 timesteps.
In Experiment 2, we use observations corrupted by unbiased and sequentially
uncorrelated random errors. The errors in the ¢-field are uniformly distributed
between —0.5 and 0.5, and the errors in the m- and n-fields are uniformly distributed
between —0.25 and 0.25. We also suppose fewer observations are available in the
spatial domain. We suppose that observations are available at every second, fourth

or tenth grid point.
k

If we let ﬁlf, ﬁf and qu denote the observations of the model state variables m?,

nf and qbf, the observational part of the cost function is given by

(mf —mg)* + ei(nf —0))’ + ei(d) — 9))%,  (T45)

[\Dl»—\

||M|

where ¢; = 1 if there are observations at the j'* grid point, and is zero otherwise.
The partial derivatives of J, with respect to the state variables to be included in

the adjoint equations are given by

gﬁ{; = ¢i(mh—mh), (7.46)
J

—Z;Zj = cj(nf—ﬁf), (7.47)
J

ajo v

o = el =) (7.18)

for k=0,...N—-1,;=0,....,J — 1.

7.3.3 Model error

We carry out experiments with an imperfect model, in which we introduce the
following two sources of model error. Both these sources of model error are very
severe; this is done for exaggerated results in our experimental setting.

Model error i) Omission of bottom topography

Here we suppose that we have a model which neglects the “true” bottom topography

as defined in (7.41). The model error at the j grid point and k™ timestep is

175



therefore

. At

el = 957 (@ + O (Hia — Hy) + (6] + ¢5_0)(H; — Hia)}, (7.49)
Ak, (7.50)
e~ . (7.51)

Clearly, this model error does depend on the model state, and so is not constant
in time. No motion is initiated when this model is used with the true initial state

defined in (7.42)-(7.44), as the background solution in Fig. 7.5 shows.

Model error ii) Omission of rotation

In this case the Coriolis parameter is taken to be zero, and the model error at the

7% grid point and k' timestep is

A INT (7.52)
= oAt fmt, (7.53)
S A1) (7.54)

Again, the model error depends on the state and hence changes in time. In a model
run started from the true initial state (7.42)-(7.44) with this model error, the n-
field remains zero, and small errors in the m- and ¢-fields develop in time as the

background solution in Fig. 7.9 shows.

7.3.4 The descent algorithm

The descent algorithm used is the INRIA limited-memory quasi-Newton minimiza-
tion package nlqn3.f, which is described in Chapter 2, Section 2.4. The stopping

criterion used is '
Val(u')
VuL(ul)

where VyL(u') is the gradient of £ with respect to the control vector u on the '

< epsg = 1074, (7.55)

iteration, and Vy£(u') is the gradient on the first iteration. If the stopping criterion
is not satisfied in 300 iterations, the minimization is terminated anyway.
The number m of updates used in forming the inverse Hessian is 6; a value

between 5 and 10 is suggested in the program documentation [34] to provide a
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compromise between a better approximation of the inverse Hessian using a high

value of m, and lower CPU time with a low value of m.

7.3.5 The experiments
Experiment 1

The aim of this experiment is to compare the performance of the different control
vectors in the presence of different types of model error, and of error in the initial
state. A full set of observations, uncorrupted by error, is used. The following cases

are investigated.

Case a) Perfect model, unknown initial state

In this case there is no model error, but the true initial state (7.42)-(7.44) is un-

known. The background estimate of the initial state is

m? = 0m’s™>, (7.56)
n? = Om’s™?, (7.57)
qb? = 15m*s72, (7.58)

for j=0,....,J —1.

Case b) Omission of topography, known initial state

In this case the model error is type i) above, but the true initial state is known.

Case c¢) Omission of rotation, known initial state

In this case the model error is type ii) above, but the true initial state is known.

Case d) Omission of topography and rotation, and unknown initial state

Here model error of type i) and type ii) is present, and the background estimate of

the initial state is as given in (7.56)-(7.58).
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Experiment 2

Experiment 2, Case b) is repeated using observations corrupted by observational
noise, and using fewer observations, also corrupted by observational noise. The aim
here is to check to what extent the conclusions of Experiment 1 still hold in this
more realistic case, rather than to explore the impact of increasing or reducing the

number of observations. The following cases are investigated.

Case e) Observations with random error

Experiment 1b is carried out using observations corrupted by noise as described in

Subsection 7.3.2.

Case f) Fewer observations with random error

Experiment 1b is carried out using fewer observations corrupted by noise. We sup-
pose that observations (of all the state variables) are available only at every fourth

timestep.

Experiment 3

In Experiment 1 we compare the performance of the different control vectors in
compensating for model error and error in the initial state over an assimilation
interval. In Experiment 3 our aim is to test whether an improvement at the end of
the assimilation interval leads to an improved forecast.

Here we suppose observations are available over an assimilation period of 50
timesteps. The assimilation is carried out using either initial state or the correction
term as a control vector, and then a “forecast” is carried out over the remaining 50
timesteps. The same is carried out using an assimilation interval of 100 timesteps,

and a forecast interval of 100 timesteps.

Case g) Omission of rotation, known initial state

In this case the model error is type i) above, but the true initial state at the beginning

of the assimilation interval is known.
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Case h) Omission of rotation, known initial state

In this case the model error is type ii) above, but the true initial state at the

beginning of the assimilation interval is known.

7.4 Results from the experiments

7.4.1 Experiment 1: Comparing different control vectors

The figures referred to here can be found at the end of this section.

Case a) Perfect model, unknown initial sate

Fig. 7.1 shows the true solution, and the background solution started with the wrong
initial state. Fig. 7.3 illustrates that the errors in the background solution are an
over-estimated ¢-field throughout, and also that the waves travel too fast across the
domain. Fig. 7.2 shows the solutions generated using each of the control vectors,
and Fig. 7.4 shows the errors in each of these solutions. The improvement given by
the assimilation in each case can be judged by comparing the solutions of Fig. 7.2
with the true solution and the background solution of Fig. 7.1, and by comparing
the errors after assimilation (Fig. 7.4) with the errors in the background solution
(Fig. 7.3).

Using the initial state as the control vector, it is possible to perfectly recon-
struct the true solution with a perfect model and a full set of perfect observations
(Fig. 7.2, Fig. 7.4). These results are as we expected, and are as we also found in
the experiments of Chapters 5 and 6. This was achieved using 37 iterations of the
minimization algorithm.

Using the correction term as the control vector also gives a significant reduction
in the errors (Fig. 7.4). The errors in the m- and n-fields have successfully been
treated by the correction term, and the waves now travel at the correct speed.
Fig. 7.17 shows the actual correction term found by the assimilation. As seen in
the experiments of Chapter 5, the solution is closest to the true solution in the

middle of the assimilation interval, and the correction is too large at the end of the
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assimilation interval. The results shown are for ¢ = 1. Using ¢ = 10, the correction
term found is smaller, and so in this case the solution is closest to the true solution
at the end rather than in the middle of the assimilation interval. For larger values of
g fewer iterations are needed, for ¢ = 1, 63 iterations are needed and using ¢ = 10,
39 iterations are needed, which is similar to the number of iterations required using
the initial state as the control vector. When ¢ is increased further, however, the
results are much poorer. The points we make here on the impact of different values
of g are consistent with the conclusions we made from the experiments of Chapter 5.

When both control vectors are used together, the results achieved depend very
strongly on the value of ¢. Using ¢ = 0, the results are very similar to those obtained
using only the correction term as the control vector, and as ¢ is increased, the results
become more like those obtained using the initial state only. The results shown in
Fig. 7.2 and Fig. 7.4 are for ¢ = 100. As found in the experiments of Chapters 5
and 6, using both control vectors together requires many more iterations, in this

case (for all values of ¢), around 270 iterations.

Case b) Omitted topography, known initial state

In this case, the imperfect model started from the correct initial state generates no
motion at all (Fig. 7.5). Hence, the background errors (Fig. 7.7) are large in all
model fields, and propagate from the centre of the model domain right to its edges
on the timescale of the assimilation. Fig. 7.8 shows that assimilation using each of
the control vectors makes a very significant reduction in this background error.

When the initial state is used as the control vector, the correct initial height
profile is produced, and this compensates for the omission of the topography in the
model. This height profile in the ensuing motion is also good, but the depth is
wrong. However, the errors in the m- and n-fields are now small, and so using the
initial state as the control vector compensates very well for the effects of model error
in this respect. Here 27 iterations were required for these results.

Using the correction term as a control vector successtully compensates for the
model error. As Fig. 7.8 shows, the errors in the m- and n-fields are almost e-

liminated, and the error in the ¢-field is reduced significantly. As can be seen in
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equation (7.49), the actual model error at each timestep depends on the m-field.
Fig. 7.18 shows that the correction term derived in the assimilation is a correction
to this field only, and so it is reasonable to assume that the correction term found
in the assimilation does indeed represent the temporal average of model error. The
errors still existing in the ¢-field at the end of the assimliation interval are presum-
ably due to the fact that this average does not perfectly represent the actual model
error. However, it is significant that the correction term representing a temporal
average of model error compensates for the real model error on the timescale of the
assimilation, since on this timescale the effects of the model error propagate half
way across the model domain in each direction.

The results shown are again with ¢ = 1, and this requires 55 iterations. Increasing
g to 10 reduces this number to 36 iterations, but the results are slightly less accurate
in this case.

Using both control vectors together and ¢ = 0 produces very good results.
Fig. 7.18 shows that in this case the correction term found in the assimilation is
very much like that found when the correction term is the only control vector, but
slightly smaller. Further, the initial state found in the assimilation is slightly dif-
ferent to the true initial state, and this has the effect of further reducing the error
in the ¢-field at the end of the assimilation interval. If the value of ¢ is increased,
the solution becomes more like that where only the initial state is used, and so not
as good. Using only the correction term as the control vector works very well, but
using the initial state as well it is possible to further compensate for the effects of
model error. As before, the number of iterations using both control vectors is high;

in this case 273 iterations are needed.

Case c¢) Omitted rotation, known initial state

The background solution of Fig. 7.9 illustrates that with the Coriolis parameter set
at zero, no motion is initiated in the n-field. Fig. 7.11 shows the resulting errors in
the n-field, and also shows very small errors in the m- and ¢-fields by the end of the
assimilation interval.

When the initial state is used as the control vector, the solution is closest to the
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true solution in the middle of the time interval. A “wrong” initial state is found in
the assimilation procedure, but the ensuing solution is closer to the true solution in
the middle and at the end of the assimilation interval. This is typical of the way
that assimilation using the initial state as the control vector compensates for model
error, as we saw in the experiments of Chapters 5 and 6. In this case, 29 iterations
were performed.

Using the correction term as the control vector reduces the errors more than
using the initial state as the control vector in the middle and at the end of the
assimilation, as Fig. 7.12 shows. The figures show the results using ¢ = 1, and in
this case 30 iterations are needed. Again, for larger values of ¢ the results are less
accurate. Fig. 7.19 shows that the correction term found in the assimilation corrects
the n-field. This is appropriate since the background error (Fig. 7.10) is restricted
to this field. Therefore it seems reasonable to assume that the correction term found
in the assimilation does represent a time average of the model error.

When both control vectors are used together with ¢ = 0.2, the errors in the
middle and at the end of the assimilation interval are slightly smaller than using
either of the control vectors on their own. In this case, using ¢ = 0 produces a
correction term which seems to include a spurious correction to the m-field, although
this does not affect the results. Using ¢ = 0.2 produces a correction term which is
very similar to that produced using only the correction term as a control vector, as
Fig. 7.19 shows. Again, the number of iterations required using both control vectors

is high, 250 iterations in this case.

Case d) Omitted topography and rotation, unknown initial state

This is a combination of Cases a), b) and ¢). The model contains no rotation or
topography and is initiated from the wrong initial value of ¢, and in the background
solution, no motion is generated. Fig. 7.15 shows the large errors in the background
solution, and Fig. 7.16 shows that each of the control vectors significantly reduces
this error. However, Fig. 7.14 shows that the solutions produced using the different
control vectors are visibly quite different.

When the initial state is used as the control vector, the wrong initial value
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of ¢ is corrected, except at the ridge. The omitted topography and rotation are
compensated for as when the initial state is used as the control vector in Cases b)
and c¢). After the assimilation, quite large errors remain in the ¢-field.

When the correction term is used as the control vector, the ¢- and n-fields are
quite close to the true solution at the end of the assimilation interval, but the m-field
has larger errors. The solution no longer underestimates the ¢-field at the end of the
assimilation interval as was the case using the correction term as the control vector
in Case a). In this case using the correction term happens to give the best fit to the
true solution at the end rather than in the middle of the assimilation interval. This
could be explained by the fact that the correction to the ¢-field, shown in Fig. 7.20,
is much smaller than it is in Case a) (Fig. 7.17). The correction to the m-field in
(Fig. 7.20) is similar to that obtained in Case b) (Fig. 7.18), but is slightly larger.
This might explain why there are larger errors in the m-field at the end time in this
case than in Case b). The n-field produced is very similar to that produced in Case
¢) using the correction term as the control vector.

The results using both control vectors together in this case are very good as can
be seen by comparing Fig. 7.14 with the true solution of Fig. 7.13. Fig. 7.16 shows
that indeed the errors using both control vectors are much smaller than those using
either one of the control vectors, and that these errors are almost zero except for
those in the n-field. The results shown in the figures were obtained using ¢ = 1, and

the iteration was terminated after 300 iterations, before the convergence criterion

had been satisfied.

Experiments using other control vectors

We mention briefly an attempt at using a couple of the other control vectors men-
tioned in Chapter 6, Section 6.2 in Experiment 1. We used the spectral form of
model error, and a piecewise constant form using three subintervals. Using the
spectral form of model error for Cases b) and c), the results were similar to the
results obtained using the correction term which we described here. This time, how-
ever, more iterations of the descent algorithm were needed. We do not show these

results here.
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Using the piecewise continuous form, problems arose in the iteration process
which were probably due to large differences between the three correction terms. It
should be possible to rectify this situation, however, and this would be an interesting

topic for further work.

7.4.2 Experiment 2: Fewer observations and observational

error

The aim of Experiment 2 is to check whether the conclusions of Experiment 1 still
hold in the presence of observational error and when there are fewer observations

available. We therefore repeat Experiment 1 Case b) to test these things.

Case e) Observational error

Fig. 7.21 shows the error-corrupted observations used in the assimilation in this
case. This noise in the observational data in fact has very little impact on the
results, as Fig. 7.22 shows. This indicates that the assimilation effectively filters out
the observational noise.

When the initial state is used as the control vector, the initial state found is
not completely smooth, but at later times the solution is smooth. The same is true
when both the initial state and control vector used as control vectors.

Using the correction term as the control vector in with ¢ = 1, the observational

error has no visible impact on the results.

Case f) Fewer observations

In this case, observations available every fourth spatial grid point. When the initial
state is used as the control vector, the initial state produced by the assimilation is
very spiky, although at later times the solution matches the true solution well. This
is just as seen in the experiments of Chapters 5 and 6 when fewer observations are
available. This highlights again the need to impose extra conditions for smoothness
on the initial state found in the assimilation. Using fewer observations also slows the

rate of convergence of the iteration process. When the initial state or the correction
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term is used as a control vector, approximately three times as many iterations were
required. Surprisingly, though, the number of iterations required when both control
vectors are used together is about the same as when the whole set of observations
are used.

When the correction term is used as the control vector with ¢ = 0 (Fig. 7.23),
the solution produced by the assimilation is very spiky throughout the assimilation
interval, as was found in the experiments of Chapter 5. Also as in Chapter 5,
increasing the value of ¢ smoothes the solution, Fig. 7.24 shows the results obtained
using ¢ = 1. However, in this case the results using ¢ = 10 although smooth, were
much less accurate. It may be, then, that an alternative method for smoothing the
solution is needed when using the correction term as a control vector with fewer
observations available.

When both control vectors are used together, the solution obtained is signifi-
cantly smoother than when either the initial state or the correction term is used
alone. Using ¢ = 0 produced a smoother initial state than using ¢ = 1, but using
g = 1 produced a smoother solution at later times than using ¢ = 0 (Fig. 7.23 and
Fig. 7.24).

7.4.3 Experiment 3: The impact of assimilation on a fore-

cast

Experiments 3g and 3h were first carried out performing an assimilation over just
50 timesteps (rather than 100 timesteps as in Experiments 1 and 2), or on the time

interval ¢ € [0,%],

using the results to initiate a forecast for the interval [%,T].
The experiments were then repeated using assimilation and forecast intervals of 100
timesteps each. In this case the assimilation was carried out on the interval [0, 7],

and the results used to initiate a forecast for the interval [T',27].

Case g) Omitted topography

Fig. 7.25 shows the true solution over the forecast interval of ¢ € [%, T]. Tt also shows

the forecast generated from the true state at time % using the imperfect model. This
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demonstrates the effects of the model error over this time interval. Starting a forecast
with an imperfect model at time % from the true state at that time is equivalent
to suddenly removing the topography in the middle of a model run. In addition to
the existing motion, there are now also waves travelling towards the centre as the
fluid fills the area where ridge used to be. Because of this, the forecast from the
true state at time % using the imperfect model very quickly diverges from the true
solution.

We now describe the results of starting a forecast from the assimilation analysis
at time %, comparing the results using the initial state and using the correction
term as the control vector. These results are shown in Fig. 7.26.

When the initial state is used as the control vector over the assimilation interval
[0, %], the ensuing forecast is very similar to the solution obtained by continuing the
assimilation over the interval [%, T, as comparing Fig. 7.26 with Fig. 7.6 shows. The
forecast is a fairly good approximation of the true solution, except at the position of
the ridge. In this case the same model is used in the assimilation and in the forecast.

When the correction term is used as the control vector over the assimilation
interval [0, %], the solution produced at time % is in good agreement with the true
solution at this time. If this correction term is not included in the ensuing forecast,
the impact is similar to that of starting a forecast with an imperfect model from the
true solution, which we described above. In the centre of the domain, the forecast
very quickly diverges from the true solution. Since the background solution is nearer
to the true solution in this region, the assimilation has had a negative impact on
the forecast here.

However, if the correction term is included in the forecast, the model used for
the forecast is the same as that used in the assimilation. In this case the forecast is
much improved and the above problem does not occur. The shape of the solution
matches that of the true solution quite well, except for the m-field at the centre of
the domain. The forecast over the interval [%, T is on the whole better than the
forecast obtained from the assimilation using the initial state as the control vector.

We now describe the results of performing the assimilation and the forecast over

longer time intervals. Fig. 7.27 shows the true solution on the time interval [T, 27].
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Over this time interval, the waves reach the boundaries of the domain and start to
travel back towards the centre. Fig. 7.27 also shows the forecast obtained with the
imperfect model started from the true model state at time T'. Since this forecast
is over a period twice as long as before, the forecast diverges even further from the
true model state in this case.

Fig. 7.28 shows the forecasts ensuing from assimilation intervals using the differ-
ent control vectors. If the initial state is used as the control vector for assimilation
over the interval [0, 7], the ensuing forecast still gives a significant improvement over
the background solution for the same period in the m- and n-fields, but the forecast
of the ¢-field hardly improves on the background solution.

When the correction term is used as the control vector in the assimilation over
the interval [0, 7], the solution produced is a very good approximation of the true
solution, and so the forecast not including the correction term quickly diverges from
the true solution. However, when the correction term is included in the forecast, the
forecast is quite close to the true solution. It seems unlikely that the correction term
found over the assimilation interval [0, 7] really compensates for model error in the
forecast interval [T, 271, since the motion in each interval is in opposite directions.
It is more likely that the forecast is good because it is started from an estimate close
to the true state, and it does not diverge quickly from the true solution because

there is no difference in the model used for the forecast and in the assimilation.

Case h) Omitted rotation

Fig. 7.29 shows the true solution on the time interval [%, T, and also the forecast
with the imperfect model initiated from the true solution at time %, which shows
the effects of model error over the forecast interval.

When a forecast with the imperfect model is performed starting from the true
solution at time %, it is as if the Coriolis parameter f is suddenly set at zero in the
middle of a model run. However, the impact of this is very gradual and only affects
the n-field. Hence, the forecast using the imperfect model started from a true state

in this case diverges only very slowly from the true solution.

Fig. 7.30 shows the forecasts ensuing from assimilation using each of the different
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control vectors. If the initial state is used as the control vector in the assimilation
interval, the ensuing forecast shows an improvement over the background solution
in the middle of the forecast, but not at the end; all the benefit of the assimilation
is lost by the end of the forecast.

However, when the correction term is used as the control vector during the
assimilation interval, the solution at time % is closer to the true state, and hence
the forecast is better than when the initial state is used as the control vector in the
assimilation. This is true whether the correction term is included in the forecast or
not, and it is hard to judge whether or not including it is beneficial in this case.

Experiment 3h was repeated using the longer assimilation and forecast intervals.
The results for this case are shown in Fig. 7.31 and Fig. 7.32. Here, much the same
conclusions hold as for the shorter time interval, except that in this case a better

forecast is achieved by using the correction term in the assimilation but not in the

forecast.
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Figure 7.1: Experiment la: perfect model, wrong initial state. The true solution
and background solution (no assimilation) at the beginning, middle and end of the

assimilation interval. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.2: Experiment la: perfect model, wrong initial state. The solutions after
assimilation using the initial state (IS), the correction term (CT) and both together
as control vectors. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.3: Experiment la: perfect model, wrong initial state. The errors in the
background solution (errors before assimilation). Dotted line: errors in the ¢-field;

dashed line: errors in the n-field; solid line: errors in the m-field
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Figure 7.4: Experiment la: perfect model, wrong initial state. The errors in the
solutions after assimilation using the initial state (IS), correction term (CT) and
both together as control vectors. Dotted line: errors in the ¢-field; dashed line:

errors in the n-field; solid line: errors in the m-field

190



20 20 20
10 10 -
N
0 0 e~
1% 0.5 1 1% 0.5
background solution )
20 20 20
10 10 10
0 0 0
-10 -10 -10
0 0.5 1 0.5 1 0 0.5

true solution

Figure 7.5: Experiment 1b: model error is due to omitted topography. The true
solution and background solution (no assimilation) at the beginning, middle and
end of the assimilation interval. Dotted line: ¢-field; dashed line: n-field; solid line:
m-field.
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Figure 7.6: Experiment 1b. The solutions after assimilation using the initial state

IS as control vector

(IS), the correction term (CT) and both together as control vectors.
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Figure 7.7: Experiment 1b: model error is due to omitted topography. The errors
in the background solution (errors before assimilation). Dotted line: errors in the

¢-field; dashed line: errors in the n-field; solid line: errors in the m-field.
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Figure 7.8: Experiment 1b: model error is due to omitted topography. The errors
in the solutions after assimilation using the initial state (IS), correction term (CT)

and both together as control vectors.
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Figure 7.9: Experiment 1c: model error is due to omitted rotation. The true solution
and background solution (no assimilation) at the beginning, middle and end of the

assimilation interval. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.10: Experiment lc: model error is due to omitted rotation. The solutions
after assimilation using the initial state (IS), the correction term (CT) and both

together as control vectors.
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Figure 7.11: Experiment lc: model error is due to omitted rotation. The errors
in the background solution (errors before assimilation). Dotted line: errors in the

¢-field; dashed line: errors in the n-field; solid line: errors in the m-field.
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Figure 7.12: Experiment lc: model error is due to omitted rotation. The errors in
the solutions after assimilation using the initial state (IS), correction term (CT) and

both together as control vectors.
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Figure 7.13: Experiment 1d: unknown initial state, and model error is due to omitted
topography and rotation. The true solution and background solution (no assimi-

lation) at the beginning, middle and end of the assimilation interval. Dotted line:

true solution

¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.14: Experiment 1d. The solutions after assimilation using the initial state
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Figure 7.15: Experiment 1d: unknown initial state, and model error is due to omitted
topography and rotation. The errors in the background solution (errors before
assimilation). Dotted line: errors in the ¢-field; dashed line: errors in the n-field;

solid line: errors in the m-field.

IS as control vector

QS 7 P
NI S (R Y- W DN SRR A
-10 -10 ~10
O T as Bitrol vecror! 0 0.5 1 0 0.5 1
R W i W T
-10 -10 ~10
O both control vecrors ! 0 0.5 1 0 0.5 1
0 = 0 = 0 — — —
-10 -10 ~10
0 0.5 1 0 0.5 1 0 0.5 1

Figure 7.16: Experiment 1d: unknown initial state, and model error is due to omitted
topography and rotation. The errors in the solutions after assimilation using the

initial state (IS), correction term (CT) and both together as control vectors.
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Figure 7.17: Experiment la: the correction terms found in the assimilation using
the correction term and both the correction term and initial state as control vectors.
Dotted line: correction to the ¢-field; dashed line: correction to the n-field; solid

line: correction to the m-field.
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Figure 7.18: Experiment 1b: the correction terms found in the assimilation using
the correction term and both the correction term and initial state as control vectors.

Dotted line: correction to the ¢-field; dashed line: correction to the n-field; solid

line: correction to the m-field.
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Figure 7.19: Experiment lc: the correction terms found in the assimilation using
the correction term and both the correction term and initial state as control vectors.
Dotted line: correction to the ¢-field; dashed line: correction to the n-field; solid

line: correction to the m-field.
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Figure 7.20: Experiment 1d: the correction terms found in the assimilation using
the correction term and both the correction term and initial state as control vectors.
Dotted line: correction to the ¢-field; dashed line: correction to the n-field; solid

line: correction to the m-field.
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Figure 7.21: Experiment 2e: observations corrupted by random error. The observa-
tional data used in the experiments. Dotted line: ¢-field; dashed line: n-field; solid
line: m-field.
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Figure 7.22: Experiment 2e: solutions after assimilation using observations contain-

ing error. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.23: Experiment 2f: solutions after assimilation when fewer observations are

available, with ¢ = 0. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.24: Experiment 2f: solutions after assimilation when fewer observations are

available, with ¢ = 1. Dotted line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.25: Experiment 3g: model error is due to omitted topography; forecast
over the interval ¢ € [%, T]. The figure shows the true solution, a forecast with the

imperfect model started from the true state at time
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Figure 7.26: Experiment 3g: the effect of assimilation on the interval ¢ € [0, %]
using the initial state and using the correction term on a forecast over the interval
t e [%, T]. In the third row, the correction term is included in the forecast, but in

the second row it is not.
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Figure 7.27: FExperiment 3g: model error is due to omitted topography; forecast
over the interval ¢ € [T, 27T]. The figure shows the true solution, a forecast with the

imperfect model started from the true state at time 7', and the background solution.
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Figure 7.28: Experiment 3g: the effect of assimilation on the interval ¢t € [0, 7]
using the initial state and using the correction term on a forecast over the interval
t € [T,2T]. In the third row, the correction term is included in the forecast, but in

the second row it is not.
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Figure 7.29: Experiment 3h: model error is due to omitted rotation; forecast over the
interval ¢t € [%, T]. The figure shows the true solution, a forecast with the imperfect
model started from the true state at time %, and the background solution. Dotted

line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.30: Experiment 3h: the effect of assimilation on the interval ¢t € [0, %]
using the initial state and using the correction term on a forecast over the interval
t e [%, T]. In the third row, the correction term is included in the forecast, but in

the second row it is not.
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Figure 7.31: Experiment 3h: model error is due to omitted rotation; forecast over the
interval t € [T,27]. The figure shows the true solution, a forecast with the imperfect
model started from the true state at time 7', and the background solution. Dotted

line: ¢-field; dashed line: n-field; solid line: m-field.
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Figure 7.32: Experiment 3h: the effect of assimilation on the interval ¢t € [0, 7]
using the initial state and using the correction term on a forecast over the interval
t € [T,2T]. In the third row, the correction term is included in the forecast, but in

the second row it is not.
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7.5 Summary and Conclusions

Experiment 1: Comparing different control vectors

In Experiment 1 we compared the effectiveness of the initial state, the (constant)
correction term and both together as control vectors in compenstating for errors
in the initial state, for two types of model error, and for a combination of these
errors during an assimilation interval. This extends the experiments of Chapter 5
since the model dynamics are more complex, and because the model error depends
on the model state and so is not constant in time. Generally, the conclusions of
the experiments of Chapter 5 are found to hold here, too. We found that the
initial state can compensate to some extent for model error, generally producing a
solution which is closest to the true solution in the middle of the assimilation interval.
Similarly, using the constant correction term as the control vector compensates to
some extent for the effects of errors in the initial state, and a suitable choice of ¢
can give a solution close to the true solution at the end rather than in the middle
of the assimilation interval.

Using the constant correction term as the control vector compensates well for
both types of model error investigated, and reduces the errors in the background
solution (with no assimilation) more than using the initial state as a control vector.
Since the model error in each case depends on the model state, and since the motion
during the assimilation interval propagates almost half way across the model domain
in each direction, it is significant that the constant correction term can compensate
for model error on this time scale. In each case the correction term found in the
assimilation seems to represent a temporal average of the actual model error. When
using a correction term in the assimilation, we are altering the model equations
over the assimilation interval. It is therefore important to check that what the
correction term represents makes sense, as Wergen argues [87]. Here, it seems that
the correction term does in fact approximate model error.

Using both control vectors together requires many more iterations but is partic-
ularly successful in Case d) in which there are errors in initial state as well as two

sources of model error. These results show that using both control vectors together
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could be very effective, but in our experiments the number of iterations required is
unacceptably high. To alleviate this situation, ways of effectively preconditioning
the problem should be investigated.

The results seem to depend quite strongly on the choice of ¢, or on how strongly
(if at all) the correction term is constrained to be small. As in Chapter 5, however,
it was found that if the correction term is being used to compensate for errors in
the initial state, then a larger value of ¢ should be used. If on the other hand
the correction term is compensating for model error, using a small value of ¢ gives
more accurate results, but larger values of ¢ requires fewer iterations of the descent
algorithm. In our examples, using ¢ = 1 gives a good compromise between accurate
solutions and a reasonable number of iterations. These conclusions on the choice of

g are similar to those made in the experiments of Chapters 5 and 6.

Experiment 2: Fewer observations and observational errors

The results from Experiment 2 show that whereas random observational errors do
not have a big impact on the assimilation, using fewer observations does. The
results were much the same as the results from the experiments of Chapter 5 and of
Chapter 6 using the initial state or the constant correction term as a control vector
when a quarter of the observations are available. When the initial state is used
as the control vector, the initial state produced in the assimilation is not smooth,
although this has little impact on the solution at later times. This highlights the
need to impose extra conditions for smoothness of the solution when a full set of
observations is not available, for example by constraining the initial state to be close
to a background value. A background term was not included in our experiments
because our primary aim was to compare the control vectors in the idealised case of
a full set of observations.

When the correction term is used as the control vector, increasing the value of
q (and hence constraining the correction term to be small) helps to smooth the
solution. However, since increasing the value of ¢ leads to less accurate results, an

alternative way of ensuring smoothness might prove more successful.
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Experiment 3: The impact of assimilation on the forecast

In Experiment 3 we test whether the improvement in the solution at the end of an
assimilation interval, produced by assimilation using each of control vectors, results
in an improvement in a subsequent forecast. This is carried out for both examples
of model error. In the case that model error is due to the omission of topography,
using the initial state as a control vector gives a significant improvement over the
background solution not only in the assimilation interval, but also in the forecast.

Using the constant correction term as a control vector gives a good improvement
during the assimilation interval, but if the correction term is not included in the
forecast, the forecast soon deteriorates, and becomes worse than if no assimilation
had been performed. These results can be explained by examining the impact of
starting a forecast with an imperfect model from the true solution at the end of the
assimilation interval. It is the impact of using a different model for the assimilation
and forecast that causes the forecast to deteriorate quickly. We note that this
situation could be alleviated by gradually phasing out the correction term during
the assimilation interval using the predetermined scalars of equation (4.32), as was
done in the original paper on the correction term technique [26]. When we include
the correction term in the forecast, however, the forecast is good; better than the
forecast produced using the initial state as the control vector in the assimliation.

When the model error is due to omission of rotation, slightly different conclu-
sions are reached. In this case, using the initial state as the control vector in the
assimilation results in a slightly improved forecast, but the benefits of the assimi-
lation are lost by the end of the forecast. When the correction term is used in the
assimilation, the impact of including the correction term in the forecast dependes
on the length of the assimilation and forecast intervals. For the shorter intervals,
there is a slight improvement to the forecast whether or not the correction term is
included in the forecast. For the longer time intervals, however, better results are
obtained by not including the correction term in the forecast.

From these results, we see that some attention is needed on the issue of whether
or not to use the correction term in the forecast. The results from the experiments

with omitted topography indicate the danger of suddenly cutting out the correction
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term. The results from the experiments with omitted rotation, on the other hand,
indicate the danger of leaving the correction term in the forecast for too long. It
seems that on the whole, it would be best to gradually phase out the correction
term during the forecast interval. It would be worth carrying out further work to
investigate this.

These results show, however, that using a correction term in the assimilation
to compensate for model error, it is possible to produce a better forecast than can
be produced using the initial state in the assimilation. In these experiments the
model error depends on the model state, and the assimilation and forecast intervals

represent a significantly long timescale.
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Chapter 8

Conclusions

In this thesis, we have considered problems in data assimilation using a framework
of control theory. In Chapter 3, we showed how a successive correction method
of data assimilation could be regarded as an observer if observations are available
frequently in time. Observer theory can be used to design the weighting matrices so
that the data assimilation scheme has desirable dynamical properties. In particular,
we gave conditions under which the analysis converges in time to the true solution,
for the linear time-invariant case. In our experiments using a simple model, an
observer designed for good temporal convergence gave much faster convergence than
the Cressman successive correction scheme in areas distant from the observation
positions. These results serve to illustrate the potential benefits of suitable observer
design.

The majority of the work in the thesis is geared towards the 4D variational
approach to data assimilation. In particular, we address the problem of how to
account for model error without incurring unreasonable extra expense. One method
for doing this is the correction term technique [26], in which a constant correction
term approximating model error is added to the model equations. The correction
term is then used instead of, or as well as, the model initial state as a control vector
in variational assimilation.

In the context of a linear, time varying system, we looked for conditions for
uniqueness of solutions of the 4D variational assimilation problem using the initial

state, the correction term or both together as control vectors. When the initial state

214



is used as the control vector, complete N-step observability at time ¢4 is a necessary
and sufficient condition for uniqueness in the case where the cost function consists
of observations from the time interval [tg, ty_1]. We showed however, that complete
N-step observability at time ?g is neither a necessary nor a sufficient condition for
uniqueness when the constant correction term is used as a control vector. This
means that in some cases the set of observations may contain enough information
to specify uniquely the initial state but not the correction term, and vice versa. We
showed that if both the initial state and the correction term are used as control
vectors, a necessary but not sufficient condition for uniqueness is that conditions for
a unique solution using each of the control vectors individually hold. In the time
invariant case, we showed that a necessary and sufficient condition for uniqueness
using both control vectors is that a full set of observations is available. In each case,
adding a background estimate of the control vector to the cost function guarantees
uniqueness. These results could be applied more widely in control theory in cases
where we wish to determine a constant input from the outputs.

In Chapter 6, we addressed the question of how to allow for a more general
form of model error in 4D data assimilation, and in 4D variational assimilation
in particular. We considered a general, stochastic representation of model error
consisting of serially correlated and serially uncorrelated components. The different
representations of model error that have been suggested for use in data assimilation
can be expressed using this general form. We considered the technique of state
augmentation for estimating the serially correlated component of model error along
with the model state in the context of data assimilation, and formulated a general
least squares problem for data assimilation allowing for serially correlated model
error. This formalism allows us to interpret the correction term technique in a
stochastic sense as a method for estimating a constant model bias.

We suggested a “generalized correction term technique” in which the serially
uncorrelated part of the model error is neglected, and the augmented initial state
is used as an augmented control vector. The generalized correction term technique
can therefore allow for various different forms of serially correlated model error. In

particular, it can allow for model error which evolves as the model state does. The
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theory we present also allows for the dimension m of the correction term to be less
than the dimension n of the model state, which could reduce the expense of the
assimilation if the effects of model error are known to be localized to a certain area.

As well as considering theoretical aspects of accounting for model error in varia-
tional assimilation, we carried out experiments using the correction term technique
and generalized correction term technique with simple models exhibiting different
types of model error.

In Chapter 5 we compared the initial state, the constant correction term and
both together as control vectors in a heat equation model in which model error was
due to the omission of a constant source term. Using the correction term as a control
vector compensates very well for this model error, and using the correction term in
an ensuing forecast gives very good results. We also noted that using the initial
state as a control vector partially compensates for the effects of model error, and
that using the correction term as the control vector, it is possible to compensate to
some extent for errors in the initial state. Using both control vectors together is
very effective in this example if we have model error and an unknown initial state.
However, this requires about four times as many iterations of the descent algorithm
as when only one of the control vectors is used.

In these experiments we also investigated the impact of using a background
estimate of zero for the correction term in the cost function, with different values
of the weighting ¢. We found that if the correction term is expected to correct for
constant model error, best results are obtained with a small value of ¢. However, if
the correction term is being used to compensate for errors resulting from a wrong
initial state, it is important to use a large value of ¢. We also tried using a correction
term with dimension less than that of the model state. Concentrating the correction
term around the source point produced good results in far fewer iterations than
before.

In Chapter 6, the simple model we used was the linear advection equation with
the upwind scheme discretisation. The model error in this example is due to severe
dissipation. Using the constant correction term as a control vector has no impact

on the model error, which travels across the domain. We tried instead using the
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generalized correction term technique allowing the correction term to evolve as the
model state does. This successfully reduces the effects of model error during the
assimilation interval and also in a subsequent forecast. As found in the experiments
of Chapter 5, using the initial state can also compensate to some extent for the
effects of model error during the assimilation interval, and the evolving correction
term can compensate to some extent for the effects of errors in the initial state
during the assimilation interval. Also as in Chapter 5, using both control vectors
together compensated successfully for the effects of model error and errors in the
initial state. Again, however, many more iterations were required in this case.

Using an evolving correction term is more expensive than using a constant cor-
rection term, since an extra set of state and adjoint equations must be integrated.
However, these simple experiments demonstrate that using the evolving correction
term as a control vector could compensate for the effects of model error which are
likely to evolve with the model solution.

In Chapter 7 we carried out similar experiments for a 1D nonlinear shallow
water model, using the initial state, a constant correction term and both together
as control vectors. We compared the performance of the different control vectors
in compensating for errors in the initial state, and for two types of model error:
omission of topography and omission of rotation.

As in the earlier experiments, we found that using the initial state as the control
vector can compensate to some extent for the effects of model error and can produce
a solution closer to the true solution in the middle and at the end of the assimilation
interval than if no assimilation were carried out. It is interesting that this is so even
though we do not explicitly allow for model error. In each case, however, using a
constant correction term as the control vector better compensates for the effects of
model error over the assimilation interval. The model error in each case depends
on the model state, and motion propagates half way across the model domain in
each direction during the assimilation interval. Hence, we concluded that in these
experiments the constant correction term is able to compensate for model error
depending on the model state on a significant timescale. Using the correction term

as a control vector it is also possible to compensate to some extent for the effects of
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errors in the initial state, as we noted from the earlier experiments.

We also checked that the correction term recovered in the assimilation was not
unreasonably large, and concluded that it did seem to represent an average of the
model error source over the assimilation interval. This is important to check, since
when using the correction term technique we need to ensure that we are modifying
the model equations in a way that makes sense [87].

Using both control vectors together is successful in reducing the large errors
caused by both a wrong initial state and model error. In each case the reduction
of these errors is greater than if either control vector is used alone, but at the cost
that many more iterations of the descent algorithm are required.

The impact of using different values of ¢, or of how strongly the correction term
is constrained to be small in the cost function, is as found in the experiments of
Chapter 5. When fewer observations are available, however, using a value of ¢ large
enough for smooth solutions produced disappointingly inaccurate results.

Finally, we checked whether the improvement in the solution at the end of the
assimilation interval would result in an improvement to a forecast started at this
time. We found that it is important not to suddenly cut out the correction term at
the beginning of the forecast, and that including the correction term all through a
long forecast might have a detrimental impact. Gradually phasing out the correction
term during the forecast interval would probably give better results, but further
work is needed to check this. In these experiments, however, we found that using
the correction term as the control vector to compensate for model error in the
assimilation interval, it is possible to obtain a better forecast than is obtained using

the initial state as the control vector.

Suggestions for further work

One of the immediate questions arising from this work is that of how to reduce the
large number of iterations needed in the minimization procedure using more than
one control vector. This could probably be achieved by suitable preconditioning, for
example as attempted by D. Zupanski [92], who used serially uncorrelated compo-

nents of model error as control vectors. Our pleasing results using more than one
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control vector indicate that this problem of reducing the number of iterations to an
acceptable level is well worth addressing. A second area of our work requiring more
attention is that of obtaining smoother solutions when fewer observations are used.
This problem is generally tackled by using a background estimate of the control
vectors, or extra conditions on smoothness in the cost function.

It would be interesting to carry out more experiments on the shallow water
model using other control vectors. An evolving correction term evolving with a
simplified, linearized version of the model, perhaps at lower resolution, could be
used, perhaps in addition to a constant correction term. Also, it would be worth
trying the piecewise constant correction term again.

On a theoretical level, the results given in Chapter 5 on uniqueness and ob-
servability could be generalized to allow for an evolving rather than a constant
correction term. A major theoretical problem is that of how to specify the model
error covariance matrix (). This is a difficult problem, and affects any attempt to
use a stochastic representation for model error in data assimilation [25].

Our work has concentrated on theoretical aspects of the correction term tech-
nique and generalizations of it, with tests on simple models. A natural extension to
this work would be examine to what extent the same conclusions hold in the con-
text of models which are used operationally. Apart from operational applications,
however, the techniques explored here have relevance to other applications to data
assimilation, such as estimation of model bias, and in model development. Recently,
4D variational assimilation has been applied to atmospheric chemistry [27]. In this
case there may be a very plentiful set of data, but knowledge about the chemical
processes constituting the model is incomplete. Here, the generalized correction ter-
m technique could be used to indicate where the model is prone to error, and so to

use the observational data to infer further information about the model processes.
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