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Abstract

This thesis aims to study the asymptotic behavior of Toeplitz determinants Dn(ft(z))

by using the Riemann-Hilbert analysis. We consider the double scaling limits of Toeplitz

determinants with respect to symbol ft(z). This symbol possess m Fisher-Hartwig

singularities when t > 0, and m + 1 if t → 0. We obtain the uniform asymptotics

for Dn(ft(z)) as n → ∞ which is valid for all sufficiently small t in terms of Painlevé

V function. This study is divided into two parts: We first consider the case when the

seminorm |||β(t)||| < 1 for t ≥ 0 and then the case of the Basor-Tracy asymptotics when

|||β(t)||| = 1 for some t. The latter case is further divided to the cases, |||β(t)||| < 1 for

t > 0 and |||β(t)||| = 1 for t > 0.

In the last chapter we present the computation of the magnetization of the 2D Ising

model in the high temperature regime T > Tc (i.e., t < 0) including all the details by

using the Riemann-Hilbert approach and the asymptotics of Toeplitz determinants.
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Chapter 1

Introduction

The aim of this thesis is to examine the asymptotic behaviour of Toeplitz determinants Dn(ft)

by using the Riemann-Hilbert approach, which has been used for solving many asymptotic

problems. The spontaneous magnetization problem for the 2D Ising model is a popular

example of the application of these types of problems in the field of statistical mechanics.

The second chapter presents a comprehensive examination of the related mathemati-

cal principles derived from functional analysis, alongside a historical context and established

methodologies employed in addressing the problem discussed in subsequent chapters.

In Chapter 3, double-scaling limits of Toeplitz determinants, defined by the Painlevé V

function σ(x), are studied. Claeys, Its, and Krasovsky in [13] discussed the role of the function

σ(x) in the asymptotic expansions. When t > 0, the symbol ft possesses m Fisher-Hartwig

singularities with parameters αj ∈ C and βj ∈ C, j = 1, ...,m, and when t → 0, the

symbol possesses m + 1 Fisher-Hartwig singularities as a new singularity emerges at z = 1.

For sufficiently small t, we obtain uniform asymptotic of Dn(ft) as n → ∞. The focus of

our work involves the relation between orthogonal polynomials and Riemann-Hilbert problems

that are linked to our symbol. The Riemann-Hilbert problem and Toeplitz determinants will

then be related through the use of a differential identity. We look into two possibilities

because our symbol has at least m jump singularities when t → 0. Applying concepts from

[18] and [34], we analyze the seminorm |||β|(t)|| < 1 in the first part of this chapter. The

expression we have here defines the Toeplitz determinant with m Fisher-Hartwig singularities

for t > 0 and the determinant with m + 1 singularities for t → 0. Ehrhardt provides the

1



CHAPTER 1. INTRODUCTION 2

identical solution for both of these asymptotic regimes, but with different parameters and,

hence, different asymptotics, as seen in [22]. In addition, we consider the seminorm where

|||β(t)||| = 1, in which case, we have different possible subcases. In the first case we have

||||β(t)||| < 1 if t > 0, and when t → 0, we have |||β(t)||| = 1. This case describes the

transition between the asymptotic regime for Toeplitz determinants whose symbol has m

singularities and does not contain Fisher-Hartwig representations and the asymptotic regime

for Toeplitz determinants with Fisher-Hartwig representations. Thus by assuming this, the

asymptotic behaviour of Toeplitz determinants can be expressed as a linear combination of the

results obtained by Ehrhardt. We have two types of Fisher-Hartwig representations, the non-

trivial Fisher-Hartwig representation if ℜβ0 < ℜβ1 ≤ . . . ≤ ℜβm−1 < ℜβm, and the trivial

Fisher-Hartwig representation if there is an l ≥ 1, such that ℜβ0 < ℜβ1 ≤ ... ≤ ℜβm−l <

ℜβm−l+1 = ... = ℜβm. In the second subcase, we have the transition from the asymptotic

regime of a determinant with a symbol containing Fisher-Hartwig representations with m

singularities to the asymptotic regime of a determinant with Fisher-Hartwig representations

with m + 1 singularities in the symbol. In the last section we discuss the remaining cases

related to the double-scaling limits involving the Basor-Tracy conjecture and also matrix-valued

symbols.

In Chapter 4, we compute the magnetization of the 2D Ising model in the high temperature

regime T > Tc using the Riemann-Hilbert approach and the asymptotics of Toeplitz deter-

minants Dn(ft) with one generate Fisher-Hartwig singularity at z = 1, α = 0 and β = −1

in more details. Previously, in [49] and [41], this result was obtained using physical argu-

ments and in [17] , the authors describe the analysis in words and claim the result. However,

here we provide more details of the first order term using the Riemann-Hilbert analysis. The

last section of this chapter contains open problems related to the transition from the high

temperature regime T > Tc to the critical temperate T = Tc.



Chapter 2

Preliminaries

In this chapter, we present the necessary mathematical foundations that will be used in the

rest of the thesis. We will focus primarily on the analyticity of functions. Simply, the function

f(z) is called analytic at z if it is differentiable in a neighborhood of z, and called analytic in

the region U if it is analytic at every point z ∈ U . The analytic function in the neighborhood

of z can be expressed as a Taylor series at every point z ∈ U .

2.1 Hardy spaces and Lp spaces

Definition 2.1.1. Let 1 ≤ p < ∞. We denote by Lp(T) the space of all complex-valued

measurable functions on the unit circle T = {|w| = 1} with the norm:

||f ||p =
{

1

2π

∫ 2π

0
|f(eiθ)|pdθ

}1/p

.

The following are examples of particular Lp spaces:

1. L∞(T) is the space of all measurable and essentially bounded complex-valued functions,

with the norm:

||f ||∞ = inf{C > 0 : |f | ≤ C almost everywhere} <∞.

2. L2(T) space is a Hilbert space of sequre-integrable function f : T → C with inner

3



CHAPTER 2. PRELIMINARIES 4

product (f, g) = 1
2π

∫ 2π
0 f(eiθg(eiθ|) dθ, and the norm given by

||f ||22 =
1

2π

∫ 2π

0
|f(eiθ)|2 dθ.

3. For 0 < p <∞, lp is the space of all sequences x = (xi)i∈N with the norm:

||x|| =
(∑

i∈N
|xi|p

)1/p

<∞.

We define the Fourier coefficients fn of a function f ∈ L1(T) by

fn =
1

2π

∫ 2π

0
f(eiθ)e−inθdθ. (2.1.1)

Definition 2.1.2. For 1 ≤ p ≤ ∞, the Hardy space Hp is defined by

Hp(T) = {f ∈ Lp(T) : fn = 0 for all n < 0}.

For more information on the Hardy spaces and Lp, we refer to [3], [36], and [39].

2.2 Toeplitz Determinants

A vast array of mathematical and physical problems can be formulated using Toeplitz matrices

and Toeplitz determinants. For specifics on the theory and applications of Toeplitz determi-

nants, see [11], and the more recent survey paper [17]. We start by providing brief definitions

of Toeplitz operators and multiplication operators.

Observe first that H2(T) is a closed subspace of L2(T). The orthogonal projection P of

L2(T) onto the space H2(T) can be expressed as follows:

P
( ∞∑

n=−∞
fne

inθ
)
→

∞∑
n=0

fne
inθ. (2.2.1)

The orthogonal projection P is referred to as the Riesz projection.

Definition 2.2.1. For 1 ≤ p <∞ and ϕ ∈ L∞(T), the multiplication operatorMϕ : Lp(T) →
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Lp(T) is defined as

Mϕf = ϕf.

Definition 2.2.2. For f ∈ L∞(T) and 1 < p < ∞, the Toeplitz operator Tf is defined on

Hp(T) by

Tf = PMf . (2.2.2)

Let 1 < p <∞. Since P is bounded from Lp(T) to Hp(T), it follows that Tf is bounded

on Hp(T).

Definition 2.2.3. The Toeplitz matrix corresponding to the symbol f ∈ L1(T) with respect

to the basis {einθ} is given by:

T (f) = (fj−k)j,k≥0 =



f0 f−1 f−2 f−3 · · ·

f1 f0 f−1 f−2 · · ·

f2 f1 f0 f−1 · · ·
...

...
. . .

...


, (2.2.3)

where fn is the nth Fourier coefficient of f .

Remark 2.2.4. A bounded operator on l2 is generated by the Toeplitz matrix (2.2.3) if and

only if f ∈ L∞(T). The Toeplitz operator Tf on the sequence space l2(Z+) is represented by

these matrices with respect to the standard basis {en = einθ : n ≥ 0}. One way to observe

this is to let f ∈ L∞(T), and then notice that

Tfek = P
∞∑

n=−∞
fne

inθeikθ =
∞∑
r=0

fr−ke
irθ , r = n+ k

or by using the inner product in L2 as follows:

(Tfek, en) = (PMfek, en) = (fek, P
∗en) = (fek, en)

=
1

2π

∫ 2π

0
f(eiθ)eikθe−inθdθ =

1

2π

∫ 2π

0
f(eiθ)e(k−n)iθdθ

= fn−k
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Definition 2.2.5. The n× n finite Toeplitz matrix Tn(f) is given by,

Tn(f) = (fj−k)0≤j,k≤n−1 =



f0 f−1 f−2 · · · f−(n−1)

f1 f0 f−1 · · · f−(n−2)

...
...

. . .
...

fn−1 fn−2 fn−3 · · · f0


. (2.2.4)

Moreover, Dn(f) = detTn(f) denotes the Toeplitz determinant.

Infinite Toeplitz matrices T (f) play an important role in operator theory and functional

analysis, whereas truncated Toeplitz matrices Tn(f) have made considerable contributions to

several areas of mathematics physics, engineering, and linear algebra. Our goal is to study

what happens to Toeplitz matrices as their size tends to infinity.

2.3 Asymptotic behavior of Toeplitz determinants

Since we aim to study the asymptotic behavior of Toeplitz determinants Dn(f) as the size of

the matrix increases to infinity. It is important to introduce the following concepts that will

be utilized throughout.

Definition 2.3.1. 1. The notation f(z) = O(g(z)) as z → z0 (i.e., f(z) is of order g(z))

means there exists a finite constant K > 0 such that |f(z)| ≤ K|g(z)| for all z in a

neighborhood of z0.

2. Asymptotically smaller: the notation

f(z) = o(g(z)) as z → z0,

means that

lim
z→z0

∣∣∣f(z)
g(z)

∣∣∣ = 0

3. Asymptotically equal: The notation I(z) ∼ g(z) as z → z0, means

lim
z→z0

∣∣∣I(z)
g(z)

∣∣∣ = 1.
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In what follows, we will consider two types of symbols, beginning with Szegő, a symbol

f(z) that satisfies a certain smoothness condition, has no winding around the origin, no-

zeroes on the unit circle T, and has an analytic continuation in the annulus of T. This

will be followed by the introduction of the Fisher-Hartwig symbols which, instead of being

continuous or analytic functions, could have zeros, integrable singularities, and a non-zero

winding number.

2.3.1 Szegő symbols

The story of studying the asymptotics of Toepitz determinants with the Szegő symbols starts

in 1915 when Szegő proved the following theorem, which George Polya had conjectured.

Theorem 2.3.2 (First Szegő Limit theorem [47]). Let f > 0 be a positive function, continuous

on the unit circle T. Then

1

n
logDn(f) = (log f)0, (2.3.1)

which can written as

Dn(f) = exp{n(log f)0 + o(n)}. (2.3.2)

In the 1940s, Onsager and Bruria Kaufman inspired him to revisit his calculations from

nearly four decades prior. The following is a well-known result that is still useful today and has

been generalized many times by a large number of mathematicians. Numerous mathematical

proofs from various fields can be found in Barry Simon’s OPUC book [46], (also see [10] and

[11]).

Theorem 2.3.3. (Szegő Strong Limit Theorem (SSLT) [25]). If ln f(z) is sufficiently smooth

on the unit circle T (specifically, f(z) is the szegő symbol), then ln f(z) ∈ L1(T) and the

subsequent sum converges.

∞∑
k=−∞

|k||(ln f)k|2, (ln f)k =
1

2π

∫
T
ln f(eiθ)e−ikθdθ. (2.3.3)
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Then the following expression for the Toeplitz determinants:

lnDn(f) =
n

2π

∫
T
ln f(eiθ)dθ +

∞∑
k=1

k(ln f)k(ln f)−k + o(1). (2.3.4)

2.4 Fisher-Hartwig symbols and their conjecture

In the 1960s, a variety of problems in statistical mechanics led to the consideration of sym-

bols for Toeplitz matrices with a higher level of complexity. These new symbols had zeros,

integrable singularities, and non-zero winding numbers in place of continuous or analytic func-

tions. Michael Fisher and Robert Hartwig had found an efficient technique for factorizing these

singularities; see [23]. These symbols are called Fisher-Hartwig symbols and defined as follows:

f(z) = eV (z)z
∑m

j=0 βj

m∏
j=0

|z − zj |2αjgzj ,βj
(z)z

−βj

j , θ ∈ [0, 2π) (2.4.1)

for some m ≥ 0, zj = eiθj , θj ∈ (0, 2π),βj ∈ C, ℜαj > −1
2 , and

gzj ,βj(z) =


eiπβj , if θ ∈ [0, θj)

e−iπβj , if θ ∈ [θj , 2π)

(2.4.2)

where V (z) is analytic in a neighborhood of the unit circle T. The symbol has m + 1

singularities at zj = eiθj , j = 0, ...,m, θj ∈ [0, 2π) and the condition ℜαj > −1/2 for

integrability. If αj ∈ C is not zero, the root type exists, and if βj ̸= 0 for βj ∈ C the jump

type singularities are defined. In this thesis, it will be assumed that V (z) is analytic in the

neighborhood of the unit circle. However, a result has been demonstrated in [16] for the more

general V (z), where the function is less smooth.

Remark 2.4.1. The Fisher-Hartwig symbols can also be written in other ways. The Riemann-

Hilbert analysis use the symbols in the form (2.4.1), while the operator-theoretic methods use

the following form:

f(z) = b(z)
m∏
j=1

|z − zj |2αjϕzj ,βj
(z) (z ∈ T), (2.4.3)
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where β ∈ C, zj ∈ T, and ϕzj ,βj
are defined as

ϕzj ,βj
= exp

{
iβj arg(−

z

zj
)
}

with arg z ∈ (−π, π). (2.4.4)

It is easy to show the equivalence between the two definitions. The authors using Riemann-

Hilbert approach have modified arg z, which has a significant impact on the function f(z),

and eliminated some of its components. The z
−βj

j factors have been removed so that the work

can be more easily compared to others in the literature, and the z
∑∞

j=0 βj factors are removed

so that the work can be more accurately characterized by the Tracy-Basor conjecture in [16].

For example, in (2.4.3), the function b(z) and the function eV (z) in (2.4.1) are similar.

2.4.1 Fisher-Hartwig asymptotics

The asymptotic analysis of Toeplitz determinants with Fisher-Hartwig symbols has been im-

proved by multiple studies. To learn more about history see, [17]. In [37] and [38], Lenard

provided the full asymptotics for symbols exhibiting zeros on the unit circle with βj = 0

and αj > −1/2. Fisher-Hartwig in [23] proposed a conjecture on the asymptotic behavior

of Toeplitz determinants, specifically in relation to symbols described in equation (2.4.3).

This conjecture was inspired by the research done by Wu [49] and potentially influenced

by Lenard’s calculations. In [48], Widom confirmed Lenard’s conjecture for αj ∈ C, with

ℜαj > −1/2, βj = 0 and V (z) is smooth, also he found an explicit description for the con-

stant E(z). Estelle Basor and J. William Helton evaluated pure Fisher-Hartwig singularities

using repeated approaches [6]. Böttcher and Silbermann derived in [9], a specific equation

for the determinant that contains these pure Fisher-Hartwig symbols. In his 1997 doctoral

dissertation, Ehrhardt [22] computed explicitly the asymptotics of the leading term of the

Toeplitz determinants with Fisher-Hartwig symbols in (2.4.1).

The pure Fisher-Hartwig symbol

This function does not contain a nice function eV (z), and has the following form

wα,zj (z)ϕβ,zj (z) = (1− zj
z
)α−β(1− z

zj
)α+β, (2.4.5)
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where ϕβ,zj is defined in (2.4.4), and wα,zj = |eiθ − eiθj |2α = 22α| sin θ−θj
2 |2α.

Dn(f) =
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)

G(n)G(n+ 2α)

G(n+ α+ β)G(n+ α− β).
(2.4.6)

If α± β ∈ Z−, then Dn(f) equals zero. The Barnes G-function is defined by

G(z + 1) = (2π)z/2e−z(z+1)/2−Cz2/2
∞∏
n=1

{(
1 +

z

n

)n
e−z+z2/(2n),

}
(2.4.7)

where C = 0.577... is the Euler’s constant. G(z+1) = Γ(z)G(z) is an identity that illustrates

the similarity between the Barnes G(z) and Γ(z) functions. From (2.4.7), we can also derive

the following asymptotic behavior as n→ ∞ :

G(n)G(n+ γ + δ)

G(n+ γ)G(n+ δ)
∼ nγδ, δ, γ ∈ C. (2.4.8)

Thus the asymptotics of Toeplitz determinants with pure Fisher-Hartwig singularities in (2.4.6)

can be written as follows,

Dn(f) ∼
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
nα

2−β2
. (2.4.9)

The result on Fisher-Hartwig asymptotics was proved first by Ehrhardt when |||β||| < 1

using operator theory (see, [22]), and subsequently, it was proved in full generality in [16]

using the Riemann-Hilbert method. Before stating Ehrhardt’s result, the seminorm is defined

by:

|||β||| = max
1≤j,k≤m

|ℜβj −ℜβk|, (2.4.10)

where α0 = β0 = 0, and |||β||| = 0 if we have only one singularity, i.e., m = 0.

Theorem 2.4.2. Let f be defined as in (2.4.1) with V ∈ C∞, |||β||| < 1 and αj ± βj /∈ Z−
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for j = 0, ...,m. Then as n→ ∞

Dn(f) = exp

{
nV0 +

∞∑
k=1

kVkV−k

} m∏
j=0

b+(zj)
−(αj−βj)b−(zj)

−(αj+βj)

×n
∑m

j=0(α
2
j−β2

j )
∏

0≤j<k≤m

|zj − zk|2(βjβk−αjαk)(
zk
zjeiπ

)(αjβk−αkβj)

×
m∏
j=0

Gαj+βj ,αj−βj
(1 + o(1)),

(2.4.11)

and

Gαj+βj ,αj−βj
=
G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
. (2.4.12)

Here the Fourier expansion of the function V (z) on the unit circle is denoted by

V (z) =
∞∑

k=−∞
Vkz

k, where Vk =
1

2π

∫ 2π

0
V (eiθ)e−ikθdθ, (2.4.13)

and the Wiener-Hopf factorisation of the function eV (z) is defined by

eV (z) = b+(z)e
V0b−(z), b+ = exp

∞∑
k=1

Vkz
k, b− = exp

−1∑
k=−∞

Vkz
k. (2.4.14)

In [16] and [18], the authors re-prove Theorem 2.4.2 using the Riemann-Hilbert problem. In

addition, they make it work for functions V (z) with less smoothness that satisfies the following

conditions:
∞∑

k=−∞
|k|s|Vk| <∞,

for some s such that

s >
1 +

∑m
k=0[(ℑαk)

2 + (ℜβk)2]
1− |||β|||

.
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2.4.2 Basor-Tracy conjecture.

The symbol f(eiθ) with two jump singularities, at z0 = 1, and z1 = −1, were examined by

Basor and Tracy in [7], who considered the symbol

f(eiθ) = g1,1/2(z)g−1,−1/2(z)e
iπ/2,

with β0 = 1/2 and β1 = −1/2, which means we have |||β||| = 1. By performing direct

calculations, they determined that as n approaches infinity,

Dn(f) =
1 + (−1)n

2

√
2/nG(1/2)2G(3/2)2(1 +O(1)).

The asymptotics for Dnf(z) were not of the general standard Fisher-Hartwig form. They

noticed that there is another Fisher-Hartwig representation for f(eiθ), where β0 = −1/2 and

β1 = 1/2. Thus, they determined that the asymptotics they obtained were actually given

by a combination of two Fisher-Hartwig asymptotic forms (2.4.11), one asymptotic form

corresponded to the symbol as |||β||| < 1, while the other was the Fisher-Hartwig singularity

for the symbol with z0 = 1 and z1 = −1 but with β0 = −1/2 and β1 = 1/2. The only

difference between the second and original symbol was a constant. This holds true for every

Fisher-Hartwig symbol.

2.4.3 Fisher-Hartwig representation.

Assume that we have a Fisher-Hartwig symbol f(z) in (2.4.1) with βj ̸= 0 or αj ̸= 0 or both.

Then by replacing βj with βj +nj = β̂j , where
∑m

j=0 nj = 0 and let {n0, n1, ..., nm} ∈ Z, we

obtain the function f(z;n0, ..., nm) which is called a Fisher-Hartwig representation of f(z).

Noting that the multiplicative constants are the only distinction between all Fisher-Hartwig

representations of f(z),

f(z) =
m∏
j=0

z
nj

j × f(z;n0, ..., nm). (2.4.15)
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We are interested in Fisher-Hartwig representations where

m∑
j=0

(ℜβj + nj)
2, (2.4.16)

is minimal. There exists a finite number of such representations. There is a particular way to

find them, which was described in [16]. The group of all forms in (2.4.16) is denoted by M .

The representation of the Fisher-Hartwig is said to be degenerate if αj ± (βj + nj) ∈ Z− for

some j. Let us use the following to describe the Orbit of β = (β0, ..., βm)

Oβ =
{
β̂ : β̂j = βj + nj ,

m∑
j=0

nj = 0
}
. (2.4.17)

The following is a way to describe the set M .

Lemma 2.4.3 (Lemma1.12 [16]). Only the following two alternatives are possible:

1. There is β̂ ∈ Oβ such that |||β̂||| < 1. Then β̂ is unique, and it is the unique element

of M = {β̂}.

2. There is β̂ ∈ Oβ such that |||β̂||| = 1. Then there are at least two of these β̂’s, and

they all come from each other by applying the following rule repeated by adding 1 to

a β̂j with the smallest real part and subtract 1 from a β̂j with the biggest real part. In

addition, M = {β̂ ∈ Oβ : |||β̂||| = 1}.

Deift, Its, and Krasovsky in [16] proved the Basor-Tracy conjecture, which is the following

theorem,

Theorem 2.4.4. (Basor-Tracy conjecture) Consider the function f(z) defined by (2.4.1),

where ℜαj >
−1
2 , βj ∈ C, j = 0, ...,m, and suppose M is not degenerate. Then

Dn(f(z)) =
∑( m∏

j=0

z
nj

j

)n

R(f(z;n0, ..., nm))(1 + o(1)), as n→ ∞, (2.4.18)

where the sum represents all Fisher-Hartwig representations in M . Excluding the error term ,

every R(f(z;n0, ..., nm)) represents the right side of the formula (2.4.11).
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2.5 The relation between Toeplitz determinants and

orthogonal polynomials

Let f(z) be a complex-valued function on the unit circle T. In this section, we will describe the

connection between Toeplitz determinants Dn(f) and the system of orthogonal polynomials

(OPs) with weight f(z). The orthogonal polynomials ϕn(z) = χnz
n + ..., and ϕ̂n(z) =

χnz
n + ... of degree n provide an important role in the asymptotic study of the Toeplitz

determinants. Assume that Dn(f) ̸= 0, for n = n0, n0 + 1, ... for some sufficiently large n0.

Then by this condition, the polynomials ϕn(z) = χnz
n+ ..., and ϕ̂n(z) = χnz

n+ ... of degree

n exist and satisfy the orthogonality conditions

∫
T
ϕn(z)z

−jf(z)
dz

2πiz
= χ−1

n δjn

∫
T
ϕ̂n(z

−1)zjf(z)
dz

2πiz
= χ−1

n δjn, (2.5.1)

which alternatively can be written as

∫
T
ϕn(z)ϕ̂n(z

−1)f(z)
dz

2πiz
= δjn j = 0, 1, ..., n. (2.5.2)

The polynomials can also be written as follows:

ϕn(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0,0 f0,1 ... f0,n

f1,0 f1,1 ... f1,n

... ... ...

fn−1,0 fn−1,1 ... fn−1,n

1 z ... zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.5.3)

and

ϕ̂n(z
−1) =

1√
DnDn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f0,0 f0,1 ... f0,n−1 1

f1,0 f1,1 ... f1,n−1 z−1

... ... ... ... ...

fn,0 fn,1 ... fn,n−1 z−n

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5.4)
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Where fij are the Fourier coefficients given by

fij = fi−j =

∫
T
f(z)z−(i−j) dz

2πiz
. (2.5.5)

The leading coefficient is given by

χn =

√
Dn

Dn+1
. (2.5.6)

Remark 2.5.1. If f(z) ∈ L1(T), then the orthogonal polynomials that satisfy (2.5.1) and

(2.5.2) exist if and only if they are given by (2.5.3) and (2.5.4), as shown in Proposition 1.6.1,

of [33].

2.6 Riemann-Hilbert problems

Hilbert introduced the Riemann-Hilbert problem in his list of 23 problems around the 1900s

for the purpose of proving the existence of certain linear differential equations.

The Riemann-Hilbert problem is a mathematical problem that aims to simplify the analyti-

cal factorization of a specific matrix-valued function called V (z) that is defined on an oriented

contour in the complex plane. Particularly, the Riemann-Hilbert problem is a boundary value

problem for analytic functions with scalar or matrix values.

A typical Riemann-Hilbert problem (Σ, V ) is given by an oriented contour Σ in the complex

plane and a function (jump matrix) V : Σ = T → GL(n,C) which consists of finding the

unique matrix function Y (z) that solves the following conditions:

RH-Y1 Y (z) is analytic in C \ Σ

RH-Y2 Y+(z) = Y−(z)V (z), z ∈ Σ

RH-Y3 Y (z) → I, as z → ∞

where, Y±(z) are the boundary values of Y (z) defined by

Y+(z) = lim
s→z

f(s), where s is on the + side
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Y−(z) = lim
s→z

f(s), where s is on the− side.

In particular, we say that the + side (respectively the − side) lies to the left (respectively

right) of the contour when on traverses it in the direction of the orientation. The problem

above for Y (z) is normalized because it is close to the identity as z → ∞. The solution

can be given by representing orthogonal polynomials as the solution of the Riemann-Hilbert

problem, which will be the focus of the upcoming chapter. This fact was noticed firstly in

[24], and then in [2] extended to the unit circle T.

Definition 2.6.1. Let γ denote a smooth curve, which may be either an arc or a closed

contour. The Cauchy integral operator C : Lp(γ) → Lp(γ) can be expressed as follows:

(Cf)(z) =
1

2πi

∫
γ

f(τ)

τ − z
dτ (2.6.1)

for z ∈ γ.

The Plemelj-Sokhotskii equations, which we will present in the following statement, play

an essential part in the Riemann-Hilbert theory as they define the boundary values of Cauchy-

type integrals.

Lemma 2.6.2 (Plemelj Formulas, [1]). Let γ be a smooth contour. For every f ∈ Lp(γ) with

1 < p <∞, the Cauchy type integral has the following limit values:

f±(t) = ±1

2
f(t) +

1

2πi
v.p

∫
γ

f(µ)

µ− t
dµ, (2.6.2)

where f± denotes the limit as z approach γ along a contour entirely in the ± region respec-

tively, and the integral v.p
∫
γ

f(µ)
µ−t dµ exists in the Cauchy principal value sense, that is the

following limit exists,

∫
γ

f(µ)

µ− t
dµ = v.p

∫
γ

f(µ)

µ− t
dµ = lim

ϵ→0

∫
γ\Bt,ϵ

f(µ)

µ− t
dµ, (2.6.3)

where Bt,ϵ = {z : |z − t| < ϵ}.

Corollary 2.6.3 (Corollary 1, [29]). If we have contour Σ and a function (jump matrix)
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V : Σ = T → GL(k,C), the additive Riemann-Hilbert problem is given by,

RH-Y1 Y (z) is analytic in C \ Σ

RH-Y2 Y+(z) = Y−(z) + V (z), z ∈ Σ

RH-Y3 Y (z) → 0, as z → ∞

provides a solution that can be expressed explicitly in terms of the Cauchy integral

Y (z) =
1

2πi

∫
Σ

V (z)

z − s
dz. (2.6.4)

2.7 Double-scaling limits

The double-scaling limits of Toeplitz determinants Dn(ft), with 0 ≤ t < t0 are defined as

uniform asymptotics of Toeplitz determinants which holds for 0 ≤ t < t0 for some small t0,

as n → ∞ at the same time. In both mathematics and physics, double-scaling limits are of

great interest because they may explain universal behavior (see, e.g., [15]).

2.7.1 Transition from Szegő to one Fisher-Hartwig singularity

Let us have the following symbol:

a(z, t) = eV (z)(z − et)(α+β)(z − e−t)(α−β)(z)(−α+β)e−iπ(α+β), (2.7.1)

where α±β is non-degenerate, and V (z) is analytic in a neighborhood of the unit circle. For t

positive, the asymptotics of Dn(ft) are given by Szegő (see, Theorem 2.3.3), while, Theorem

2.4.2 can be used for t = 0, when the symbol has a Fisher-Hartwig singularity. The following

asymptotic behavior of Dn(ft) is valid uniformly for n→ ∞ and with small 0 ≤ t < t0.

Theorem 2.7.1 ([13]). Let α ∈ R, with α > −1
2 , β ∈ iR. The following asymptotic

expansion holds uniformly for Dn(ft(z)) with respect to the symbol ft(z) in (2.7.1) with the
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error term o(1) as n→ ∞, and 0 ≤ t ≤ t0, where t0 is sufficiently small,

Dn(t) = exp

{
nV0 + nt(α+ β)

}
exp

{ ∞∑
k=1

k
[
V−k − (α− β)

e−tk

k

][
Vk − (α+ β)

e−tk

k

]}

×Gα+β,α−βΩ(2nt)
(
1 + o(1)

)
,

(2.7.2)

where Gαj+βj ,αj−βj
is the product of Barnes G-functions, and

Ω(2nt) = exp

{∫ 2nt

0

σ(x)− α2 + β2

x
dx+ (α2 − β2) log 2nt

}
. (2.7.3)

The function σ(x) is real analytic on (0,∞) and exhibits the following asymptotic behavior

for x > 0:

σ(x) =



α2 − β2 + α2−β2

2α {x− x1+2αC(α, β)}(1 +O(x)), x→ 0, 2α /∈ Z

α2 − β2 +O(x) +O(x1+2α) +O(x1+2α log x), x→ 0, 2α ∈ Z

x1+2αe−x 1
Γ(α−β)Γ(α+β)(1 +O( 1x)), x→ ∞

, (2.7.4)

with

C(α, β) =
Γ(1 + α+ β)Γ(1 + α− β)Γ(1− 2α)

Γ(1− α+ β)Γ(1− α− β)Γ(1 + 2α)2
1

1 + 2α
, (2.7.5)

and Γ(z) is the Euler’s Γ-function.

2.7.2 Transition between one Fisher-Hartwig singularity and two

Fisher-Hartwig singularities

In [34], it was studied the double scaling limit for ft which is a symbol with one fixed Fisher-

Hartwig singularity on the unit circle T away from 1 with parameters α1, β1 and one emerging

Fisher-Hartwig singularity at 1 with parameters α0, β0. This symbol can be expressed as

follows:

ft(z) = eV (z)zβ1 |z − z1|gz1,β1z
−β1
1 (z − et)(α0+β0)(z − e−t)(α0−β0)(z)(−α0+β0)e−iπ(α0+β0).

(2.7.6)
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They considered two cases, |||β||| < 1 and |||β||| = 1. In the first case |||β||| < 1, the

following result gives the asymptotic behavior of Dn(ft) with assuming that α0 ∈ R, α1 ∈ C,

α0,ℜα1 > −1
2 , β0 ∈ iR, β1 ∈ C. The following asymptotic expansion with the error term

o(1) holds true as long as n→ ∞ and 0 ≤ t ≤ t0, where t0 is sufficiently small:

Dn(t) = exp

{
nV0 + nt(α0 + β0)

}
exp

{ ∞∑
k=1

k
[
V−k − (α0 − β0)

e−tk

k

][
Vk − (α0 + β0)

e−tk

k

]}

× n(α
2
1−β2

1) × exp

{
− (α1 − β1)

∞∑
k=1

[
Vk − (α0 + β0)

e−tk

k

]
zk1

}

× exp

{
− (α1 + β1)

∞∑
k=1

[
V−k − (α0 − β0)

e−tk

k

]
z−k
1

}
×

1∏
j=0

Gαj+βj ,αj−βj

× Ω(2nt)
(
1 + o(1)

)
,

(2.7.7)

where Gαj+βj ,αj−βj
and Ω(2nt) are defined in (2.4.12) and (2.7.3) respectively.



Chapter 3

Transition asymptotics with a finite

number of fixed singularities

This thesis examines transition asymptotics for Toeplitz determinants with symbols ft that

havem Fisher-Hartwig singularities when t > 0 andm+1 Fisher-Hartwig singularities as a new

singularity emerges at z = 1 when t→ 0. As our symbol contains at leastm jump singularities,

we will consider two cases. Our analysis is based on the relationship between a Riemann-Hilbert

problem and the orthogonal polynomials with respect to our symbol ft(z) in (3.1.1). In this

chapter, we will first investigate the case when |||β(t)||| < 1, where |||β(t)||| has been defined

in (2.4.10) but here with respect to the symbol ft(z) in (3.1.1). In particular, we use the

differential identity to connect the Riemann-Hilbert problem and Toeplitz determinants, and

also consider the case where |||β(t)||| = 1 by applying concepts from [16] and [34].

3.1 The symbol

We consider a symbol zj = eiθj , where θj ∈ (0, 2π), which has m Fisher-Hartwig singularities.

With the exception of z0 = eiθ0 = 1, where θ0 = 0, these singularities are located on the unit

circle. Moreover, an additional singularity appears at z0 = eiθ0 = 1 when t approaches zero.

ft(z) = f(z; t) = at(z)× b(z), (3.1.1)

20
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with

at(z) = eV (z)(z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0)

and

b(z) = z
∑m

j=1 βj

m∏
j=1

|z − zj |2αjgzj ,βj
(z)z

−βj

j ,

0 < θ1 < θ2 < · · · < θm < 2π.

When t > 0, at(z) is an analytic function in the annulus C \ ([0, e−t]∪ [et,∞]) containing the

unit circle, and it has an emerging singularity with strengths α0 and β0 at t = 0. We need

to compute the Fourier coefficients of log a(z; t) in order to derive the asymptotic behaviour,

and the findings are as follows:

(log at)0 = V0 + t(α0 + β0). (3.1.2)

(log at)k = Vk − (α0 + β0)
e−tk

k
. (3.1.3)

(log at)−k = V−k − (α0 − β0)
e−tk

k
. (3.1.4)

We compute a(z; t) Wiener-Hopf factorization, which produces,

log at(z) = log at,+(z) + (log at(z))0 + log at,−(z),

where

log at,+(z) =
∞∑
k=1

(
Vk − (α0 + β0)

e−tk

k

)
zk, log at,−(z) =

∞∑
k=1

(
V−k − (α0 − β0)

e−tk

k

)
z−k.
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If t > 0, the following expression is produced by directly applying the Theorem 2.4.2 to the

symbol ft(z) in (3.1.1):

Dn(ft) = exp{nV0 + nt(α0 + β0)} × exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

][
V−k − (α0 − β0)

e−tk

k

]}

× n
∑m

j=1(α
2
j−β2

j ) ×
m∏
j=1

exp

{
− (αj − βj)

∞∑
k=1

(
Vk − (α0 + β0)

e−tk

k

)
zkj

}

×
m∏
j=1

exp

{
− (αj + βj)

∞∑
k=1

(
V−k − (α0 − β0)

e−tk

k

)
z−k
j

}

×
∏

1≤j<k<m

|zj − zk|2(βjβk−αjαk)(
zk
zjeiπ

)(αjβk−αkβj) ×
m∏
j=1

Gαj+βj ,αj−βj
(1 + o(1)),

(3.1.5)

where the symbol ft possesses m Fisher-Hartwig singularities with strengths αj and βj , j =

1, 2, ...m.

At t = 0, the symbol possesses (m + 1) singularities with αj and βj strengths, where

j = 0, 1, ...,m. The following asymptotics are obtained by applying Theorem 2.4.2 again:

Dn(ft) = exp
{
nV0 +

∞∑
k=1

kVkV−k

}
× exp

{
− (α0 − β0)

∞∑
k=1

Vk − (α0 + β0)
∞∑
k=1

V−k

}

×
m∏
j=1

exp

{
− (αj + βj)

∞∑
k=1

V−kz
−k
j

}
×

m∏
j=1

exp

{
− (αj − βj)

∞∑
k=1

Vkz
k
j

}
× n

∑m
j=0(α

2
j−β2

j )

×
∏

0≤j<k<m

|zj − zk|2(βkβj−αkαj)(
zk
zjeiπ

)(αkβj−αjβk) ×
m∏
j=0

Gαj+βj ,αj−βj
(1 + o(1)).

(3.1.6)

It is obvious that (3.1.5) with t = 0 is incompatible with (3.1.6). Therefore, it is important to

find the asymptotics of Toeplitz determinants using the symbol (3.1.1) which is uniform for

0 ≤ t < t0. We will employ the Riemann-Hilbert problem analysis as in [13], [14], [16] ,[18],

and [34].
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3.2 Summary of results

Theorem 3.2.1. Let ft(z) be defined as in (3.1.1), and assume that α0 ∈ R, αj ∈ C, j =

1, ...,m, where |||β(t)||| < 1, and with the parameters α0,ℜαj > −1
2 , β0 ∈ iR, βj ∈ C. The

following asymptotic expansion is uniformly valid with an error term of o(1) as n approaches

infinity and 0 ≤ t ≤ t0, with the condition that t0 is sufficiently small:

Dn(t) = exp

{
nV0 + nt(α0 + β0)

}
exp

{ ∞∑
k=1

k
[
V−k − (α0 − β0)

e−tk

k

][
Vk − (α0 + β0)

e−tk

k

]}

× n
∑m

j=1(α
2
j−β2

j ) ×
m∏
j=1

exp

{
− (αj − βj)

∞∑
k=1

[
Vk − (α0 + β0)

e−tk

k

]
zkj

}

×
m∏
j=1

exp

{
− (αj + βj)

∞∑
k=1

[
V−k − (α0 − β0)

e−tk

k

]
z−k
j

}
×

m∏
j=0

Gαj+βj ,αj−βj

×
∏

1≤j<k<m

|zj − zk|2(βjβk−αjαk)
( zk
zjeiπ

)(αjβk−αkβj)
Ω̃(2nt)

(
1 + o(1)

)
,

(3.2.1)

where Gαj+βj ,αj−βj
is the product of Barnes G-functions defined in (2.4.12),

Ω̃(2nt) = expΩ(2nt) = exp

{∫ 2nt

0

σ(x)− α2
0 + β20

x
dx+ (α2 − β20) log 2nt

}
, (3.2.2)

and the function σ(x) for x > 0 is defined in (2.7.4).

Theorem 3.2.2. Let α0, αj ∈ C with ℜα0,ℜαj > −1/2 and β0, βj ∈ C. Suppose that

|||β(t)||| < 1 for t > 0, |||β(t)||| = 1 at t = 0, and βm−1 = βm with ℜβm−1 = ℜβm =

max{ℜβj : 1 ≤ j ≤ m}. If t0 is sufficiently small, then the following asymptotic expansion

holds as n→ ∞ with a uniform error term o(1):

Dn(ft(z)) = Dn

(
ft(z;α0, αj , αm−1, αm, β̃0, β̃j , β̃m−1 + 1, β̃m + 1)

)
× Ω̃(2nt)(1 + o(1))

+

m∏
j=m−1

z−n
j ×Dn

(
ft(z;α0, αj , αm−1, αm, β̃0, β̃j , β̃m−1 + 1, β̃m + 1)

)
K(2nt)

× n−2β0−1

Γ(α0 − β0)
×
( m∑

j=m−1

(znj − zn−1
j )

)
Σ(t)Ω̃(2nt)

(
1 + o(1)

)
,

(3.2.3)
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where β̃j = βj , j = 0, ...,m− 2, β̃k = βk − 1, k = m− 1,m, and

Σ(t) =

(
2t

1− e−2t

)α0−β0 m∏
j=m−1

(1− etz−1
j )αj+β̃j (1− e−tzj)

−(αj−β̃j) exp

{
−

∞∑
k=1

e−tkV−k

}

× exp

{ ∞∑
k=1

e−tkVk

}
+

(
1− e−2t

2t

)α0+β0 m∏
j=m−1

(1− etzj)
−(αj−β̃j)(1− e−tz−1

j )αj+β̃j

× exp

{
−

∞∑
k=1

e−tkVk

}
exp

{
−

∞∑
k=1

etkV−k

}
.

Remark 3.2.3. In addition to the trivial Fisher-Hartwig representation, we can define the

non-trivial Fisher-Hartwig representation of the symbol ft(z) at t = 0 as β̂0 = β0 + n0 and

β̂m = βm − n1, where β0 = minℜβj and βm = maxℜβj . In this case, we have

Dn(ft(z)) = R

(
ft(z;β0, βj , βm)

)
× Ω̃(2nt)(1 + o(1)) + (z−n

m )n × n−2β̂j−1 × Γ(1 + αj + β̂j)

Γ(αj − β̂j)

× Vj × Ω̃(2nt)× K(2nt)

ent
× n−2β0−1

Γ(1 + α0 + β0)
× (1− e−2t)−2β0−1Σ

′
(t)

×R

(
ft(z; β̂0, β̂j , β̂m)

)(
1 + o(1)

)
,

(3.2.4)

where R

(
f(z; β̂0, β̂j , β̂m)

)
corresponds to the RHS of (3.2.1) for symbol ft with β̂’s param-

eters and without the error term or Ω̃(2nt),

Σ
′
(t) =

[(
zm − et

zm − e−t

)αm+β̂m

exp

{
2

∞∑
k=1

Vk(sinh(tk))

}(
2t

1− e−2t

)α0−β0

× (1− e−tzj)
∑m−1

j=1 −(αj−β̂j) × (1− e−tz−1
j )

∑m−1
j=1 −(αm+β̂m)

+

(
zm − et

zm − e−t

)αm−β̂m

exp

{
− 2

∞∑
k=1

V−k(sinh(tk))

}
×
(

2t

1− e−2t

)−(α0+β0)

× (1− e−tzm)
∑m−1

j=1 (αm−β̂m) × (1− e−tz−1
m )

∑m−1
j=1 (αm+β̂m)

]
.

(3.2.5)

Remark 3.2.4. Let α0, αj > −1/2, β0, βj ∈ C, and |||β(t)||| = 1 for t ≥ 0. Then the Toeplitz

determinant Dn(ft) generated by the symbol ft in (3.1.1) has two possible asymptotics de-

pending on the position of ℜβ0.
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1. If min{ℜβj : 1 ≤ j ≤ m} < ℜβ0 < max{ℜβj :: 1 ≤ j ≤ m}, then the asymptotics is

given by Theorem 1.13 of [16].

2. If ℜβ0 = min{ℜβj : 1 ≤ j ≤ m} or ℜβ0 = max{ℜβj : 1 ≤ j ≤ m}, then the

asymptotics is given by Theorem 3.2.2.

3.3 The Riemann-Hilbert problem formulation of or-

thogonal polynomials

Now we show how to formulate the orthogonal polynomial problem as Riemann-Hilbert prob-

lem, building on the work of [24]. We consider the following 2 × 2 matrix-valued function

Y (n)(z) ≡ Y (z), n ≥ n0:

Y (z) =

 χ−1
n ϕn(z) χ−1

n

∫
T

ϕn(ξ)
ξ−z

ft(ξ)dξ
2πiξn

−χn−1z
n−1ϕ̂n−1(z

−1) −χn−1

∫
T

ϕ̂n−1(ξ−1)
ξ−z

ft(ξ)dξ
2πiξn

 . (3.3.1)

Notice that Y (z) is the only solution to the following Riemann-Hilbert problem (see, e.g.,

[16]):

RH-Y1: Y : C \ T → C2×2 is analytic.

RH-Y2: For z ∈ T \ ∪m
j=1zj , where j = 1, ...,m, Y (z) has continuous boundary values

Y+(z) and Y−(z), related by the jump condition

Y+(z) = Y−(z)

1 z−nft(z)

0 1

 , z ∈ T. (3.3.2)

RH-Y3: The asymptotic behaviour for Y (z) as z → ∞ is given by

Y (z) = (I +O(
1

z
))

zn 0

0 z−n

 . (3.3.3)
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RH-Y4: As z → zj , we have

Y (z) =

O(1) O(1) +O(|z − zj |)2αj

O(1) O(1) +O(|z − zj |)2αj

 , if αj ̸= 0 (3.3.4)

and

Y (z) =

O(1) O(log |z − zj |)

O(1) O(log |z − zj |)

 , if αj = 0, βj ̸= 0. (3.3.5)

The following proposition demonstrates how the previous Riemann-Hilbert problem relates to

the orthogonal polynomials (2.5.1) and (2.5.2).

Proposition 3.3.1. If the Riemann-Hilbert problem stated above is solved by Y (z) in (3.3.1),

then the polynomials ϕn(z) and ϕ̂n(z) satisfy the orthogonal conditions (2.5.1) and (2.5.2).

Proof. The solution of the Riemann-Hilbert problem is denoted by Y (z), and each entry

in the matrix is examined separately. Using the RH-Y3 condition, we can also observe the

asymptotic behaviour of each entry as z → ∞.

Y (z) =

Y11(z) Y12(z)

Y21(z) Y22(z)

 =

zn +O(zn−1) O(z−n−1)

O(zn−1) O(z−n) +O(z−n−1)

 . (3.3.6)

Assuming n ≥ 1, we will look at the first row of the jump condition in RH-Y2,

(
Y11(z) Y12(z)

)
+

=

(
Y11(z) Y12(z)

)
−

1 z−nft(z)

0 1

 .

When we match the values of the row vector, we get:

1. (Y11)+(z) = (Y11)−(z)

2. (Y12)+(z) = (Y11)−(z)z
−nft(z) + (Y12)−(z)

We may observe from RH-Y3 (3.3.6) that Y11(z) = zn +O(zn−1) is a monic polynomial of
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degree n. Let us denote pn(z) = Y11(z). The second row is

(Y12)+(z) = (Y12)−(z) + pn(z)z
−nft(z),

which is an additive Riemann-Hilbert problem. The answer, then, is as follows based on the

Plemelj formula:

(Y12)(z) =

∫
T

pn(s)

s− z

ft(s)ds

sn2πi
.

Expanding 1
s−z and applying the asymptotics at infinity (Y12)(z) = O(z−n−1) as z → ∞,

yields the following result:

(Y12)(z) = −1

z

∫
T

pn(s)s
−nft(s)

1− s/z

ds

2πi

= −
∞∑
j=0

z−j−1

∫
T
pn(s)s

−n+jft(s)
ds

2πi

= −
∞∑
j=0

z−j−1

∫
T
pn(s)s

−n+j+1ft(s)
ds

2πis
.

Since Y12 = O(z−n−1), we have

∫
T
pn(s)s

−n+j+1 ft(s)ds

2πis
=


0 If j = 0, ..., n− 1,

χ−1
n If j = n.

Notice that 0 ≤ j ≤ n − 1, implies that −(n − 1) ≤ −n + j + 1 ≤ 0, and therefore, pn(s)

satisfies

∫
T
pn(s)s

−k ft(s)ds

2πis
=


0 If k = 0, ..., n− 1,

χ−1
n If k = n.

Consequently, we have unique polynomials pn(z) = χ−1
n ϕn(z).

For the second column, we have

(
Y21(z) Y22(z)

)
+

=

(
Y21(z) Y22(z)

)
−

1 z−nft(z)

0 1

 .
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This yields the following

1. (Y21)+(z) = (Y21)−(z)

2. (Y22)+(z) = (Y21)−(z)z
−nft(z) + (Y22)−(z)

Again we observe that Y21(z) is analytic in the complex plane from the first of the preceding

identities. Additionally, we observe that it is a polynomial of degree n− 1, denoted by pn−1,

using the asymptotics condition (RH-Y3). From the second identity above and the Plemelj

formula, we find that

Y22(z) =

∫
T

Y
(n−1)
21 (s)

s− z

ft(s)ds

2πisn
.

Also, we deduce that

Y22(z) = z−n +O(z−(n+1)) as z → ∞

(see (RH-Y3)). As before, expanding 1
s−z , we obtain

Y22(z) = −1

z

∫
T

pn−1(s)s
−nft(s)

1− s/z

ds

2πi

= −
∞∑
j=0

z−j−1

∫
T
pn−1(s)s

−n+jft(s)
ds

2πi

= −
∞∑
j=0

z−j−1

∫
T
pn−1(s)s

−n+j+1ft(s)
ds

2πis
.

Thus, we have

∫
T
pn−1(s)s

−n+j+1ft(s)
ds

2πis


= −1 if j = n− 1

= 0 if 0 ≤ j ≤ n− 2

Note that 0 ≤ j ≤ n− 2 is equivalent to −(n− 1) ≤ −n+ j + 1 ≤ −1. Let pn−1(s) =

−χn−1z
n−1p̂n−1(z

−1). Then

−χn−1

∫
T
p̂n−1(s

−1)sn−1−n+j+1ft(s)
ds

2πis
= −χn−1

∫
T
p̂n−1(s

−1)sjft(s)
ds

2πis
= 0
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for 0 ≤ j ≤ n− 2. Therefore, for 0 ≤ j ≤ n− 2, we have

∫
T
pn−1(s)s

−n+j+1ft(s)
ds

2πis
= 0.

Furthermore, in the case when j = n− 1, we obtain

∫
T
pn−1(s)s

−n+n−1+1ft(s)
ds

2πis
=

∫
T
pn−1(s)ft(s)

ds

2πis

= −χn−1

∫
T
p̂n−1(s

−1)sn−1ft(s)
ds

2πis
= −1.

Now, we will show that the solution given in (3.3.1) is unique . We first assume that

detY (z) = 1 z ∈ C \ T.

By utilising (3.3.2), we have

(detY )+(z) = det(Y+(z)) = det(Y−(z)). det

1 z−nft(z)

0 1


= (detY )−(z).

As a result, by applying (3.3.3), we get

detY (z) = 1 +O(1/z) as z → ∞.

Because of this, detY (z) is bounded and entire, and since detY (z) = 1, by Liouville’s

theorem, it is constant. The matrix-valued function Y (z) is invertible since its determinant

equals one. Next we will examine the matrix X(z) defined by

X(z) = Ỹ (z)Y −1(z), z ∈ C \ T.
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Observe that the function X(z) is well defined and analytic on C \ T. Further, for z ∈ T,

X+(z) = Ỹ+(z)Y
−1
+ (z)

= Ỹ−(z)

1 z−nft(z)

0 1


1 z−nft(z)

0 1


−1

Y −1
− (z)

= X−(z).

Consequently, X(z) is an entire function. We obtain the following for z → ∞:

X(z) = Ỹ (z)Y −1(z)

= (I +O(1/z))

zn 0

0 z−n


zn 0

0 z−n


−1

(I +O(1/z))−1

= (I +O(1/z)).

Once again, we apply Liouville’s theorem to get X(z) = I, which implies Ỹ (z) = Y (z). Thus,

the solution in (3.3.1) is unique.

3.4 The Nonlinear steepest descent method

In this section, we will analyze the solution of the Riemann-Hilbert problem for Y (z) in (3.3.1)

for large n. The Riemann-Hilbert problem must endure a series of reversible transformations

in order to evaluate the asymptotic behaviour of its solution. In the 1990s, Deift and Zhou

introduced the method of nonlinear steepest descent (see [21]), which is one of the classical

techniques that can provide an asymptotically complete expansion for OPs. It includes a

sequence of transformations, each of which further simplifies the original Riemann-Hilbert

problem and brings us closer to the solution of Y (z). The goal is to discover a solution to the

Riemann-Hilbert problem R(z) that is close to the identity and whose jump matrix behaves

as the identity matrix; this is known as the small norm Riemann-Hilbert problem. Then, we

can reverse the transformations to obtain an answer to the original problem involving Y (z).

We address the analysis in a manner analogous to [13], [16], [18], and [34].
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The final transformation generates a Riemann-Hilbert problem with a small norm for the

function R(z), which can be expressed in the following manner:

The Riemann-Hilbert problem for R

(RH-R1): It is analytic in C \ ΣR → C2×2.

(RH-R2): It satisfies the following jump conditions,

R+(z) = R−(z)JR(z) z ∈ ΣR. (3.4.1)

(RH-R3): As infinity, the function behaves as follows:

R(z) = I +O(z−1) as z → ∞. (3.4.2)

According to the standard theory for small-norm Riemann-Hilbert problems [19] and [20],

R(z) exists for n large and has a uniform behaviour for z ∈ C \ ΣR,

R(z) = I +O(n−1).

3.4.1 First transformation T (z) (normalization)

To fix the behaviour of Y (z) and to normalize the Riemann-Hilbert problems at infinity, we

define the first transformation T (z) as follows:

T (z) = Y (z)


z−nσ3 : |z| > 1

I : |z| < 1

(3.4.3)

where σ3 is the Pauli matrix defined by

σ3 =

1 0

0 −1

 . (3.4.4)

The function T (z) in (3.4.3) solves the following Riemann-Hilbert problem:

RH-T1: It is analytic for z ∈ C \ T .
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RH-T2: It has the following jump condition at z ∈ T,

T+(z) = T−(z)

zn ft(z)

0 z−n

 .done (3.4.5)

RH-T3: At infinity, it behaves as follows:

T (z) =
(
I +O(z−1)

)
.

RH-T4 : The asymptotic behaviour as z → zj , j = 1, ...,m, remains the same as

that of Y (z) in (3.3.4) and (3.3.5).

Observe that the Riemann-Hilbert problems for Y (z) and T (z) are equivalent, so if we can

solve one, we can solve the other using straightforward algebraic manipulation. Consequently,

the Riemann-Hilbert problem for T (z) has only one solution.

3.4.2 Second transformation S(z)

This step (known as the opening of the lenses) will deform the unit circle as shown in Figure

3.1. Since the jump matrix VT (z) in (RH-T2) has an absolute value of 1, oscillations happen

quickly when n is large. So, we will come up with a new transformation that makes this

behaviour on T exponentially small. Now, let us set up a new function as follows:

S(z) =



T (z), for z outside the lenses,

T (z)

 1 0

ft(z)
−1z−n 1

 , for |z| > 1 and inside the lenses,

T (z)

 1 0

−ft(z)−1zn 1

 , for|z| < 1 and inside the lenses

(3.4.6)
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where the jump matrix VT (z) is factorized,

VT (z) =

 1 0

z−nft(z)
−1 1


 0 ft(z)

−ft(z)−1 0


 1 0

znft(z)
−1 1

 (3.4.7)

= V1(z)VN (z)V2(z).

This factorization has specific characteristics. The matrix-valued function ft(z) has analytic

continuation on the outside and inside of the unit disc. Observe that the off-diagonal terms

of V1 and V2 decay as expected.

Then the following Riemann-Hilbert problem can be solved using the function S(z):

RH-S1: S(z) is analytic for z ∈ C \ Σ, where Σ = ∪m
j=0(Σj ∪ Σ′

j ∪ Σ′′
j ).

RH-S2: The boundary values are defined by the jump conditions

S+(z) = S−(z)

 1 0

ft(z)
−1z±n 1

 for z ∈ ∪m
j=0(Σj ∪ Σ′′

j ),

with the minus sign in the exponent on Σj , and plus sign on Σ′′
j ,

S+(z) = S−(z)

 0 ft(z)

−ft(z)−1 0,

 for z ∈ ∪m
j=0Σ

′
j .

RH-S3: S(z) =
(
I +O(z−1)

)
as z → ∞.

RH-S4: As z → zj (j = 1, ...,m) and z ∈ C \ T remains outside of the lenses,

S(z) =

O(1) O(log |z − zj |)

O(1) O(log |z − zj |)

 , αj = 0, βj ̸= 0 (3.4.8)

and

S(z) =

O(1) O(1) +O(|z − zj |)2αj

O(1) O(1) +O(|z − zj |)2αj

 , αj ̸= 0. (3.4.9)

The asymptotic behaviour for S(z) as z → zj in other sectors may be determined by ap-
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Figure 3.1: S(z) RH problems

plying suitable jump conditions. The Riemann-Hilbert problem (S(z),Σ) is referred to as a

deformation of the problem (T (z),T).

Finding good approximations to S(z) in various regions of the complex plane is the sub-

sequent step of the steepest descent analysis. Let us begin by encircling each of the points zj

(j = 0, 1, ...,m) by the sufficiently small discs

Uzj = {z : |z − zj | < ϵ}. (3.4.10)

By ignoring the jumps in ∪m
j=0(Σj ∪ Σ′′

j ) that tend to the identity matrix and are away

from Uzj , j = 0, ...,m, we are left with the Riemann-Hilbert problem that is independent of

n and whose solution is a good approximation of S(z) away from the singularities zj .

3.4.3 Global parametrix N(z)

We consider the following problem with the parametrix N(z):

RH-N1: It is analytic for z ∈ C \ T.

RH-N2: N+(z) = N−(z)

 0 ft(z)

−ft(z)−1 0

 for z ∈ T \ ∪m
j=0zj .
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RH-N3: As z → ∞, the function has the following behaviour: N(z) = (I +O(z−1)).

The function D(z) can be used to solve this Riemann-Hilbert problem by ignoring ∪m
j=0Uzj

and ∪1
j=0(Σj ∪ Σ′′

j ). The following represents the function N(z)

N(z) =


D(z)σ3

 0 1

−1 0

 : |z| < 1

D(z)σ3 : |z| > 1

(3.4.11)

where D(z) is the Szegő function associated with ft(z) defined by

D(z) = exp
{ 1

2πi

∫
T

log ft(τ)

τ − z
dτ
}
. (3.4.12)

Notice that D(z) is analytic in C \ T and has the jumps

D+(z) = D−(z)ft(z), z ∈ T \ ∪m
j=0zj .

Similarly to [13], [16], and [34], we can explicitly solve this problem by utilizing the Szegő

function D(z).

Lemma 3.4.1. By figuring out the integral with respect to our symbol ft(z) in (3.1.1), we

obtain the following simple formula for the function D(z):

D(z) =


∏m

j=1(
z−zj
zjeiπ

)αj+βj (z − et)α0+β0e−iπ(α0+β0) exp{
∑∞

k=0 Vkz
k}, |z| < 1∏m

j=1(
z−zj
z )−αj+βj (z − e−t)−α0+β0zα0−β0 exp{

∑∞
k=1 V−kz

−k}, |z| > 1

(3.4.13)

Proof. We will first calculate the log ft(τ), following the procedure described in [34]:

log ft(τ) = V (τ) +

m∑
j=1

βj log τ −
m∑
j=1

βj log zj +

m∑
j=1

2αj log |τ − zj |

+

m∑
j=1

log gzj ,βj
(τ) + (α0 + β0) log(τ − et) + (α0 − β0) log(τ − e−t)

− (α0 − β0) log τ − iπ(α0 + β0).

(3.4.14)
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The first function, V (τ), is analytic. We can expand 1
τ−z = 1

τ + z
τ2

+ z2

τ3
+ ..., for |z| < 1,

and by applying the residual theorem, we have

1

2πi

∫
T

V (τ)

τ − z
dτ =

1

2πi

∫
T

{
...+ V−1τ

−1 + V0 + V1τ + ...

}{
1

τ
+

z

τ2
+ ...

}
dτ

=
∞∑
k=0

Vkz
k.

Expanding 1
τ−z = −1

z − τ
z2

− τ2

z3
− ... for |z| > 1 yields the following result,

1

2πi

∫
T

V (τ)

τ − z
dτ =

1

2πi

∫
T

{
...+ V−1τ

−1 + V0 + V1τ + ...

}{
− 1

z
− τ

z2
− ...

}
dτ

= −
∞∑
k=1

V−kz
−k.

We apply integration by parts, the substitution τ = eiθ, and the residue theorem to obtain

the following:

∑m
j=1 βj

2πi

∫
T

log τ

τ − z
dτ =

∑m
j=1 βj

2πi

∫
T

log(eiθ)ieiθ

eiθ − z
dθ

=

∑m
j=1 βj

2πi

[
iθ log(eiθ − z)

]2π
0

−
∑m

j=1 βj

2πi

∫ 2π

0
i log(eiθ − z)dθ

=
m∑
j=1

βj

(
log(1− z)

)
−
∑m

j=1 βj

2πi

∫
T

log(τ − z)

τ
dτ .

(3.4.15)

For |z| < 1, we have

∑m
j=1 βj

2πi

∫
T

log τ

τ − z
dτ =

m∑
j=1

βj

(
log(1− z)− 1

2πi

∫
T

{
log τ − z

τ
− z2

2τ2
− ...

}{
1

τ

}
dτ

)

=

m∑
j=1

βj

(
log(1− z)− 1

2πi

∫ 2π

0
i log(eiθ)dθ − 0

)

=
m∑
j=1

βj

(
log(1− z)− iπ

)
,

(3.4.16)
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and for |z| > 1

∑m
j=1 βj

2πi

∫
T

log τ

τ − z
dτ =

m∑
j=1

βj

(
iπ + log(z − 1)− 1

2πi

∫
T

{
iπ + log z − τ

z
− τ2

2z2
− ...

}{
1

τ

}
dτ

)

=

m∑
j=1

βj

(
log(z − 1)− log z

)
.

(3.4.17)

Combining the residue theorem with the above expansion, we get:

−
∑m

j=1 βj

2πi

∫
T

log zj
τ − z

dτ =


−
∑m

j=1 βj log zj , |z| < 1,

0, |z| > 1.

(3.4.18)

Now, we define hαj by setting

hαj (z) = |z − zj |αj = (z − zj)
αj/2(z−1 − z−1

j )αj/2 =
(z − zj)

αj

(zzjeilj )αj/2
, (3.4.19)

where

lj =


3π, for 0 < θ < θj

π, for θj < θ < 2π

(3.4.20)

and z = eiθ, zj = eiθj , θj ̸= 0, 0 ≤ θ < 2π. We then write

1

2πi

∫
T

∑m
j=1 2αj log |τ − zj |

τ − z
dτ =

1

2πi

∫
T

∑m
j=1 2αj log(τ − zj)−

∑m
j=1 αj log(τzje

ilj )

τ − z
dτ

=
1

2πi

∫
T

∑m
j=1 2αj log(τ − zj)

τ − z
dτ − 1

2πi

∫
T

∑m
j=1 αj log(τ)

τ − z
dτ

− 1

2πi

∫
T

∑m
j=1 αj log(zj)

τ − z
dτ − 1

2πi

∫
T

∑m
j=1 αj log(e

ilj )

τ − z
dτ.

(3.4.21)

We can evaluate the first term in (3.4.21) and the expansion that follows by using the residue
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theorem as follows:

log(τ − zj) = log(exp(iπ)) + log(zj)−
∞∑
k=1

z−k
j τk

k
. (3.4.22)

Recall that,

log(1− z) = −
∞∑
n=1

zn

n!
, for |z| < 1. (3.4.23)

Consequently,

1

2πi

∫
T

∑m
j=1 2αj log(τ − zj)

τ − z
dτ =


∑m

j=1 2αj log(z − zj), |z| < 1,

0, |z| > 1.

(3.4.24)

The second term was evaluated in (3.4.16) and (3.4.17), and the third one in (3.4.18). In

order to determine the final term, we note that

1

2πi

∫
T

∑m
j=1 αj log(e

ilj )

τ − z
dτ =

1

2πi

∫
T

αj log(e
2πi)

τ − z
dτ +

αj

βj

1

2πi

∫
T

log gzj ,βj
(τ)

τ − z
dτ, (3.4.25)

where

1

2πi

∫
T

log gzj ,βj
(τ)

τ − z
dτ =

1

2πi

∫ θj

0

iπβj
τ − z

dτ − 1

2πi

∫ 2π

θj

iπβj
τ − z

dτ

=
1

2πi

∫
T

iπβj
τ − z

dτ − 2
1

2πi

∫ 2π

θj

iπβj
τ − z

dτ.

By (3.4.18), we get

1

2πi

∫
T

log gzj ,βj
(τ)

τ − z
ds =


iπβj − 2 1

2πi

∫ 2π
θj

iπβj

τ−z dτ, for|z| < 1

−2 1
2πi

∫ 2π
θj

iπβj

τ−z dτ, for|z| > 1

(3.4.26)

and

2
1

2πi

∫ 2π

θj

iπβj
τ − z

dτ = βj
(
log(1− z)− log(z − zj)− iπ).
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In this case, we have

1

2πi

∫
T

log gzj ,βj
(τ)

τ − z
dτ =


βj log(z − zj)− βj log(1− z), for |z| < 1,

βj log(z − zj)− βj log(z − 1), for |z| > 1.

(3.4.27)

Thus, by combining (3.4.18) and (3.4.27), we obtain

1

2πi

∫
T

αj log(e
ilj )

τ − z
dτ =


αj

(
log(z − zj)− log(1− z)

)
, for |z| < 1,

αj

(
log(z − zj)− log(z − 1)

)
, for |z| > 1.

(3.4.28)

Therefore, we have for |z| < 1,

1

2πi

∫
T

∑m
j=1 2αj log |τ − zj |

τ − z
dτ =

m∑
j=1

(
2αj log(z − zj)− αj log(1− z)− iπαj − αj log zj

− αj log(z − zj) + αj log(1− z)

)
=

m∑
j=1

(
αj log(z − zj)− αj log zj − iπαj

)
,

(3.4.29)

and for |z| > 1,

1

2πi

∫
T

∑m
j=1 2αj log |τ − zj |

τ − z
dτ = αj log z − αj log(z − zj). (3.4.30)

Using the residue theorem, and the expansion of log(τ−et) = log(eiπ)+log(et)−
∑∞

k=1
e−tτk

k ,
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we find that

1

2πi

∫
T

(α0 + β0) log(τ − et)

τ − z
dτ =

(α0 + β0)

2πi

∫
T

{
iπ + t− e−tτ − e−2t

2
τ2 − ...

}

×

{
1

τ
+

z

τ2
+
z2

τ3
+ ...

}
dτ

= (α0 + β0)

(
iπ + t− e−tz − e−2t

2
z2 − ...

)
= (α0 + β0)

(
iπ + t−

∞∑
k=1

e−tk

k
zk
)

= (α0 + β0) log(z − et),

(3.4.31)

and for |z| > 1,

1

2πi

∫
T

(α0 + β0) log(τ − et)

τ − z
dτ =

(α0 + β0)

2πi

∫
T

{
iπ + t− e−tτ − e−2t

2
τ2 − ...

}

×

{
−1

z
− τ

z2
− τ2

z3
+ ...

}
dτ = 0.

(3.4.32)

Similar to the previous integral, but this time by using the expansion

log(τ − e−t) = log(τ)−
∞∑
k=1

e−tk

k
τ−k, (3.4.33)

we have, for |z| < 1,

1

2πi

∫
T

(α0 − β0) log(τ − e−t)

τ − z
dτ =

(α0 − β0)

2πi

[∫
T

log(τ)

τ − z
dτ +

∫
T

{
− e−tτ−1

− e−2t

2
τ−2 − ...

}{1

τ
+

z

τ2
+ ...

}
dτ

]

= (α0 − β0)

(
log(1− z)− iπ

)
.

(3.4.34)
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Now, for |z| > 1, we continue in the same manner, but now using (3.4.17), we get

1

2πi

∫
T

(α0 − β0) log(τ − e−t)

τ − z
dτ =

(α0 − β0)

2πi

[∫
T

log(τ)

τ − z
dτ +

∫
T

{
− e−tτ−1−

e−2t

2
τ−2 − ...

}{
− 1

z
− τ

z2
− ...

}
dτ

]

= (α0 − β0) log(z − 1)− (α0 − β0) log z

− (α0 − β0)
(
− e−tz−1 − e−2t

2
z−2 − ...

)
= (α0 − β0)

(
log(z − 1)− log(z − e−t)

)
.

(3.4.35)

Utilizing the previous results, for |z| < 1, we have

1

2πi

∫
T

(−α0 + β0) log(τ)

τ − z
dτ = (−α0 + β0)

(
log(1− z)− iπ

)
, (3.4.36)

and for |z| > 1, we have

1

2πi

∫
T

(−α0 + β0) log(τ)

τ − z
dτ = (−α0 + β0)

(
log(z − 1)− log z

)
(3.4.37)

and by using (3.4.20), we get

1

2πi

∫
T

−iπ(α0 + β0)

τ − z
dτ =


−iπ(α0 + β0) for |z| < 1,

0 for |z| > 1.

(3.4.38)

By multiplying all of the above results together, the formula for the Szegő function (3.4.13)

is produced.

Note that the jump matrices S(z) and N(z) are not uniformly close to one another near

singularities zj . Consequently, we must construct local parametrices at these points in the

subsequent step. After that, we match them with N(z) on ∂Uzj , and the desired asymptotics

is obtained.
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3.4.4 Construction of the local parametrices at fixed singulari-

ties

Now we will examine separately each intersection where we have opened the lens (Riemann-

Hilbert problem for S(z)). In the neighbourhood Uzj , we will construct the local parametrices

Pzj at zj , j = 1, ...,m. We need a sectionally analytic matrix-valued function that satisfies

the following Riemann-Hilbert problem for P (zj). The study is based on the work of Deift,

Its, and Krasovsky [16], [18], and also on [34].

The Riemann-Hilbert problem for P (zj)

RH-P1: Pzj (z) is analytic for z ∈ Uzj \ Σ = ∪1
j=0(Σj ∪ Σ′

j ∪ Σ′′
j ).

RH-P2: The boundary values are related by the following jump conditions,

Pzj ,+(z) = Pzj ,−(z)

 1 0

ft(z)
−1z±n 1

 z ∈ Uzj ∩ (∪1
j=0(Σj ∪ Σ′′

j )),

with the minus sign in the exponent on Σj , and plus sign on Σ′′
j ,

Pzj ,+(z) = Pzj ,−(z)

 0 ft(z)

−ft(z)−1 0,

 z ∈ Uzj ∩ (∪1
j=0Σ

′
j).

RH-P3: For z ∈ ∂Uzj \ Σ, the following uniform asymptotic holds as n → ∞ (this is

known as a matching condition):

Pzj (z)N
−1(z) = I + o(1). (3.4.39)

RH-P4: For z → zj , j = 1, ...,m, the jump conditions are identical to S(z).

First, we investigate RH-P1, RH-P2, and RH-P4 in order to construct Pzj (z), and then we

turn to RH-P3. A series of procedures will be completed to accomplish this construction.

Step 1: Reduction to constant jumps
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Figure 3.2: Ψ RH problem

First define the following transformation that maps the z-plane to the ξ-plane:

ξ(z) = n log
z

zj
, (3.4.40)

where log z > 0 when z > 0 and the logarithm has a cut on the negative half of the real axis.

The neighborhood Uzj is transformed into a neighborhood of zero in the ξ-plane by this trans-

formation. Now, we select the form of the intersection between the neighborhood Uzj and

the contour in the Riemann-Hilbert problem for S(z) such that their images are straight lines

under this transformation. The function ξ(z) is analytic and one-to-one which maps an arc

of the unit circle to an interval along the imaginary axis. The values in sectors I, II, III, IV

correspond to the interior of the unit circle, and ξ values in sectors V, V I, V II, V III corre-

spond to the exterior of the unit circle. In order to address the non-analyticity of |z − zj |αj ,

we added an additional jump contour to Σ in the neighborhood of zj , which is the pre-image

of the real lines Γ3 and Γ7.

Then, we will present the following auxiliary function Fj(z) defined in [16] by

Fj(z) = exp

{
1

2
log a(z; t)

}
m∏
k=1

(
z

zk
)βk/2

∏
k ̸=j

hαk
(z)gβk

(z)1/2

× hαj (z)


e−iπαj ξ ∈ I, II, V, V I

eiπαj ξ ∈ III, IV, V II, V III.

(3.4.41)

It is not difficult to show that Fj(z), j = 1, ...,m is analytic in the intersection of each quarter



CHAPTER 3. TRANSITION ASYMPTOTICS 44

ξ−plane with ξ(Uzj ) and includes the following jumps:

Fj,+(z) = Fj,−e
−2πiαj ξ ∈ Γ1. (3.4.42)

We can show this by using the definition (3.4.41), which states that

Fj,+ = exp

{
1

2
log a(z; t)

}
m∏
k=1

(
z

zk
)βk/2

∏
k ̸=j

hαk
(z)gβk

(z)1/2

× hαj (z)e
−iπαj ,

and

Fj,− = exp

{
1

2
log a(z; t)

}
m∏
k=1

(
z

zk
)βk/2

∏
k ̸=j

hαk
(z)gβk

(z)1/2

× hαj (z)e
iπαj .

Thus, we derived the jump at ξ ∈ Γ1 by comparing Fj,+ and Fj,−. Similarly, we can confirm

the jumps in other sectors.

Fj,+(z) = Fj,−e
2πiαj ξ ∈ Γ5. (3.4.43)

Fj,+(z) = Fj,−e
πiαj ξ ∈ Γ3 ∪ Γ7. (3.4.44)

Using the function (3.4.19) of ft(z) and the definition of the function Fj(z) in (3.4.41), the

following relations are obtained,

Fj(z)
2 = ft(z)e

−2iπαjg−1
βj

(z), ξ ∈ I, II, V, V I (3.4.45)

Fj(z)
2 = ft(z)e

2iπαjg−1
βj

(z), ξ ∈ III, IV, V II, V III (3.4.46)
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Then, we search for a function Pzj (z) of the following form:

Pzj (z) = P (1)

F−1
j 0

0 Fj

 z±nσ3/2.

The plus sign is used when |z| < 1 and minus sign when |z| > 1, which corresponds to

ξ ∈ I, II, III, IV and ξ ∈ V, V I, V II, V III, respectively. In order to satisfy the conditions

from (RH-P1),(RH-P2), and (RH-P4), P (1)(z) must be constant.

Step 2: Riemann-Hilbert problem for Ψj(ξ) and the solution

Using the map in (3.4.40), this constant jump problem P (1) produces a model problem Ψj(ξ)

which is defined in ξ-plane. Set

P (1)(z) = Ψj(ξ), (3.4.47)

where Ψj(ξ) satisfies the Riemann-Hilbert problem on the contour Γ = ∪8
j=1Γj ,

RH-Ψj1: Ψj is analytic for ξ ∈ C \ Γ.

RH-Ψj2: Ψj satisfies the following jump conditions:

Ψj,+(ξ) = Ψj,−(ξ)

 0 e−iπβj

−e−iπβj 0

 , ξ ∈ Γ1, (3.4.48)

Ψj,+(ξ) = Ψj,−(ξ)

 0 e−iπβj

−eiπβj 0

 , ξ ∈ Γ5, (3.4.49)

Ψj,+(ξ) = Ψj,−(ξ)e
iπαjσ3 , ξ ∈ Γ3 ∪ Γ7, (3.4.50)

Ψj,+(ξ) = Ψj,−(ξ)

 1 0

−e±iπ(βj−2αj) 1

 , (3.4.51)
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where the plus sign in the exponent for ξ ∈ Γ2, and the minus sign for ξ ∈ Γ4

Ψj,+(ξ) = Ψj,−(ξ)

 1 0

−e±iπ(βj+2αj) 1

 , (3.4.52)

with plus sign for ξ ∈ Γ8, and the minus sign for ξ ∈ Γ6 .

RH-Ψj3: As ξ → 0 with ξ ∈ C \ Γ outside the lenses,

Ψj(z) =

O(1) O(log |ξ|)

O(1) O(log |ξ|)

 , αj = 0, βj ̸= 0, (3.4.53)

and

Ψj(z) =

O(ξαj ) O(ξαj ) +O(ξ−αj )

O(ξαj ) O(ξαj ) +O(ξ−αj )

 , αj ̸= 0. (3.4.54)

The solution of this problem was explicitly solved in terms of confluent hypergeometric

functions (see, [16]).

Proposition 3.4.2. ([16], Proposition 4.1) Let αj ± βj /∈ Z− for all j = 1, ...,m. Then a

solution for the Ψj(ξ) Riemann-Hilbert problem in sector I is given by:

Ψj(ξ) = Ψ
(I)
j (ξ) =

Ψj,11 Ψj,12

Ψj,21 Ψj,22

 , (3.4.55)

where

Ψj,11 = ξαjψ(αj + βj , 1 + 2αj , ξ)e
iπ(2βj+αj)e−ξ/2

Ψj,12 = −ξαjψ(1 + αj − βj , 1 + 2αj , e
−iπξ)eiπ(βj+αj)eξ/2

Γ(1 + αj − βj)

Γ(αj + βj)

Ψj,21 = −ξ−αjψ(1− αj + βj , 1− 2αj , ξ)e
iπ(βj−3αj)e−ξ/2Γ(1 + αj + βj)

Γ(αj − βj)
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and

Ψj,22 = ξ−αjψ(−αj − βj , 1− 2αj , e
−iπξ)e−iπαjeξ/2.

The solutions for the other sectors are reconstructed by using (3.4.48)-(3.4.52). Step 3:

The matching condition

We multiply Ψj(ξ) by the analytic function E(z) from the left. Then we get

P (1)(z) = E(z)Ψj(ξ). (3.4.56)

The precise E(z) will be given later. Thus the parametrices that we have are

Pzj = E(z)Ψj(ξ)F
−σ3/2
j z±nσ3/2. (3.4.57)

Then, on the boundary, we will match this solution with N(z) for large n. To accomplish

this, E(z) must be close to the following

N(z)

Fj(z) 0

0 F−1
j (z)

 z∓nσ3/2Ψ−1
j (ξ).

The limit for z ∈ ∂Uzj and n→ ∞ is equivalent to ξ → ∞. Consequently, we must determine

the asymptotic expansion of Ψj(ξ) using the classical results in [8] and [28] for the confluent

hypergeometric function Ψj(ξ). As |x| → ∞ with −3π
2 < arg x < 3π

2 ,

ψ(a, c, x) = x−a[1− a(1 + a− c)x−1 +O(x−2)]. (3.4.58)

In addition, this result can be applied to ψ(a, c, ξ) and ψ(a, c, e−iπξ) for 0 < arg ξ < 2π when

ξ ∈ I.

Applying this result to (3.4.55), we obtain the asymptotics as ξ → ∞ in sector I, which

remains unchanged in sector II because of the correct triangular structure of the jump ma-
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trices.

Ψ
(I)
j = Ψ

(II)
j (ξ)

=

[
I +

1

ξ

 α2
j − β2j

Γ(1+αj−βj)
Γ(αj+βj)

eiπ(βj+4αj)

−Γ(1+αj+βj)
Γ(αj−βj)

e−iπ(βj+4αj) −(α2
j − β2j )

+O(ξ−2)

]

× ξ−βjσ3e−ξσ3/2

eiπ(2βj+αj) 0

0 e−iπ(βj+2αj)

 ,

ξ → ∞, ξ ∈ I, II, αj ± βj ̸= −1,−2, ...

(3.4.59)

To achieve the asymptotic behaviuor in other sectors, we employ the relevant jump matrices

that yield the following results:

Ψ
(III)
j (ξ) = Ψ

(IV )
j (ξ) = Ψ

(I)
j (ξ)eiπαjσ3 . (3.4.60)

Ψ
(V )
j (ξ) = Ψ

(V I)
j (ξ) = Ψ

(I)
j (ξ)

 0 −eiπβj

e−iπβj 0

 e−iπαjσ3 . (3.4.61)

Ψ
(V III)
j (ξ) = Ψ

(V II)
j (ξ) = Ψ

(I)
j (ξ)

 0 −e−iπβj

eiπβj 0

 . (3.4.62)

The following result is obtained by substituting this asymptotics into the condition on E(z)

(see (3.4.39)):

Pzj (z)N
−1(z) = E(z)Ψj(ξ)Fj(z)

−σ3z±
nσ
2 N−1 = I + o(1). (3.4.63)

The function E(z) is then obtained in sectors I and II as follows:

E(z) = N(z)ξβjσ3F−σ3
j z

−nσ3
2

j

e−iπ(2βj+αj) 0

0 eiπ(βj+2αj)

 , ξ ∈ I, II (3.4.64)

For more information on how to find the asymptotics of the matrices E(z) for the remaining

sectors using the asymptotics in (3.4.59), see [16] and in particular (4.42)-(4.50) therein.

Thus by applying (3.4.47), (3.4.57), (3.4.64), and Proposition 3.4.2, the construction of
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the parametrices Pzj has been completed for Uzj .

Similarly to [16], we derive the unique expansions in u = z− zj as u→ 0. Recall (3.1.1),

and the factorisation of V (z), and from (3.4.13), (3.4.19),(3.4.40), (3.4.41), we get

Fj(z) = ηje
−3iπα/2z

−αj

j uαj (1 +O(u)), u = z − zj ξ ∈ I, (3.4.65)

where

ηj = exp{log a(zj ; t)/2} exp
{
− iπ

2

( j−1∑
k=1

βk −
m∑

k=j+1

βk

)}∏
k ̸=j

(
zj
zk

)βk/2

|zj − zk|αk ,

(3.4.66)

D(z) =

m∏
j=1

uαj+βjz
−(αj+βj)
j e−iπ(αj+βj)(z − et)α0+β0e−iπ(α0+β0)

exp

{ ∞∑
k=0

Vkz
k
j

}
(1 +O(u)),

(3.4.67)

and

ξ(z) = n log
z

zj
+O(u2) = n

u

zj
(1 +O(u)). (3.4.68)

By combining them, we obtain the following:

(
D(z)

ξβjFj(z)

)2

= eV0
exp

∑∞
k=1 Vkz

k
j

exp
∑∞

k=1 V−kz
−k
j

(1− zje
−t)(α0+β0)(1− e−tz−1

j )−(α0−β0)

× n−2βjet(α0+β0) × eiπ(αj−2βj) ×
∏
k ̸=j

(
zj

zkeiπ

)αk

|zj − zk|2βk(1 +O(u)).

(3.4.69)

According to (3.4.64), detE(z) = eiπ(αj−βj) holds in all ξ-plane sectors. It is also essential to

remember that detψj(ξ) = e−iπ(αj−βj). According to Liouville’s theorem, detψj(ξ) contains

no jumps. As a result, the singularities at zero are removable as ℜαj > −1
2 , and the constant

value of the function can be determined by applying (3.4.59). By combining these observations

and noting that detPzj = 1, it is possible to conclude that Pzj is unique and that its inverse

exists, and so, Pzj (z)P̂zj (z) = I. It is also important to note that by constructing Pzj (z),

which has the same jumps as S(z), it follows that S(z)Pzj (z)
−1 has no jumps, so it is analytic

near zj . This means that the singularities are removable. The singularities at z = zj are at
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most O(|z−zj |2αj ) or O(log |z−zj |), which can be seen by applying (3.4.8), (3.4.9), (3.4.53),

and (3.4.54).

Observe that the error term in the equation (3.4.63) is

o(1) = n−ℜβjσ3O(
1

n
)nℜβjσ3 if ℜβj ∈ (−1

2
,
1

2
).

Next, we will extend (3.4.63) to figure out the first correction term ∆1(z) in the asymptotic

series in inverse powers of n satisfying

Pzj (z)N
−1(z) = I +∆1(z) + n−ℜβjσ3O(n−2)nℜβjσ3 . (3.4.70)

By considering further terms, we can then extend (3.4.59) to discover a complete asymptotic

series. By multiplying out the matrices in (3.4.64), we obtain

E(z) =

 0 D(z)ξ−βjF−1
j z

n/2
j eiπ(βj+2αj)

−E−1
12 e

iπ(αj−βj) 0

 . (3.4.71)

In addition,

PzjN
−1 =

E12Ψ1,22Fjz
−n/2D(z)−1 −E12Ψ1,21F

−1
j zn/2D(z)

E21Ψ1,12Fjz
−n/2D(z)−1 −E21Ψ1,11F

−1
j zn/2D(z)

 . (3.4.72)

After that , by substituting in (3.4.71), and using (3.4.59) for ψj,im yields the following result:

∆1(z) =
1

ξ

 −(α2
j − β2j ) znj

Γ(1+αj+βj)
Γ(αj−βj)

(
D(z)

ξβjFj

)2

eiπ(2βj−αj)

−znj
Γ(1+αj−βj)
Γ(αj+βj)

(
D(z)

ξβjFj

)−2

e−iπ(2βj−αj) (α2
j − β2j )

 .

(3.4.73)

Then, we will look for the 12 element of the correction that will be required in what
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follows:

(∆1(z))12 =
1

ξ

m∑
j=1

[
znj e

V0 exp

{ ∞∑
k=1

Vkz
k
j

}
exp

{
−

∞∑
k=1

V−kz
−k
j

}
(1− zje

−t)(α0+β0)

× (1− e−tz−1
j )−(α0−β0) × et(α0+β0) ×

∏
k ̸=j

(
zj
zk

)αk

|zj − zk|2βk

× exp

{
− iπ

( j−1∑
k=1

αk −
m∑

k=j+1

αk

)}
n−2βj

Γ(1 + αj + βj)

Γ(αj − βj)

]
(1 +O(u)).

(3.4.74)

In addition, we observe,

1

ξ
=

zj
n(z − zj)

+O(z − zj)
2 z → zj (3.4.75)

3.4.5 Local parametrix at emerging singularity

Before constructing the local parametrix at z0 = 1, we will present the Riemann-Hilbert

problem for Painlevé V equation, which plays an important role in describing the transition in

[13] and [34]. For the reader’s convenience, we recall the relevant theory.

Riemann Hilbert-Problem for Painlevé V

We consider the second order ordinary differential equation

(
x
d2σ

dx2

)2

=

(
σ−x

dσ

dx
+2(

dσ

dx
)2+2α0

dσ

dx

)2

− 4

(
dσ

dx

)2(dσ
dx

+α0+β0

)(
dσ

dx
+α0−β0

)
,

(3.4.76)

which is the σ-form of the painlevé V equation

uxx =

(
1

2u
+

1

u− 1

)
u2x −

1

x
ux +

(u− 1)2

x2

(
Au+

b

u

)
+
Cu

x
+D

u(u+ 1)

u− 1
(3.4.77)

studied by Jimbo, Miwa, and Okamoto in [30] (see also [31]).

For the equation above, we have the following parameters,

A =
1

2
(α0 − β0)

2, B = −1

2
(α0 + β0)

2, C = 1 + 2β0, D = −1

2
. (3.4.78)
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According to [13], the Painlevé V equation has a solution that can be written as follows:

σ(x) =

∫ +∞

x
v(ξ)dξ. (2.4.79)

Furthermore, the function σ(x) can be formed directly in terms of the Riemann-Hilbert

problem given below. Consider the contour Γ =
⋃6

j=1 Γj in the complex plane C with

Γ1 =
1

2
+ eiπ/4R+, Γ2 =

1

2
+ ei3π/4R+, Γ3 =

1

2
+ ei5π/4R+,

Γ4 =
1

2
+ ei7π/4R+, Γ5 = (1,∞), Γ6 = (0, 1).

(3.4.80)

The Riemann-Hilbert problem for Ψ.

(RH-Ψ1): Ψ is analytic for ξ ∈ C \ Γ.

(RH-Ψ2): Ψ has a continuous boundary value on Γ\{0, 12 , 1} with the jump conditions

given as follows:

Ψ+(ξ) = Ψ−(ξ)

1 eiπ(α0−βj)

0 1

 , ξ ∈ Γ1, (3.4.81)

Ψ+(ξ) = Ψ−(ξ)

 1 0

−e−iπ(α0−β0) 1

 , ξ ∈ Γ2, (3.4.82)

Ψ+(ξ) = Ψ−(ξ)

 1 0

eiπ(α0−β0) 1

 , ξ ∈ Γ3, (3.4.83)

Ψ+(ξ) = Ψ−(ξ)

1 −e−iπ(α0−β0)

0 1

 ξ ∈ Γ4. (3.4.84)

Ψ+(ξ) = Ψ−(ξ)e
2πiβ0σ3 ξ ∈ Γ5, (3.4.85)

Ψ+(ξ) = Ψ−(ξ)e
−πi(α0−β0)σ3 ξ ∈ Γ6. (3.4.86)

(RH-Ψ3): As ξ → ∞, Ψ has the following asymptotic behaviour for certain matrices
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C1 = C1(x, α, β),

Ψ(ξ) =
(
I +

C1

ξ
+O(ξ−2)

)
ξ−β0σ3e−(x

2
)ξσ3 . (3.4.87)

(RH-Ψ4): Ψ has the following limiting behaviour

(a)

Ψ(ξ) = O

|ξ|(α0−β0)/2 |ξ|−(α0−β0)/2

|ξ|(α0−β0)/2 |ξ|−(α0−β0)/2

 as ξ → 0. (3.4.88)

(b)

Ψ(ξ) = O

|ξ − 1|−(α0+β0)/2 |ξ − 1|(α0+β0)/2

|ξ − 1|−(α0+β0)/2 |ξ − 1|(α0+β0)/2

 as ξ → 1. (3.4.89)

(c) Ψ is bounded in a neighborhood of 1/2.

Now, we will construct the parametrix at z0 = 1. Similar to the parametrices at zj , j =

1, ...,m, Pz0 will be constructed at z0 = 1 which satisfies the same jump conditions as the

Riemann-Hilbert problem for S(z) in the neighborhood of z0 with a small fixed radius. Then,

on the boundary of Uz0 , we will have a matching condition with the Riemann-Hilbert problem

for N(z). This will be accomplished by following a series of steps similarly to [13] and [34].

Step 1: Assuming the Riemann-Hilbert problem for Ψ is solvable, define the following func-

tion,

Φ(λ;x) = e
x
4
σ3x−β0σ3Ψ

(
λ

x
+

1

2
;x

)
G(λ;x)

1
2
σ3e±

πi
2
(α0−β0)σ3 (3.4.90)

for ±ℑλ > 0, respectively. The function G(λ;x) is analytic in C \ ((−∞,−x
2 ] ∪ [x2 ,+∞))

and defined as follows:

G(λ;x) = (λ+
x

2
)−(α0−β0)(λ− x

2
)(α0+β0)eλe−πi(α0−β0), x > 0, (3.4.91)

where −π < arg(λ+ x
2 ) < π , 0 < arg(λ− x

2 ) < 2π.

The matrix-valued function Φ(λ;x) in (3.4.90) solves the following Riemann-Hilbert prob-

lem for x > 0:
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(RH-Φ1): Φ : C \ ∪4
j=1e

πi(2j−1)/4R+ → C2×2 is analytic, with the rays eπi(2j−1)/4R+

as shown in Figure 3.3.

(RH-(Φ2): Φ has the following jump conditions on ∪4
j=1e

πi(2j−1)/4R+ \ {0}:

Φ+(λ) = Φ−(λ)

1 G(λ;x)−1

0 1

 , as λ ∈ (eπi/4R+ ∪ e7πi/4R+) (3.4.92)

and

Φ+(λ) = Φ−(λ)

 1 0

−G(λ;x) 1

 , as λ ∈ (e3πi/4R+ ∪ e5πi/4R+). (3.4.93)

(RH-Φ3): Φ has the following behaviour as λ→ ∞,

Φ(λ) = I +O(λ−1). (3.4.94)

(RH-Φ4): Φ is bounded near 0.

Proposition 3.4.3 (Proposition 3.1 of [13]). We have

1. If ℜα0 > −1/2, the Riemann-Hilbert problem for Φ has a unique solution for all possible

finite numbers of positive x−values {x1, ..., xk}, where xj = xj(α, β) and k = k(α, β)

2. If α0 > −1/2, (α0 is real), and ℜβ0 = 0, then the Riemann-Hilbert problem for Φ has

a unique solution for all x > 0.

3. If ℜα0 > −1/2, the asymptotics for Φ as λ → ∞ is valid uniformly for x ∈ (0,∞),

with the exception of the set {x1, ..., xk}.

The preceding proposition was proved in [13] by Clyaeys, Its, and Krasovsky.

Step 2: We will map the jump matrices for Φ into the jump matrices for S in the neigh-

bourhood of z0 = 1 by defining the conformal mapping that maps 1 to 0 and e±t to ±x/2,

respectively.

λ(z) =
x

2t
log(z), (3.4.95)
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Figure 3.3: Φ RH-problem

where log z > 0 when z > 0 and the branch is cut along the negative axis. Consequently, we

require that eλ(z) = zn, and so,

x = 2nt. (3.4.96)

Here λ(z) translates Σ1 and Σ2 close to 1 onto the jump contour ∪4
j=1e

iπ(2j−1)/4R+ for Φ.

Step 3: We search for the parametrix Pz0 with the form:

Pz0(z) = E(z)Φ(λ(z); 2nt)W (z), (3.4.97)

where W (z) is given by,

W (z) =


−G(λ(z))−σ3/2znσ3/2ft(z)

−σ3/2σ3, for |z| < 1

G(λ(z))−σ3/2znσ3/2ft(z)
σ3/2σ1, for |z| > 1

(3.4.98)

and

σ1 =

0 1

1 0

 .

Noting that the branch points of G cancel with those of ft, so W (z) is analytic in Uz0 \ T.

To satisfy the conditions for the construction in which Pz0 has the same jump condition as

S(z), we must assume that E(z) is analytic in the neighborhood of z0.

Step 4: We attempt to fix E(z) in a way that satisfies the matching condition Pz0N
−1 =

I + o(1) on the boundary of Uz0 . Consider the behaviour of the parametrix Pz0 on the
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boundary of Uz0 . By utilising (3.4.95), we have

|λ(z)| > cn z ∈ ∂Uz0

Using Proposition 3.4.3, as n→ ∞ and 2nt remains bounded away from {x1, x2, ..., xk}, we

can use the asymptotic behaviour of Φ(z) in (3.4.94) to demonstrate that Φ(z) approaches

identity as z → ∞, and we have

Pz0(z) = E(z)(I +O(
1

n
))W (z), as n→ ∞ (3.4.99)

uniformly with respect to 0 < t < t0 and z ∈ ∂Uz0 . We assume that e±t lie inside Uz0 for

small t0. As n→ ∞, by (3.4.91) and (3.4.98), we have

W (z) = n−β0



O(1) 0

0 O(1)

 , |z| < 1

 0 O(1)

O(1) 0

 , |z| > 1

(3.4.100)

uniformly in terms of 0 < t < t0 and z ∈ ∂Uz0 \ T. Then we set

E(z) = N(z)W (z)−1. (3.4.101)

By utilizing the jump for N(z) and W (z), we can easily show that E(z) is analytic in the

whole area U z0 of 1. Then, from (3.4.11) and (3.4.101), we get the following asymptotics:

E(z) =

 0 O(1)

O(1) 0

nβ0σ3 as n→ ∞ (3.4.102)

uniformly for 0 < t < t0 , and z ∈ ∂Uz0 . The asymptotics for the matching condition for
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z ∈ ∂Uz0 can be obtained using this and (3.4.99):

Pz0(z)N(z)−1 = E(z)(I +O(1/n))E(z)−1

= I + n−β0σ3O(1/n)nβ0σ3as n→ ∞
(3.4.103)

for 0 < t < t0 uniformly. Thus, we conclude the construction of the local parametrix at z0

holds if 2nt is away from the set {x1, ..., xk}.

The singularity at z0 is removable because Pz0 has the same jump conditions as S(z), so

S(z)Pz0(z)
−1 is analytic in a neighborhood of z0 = 1.

Now we will compute the first correction term ∆1(z) in the asymptotic series in inverse

powers of n:

Pz0(z)N(z)−1 = I +∆1(z) + n−ℜβ0σ3O(1/n2)nℜβ0σ3 . (3.4.104)

Then, utilising (3.4.98), (3.4.101) and (3.4.11), we obtain

Pz0(z)N(z)−1 =


D(z)σ3

 0 1

−1 0

W (z)−1Φ(λ(z))W (z)

0 −1

1 0

D(z)−σ3 , |z| < 1

D(z)σ3W (z)−1Φ(λ(z))W (z)D(z)−σ3 , |z| > 1.

(3.4.105)

Denoting the elements of the matrix Φ(λ(z)) by = Φij for i, j = 1, 2, setting G(λ(z), x) = G,

and applying (3.4.98), we get

Pz0(z)N(z)−1 =



 Φ22 D(z)2G−1znft(z)
−1ϕ21

D(z)−2Gz−nft(z)Φ12 Φ11

 for|z| < 1

 Φ22 D(z)2G−1znft(z)ϕ21

D(z)−2Gz−nft(z)Φ12 Φ11

 for |z| > 1.

(3.4.106)

To figure out the asymptotic behaviour of these, the behaviour is evaluated as z → e±t.

Choosing the convenient region |z| ≶ 1 and taking u = z − e±t → 0, by the Szegő function
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defined in (3.4.13), we obtain,

D(z) =


∏m

j=1(1− z−1
j e−t)αj+βj (1− e−2t)α0+β0et(α0+β0) exp

{∑∞
k=0 Vke

−tk

}
(1 +O(u)) as z → e−t

∏m
j=1(1− zje

−t)−αj+βj (1− e−2t)−α0+β0 exp

{
−
∑∞

1 V−ke
−tk

}
(1 +O(u) as z → et.

(3.4.107)

By (3.4.91),

G(λ(z);x) = n2β0(log
z

e−t
)−(α0−β0)(log

z

et
)α0−β0zne−iπ(α0−β0)

=


n2β0u−(α0−β0)e−t(α0−β0)(2t)α0+β0e−tne2iπβ0(1 +O(u)) z → e−t

n2β0uα0+β0e−t(α0+β0)(2t)−α0+β0etne−iπ(α0−β0)(1 +O(u)) z → et.

(3.4.108)

Taking into account the symbols (3.1.1) and (3.4.19), we get

f(z; t) =



eV (e−t)
∏m

j=1(1− z−1
j e−t)2αjet(αj−βj)eiπ(αj−βj)z

(αj−βj)
j

×(1− e−2t)α0+β0uα0−β0e2tα0(1 +O(u)), z → e−t

eV (et)
∏m

j=1(1− zje
−t)2αjet(αj+βj)e−iπ(αj+βj)z

−(αj+βj)
j

×(1− e−2t)−(α0−β0)uα0+β0e−iπ(α0+β0)(1 +O(u)), z → et.

(3.4.109)

For what follows, we only need the ∆12 element of the ∆1 matrix and by (3.4.106) we have

∆12 = D(z)2G−1znft(z)
−1Φ21.

Putting all of this together with (3.4.97), we get the following as z → e−t,

(∆1(z))12 =
m∏
j=1

(1− z−1
j e−t)2βje−t(αj−βj)e−iπ(αj−βj)z

−(αj−βj)
j e−2iπβ0

× (1− e−2t)α0+β0 exp

{ ∞∑
k=0

Vke
−tk

}
exp

{
−

∞∑
k=1

V−ke
tk

}
× n−2β0

× (2t)−(α0+β0)et(α0+β0)Φ21(λ(z))(1 +O(u)),

(3.4.110)
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and for z → et, we have ∆12 = D(z)2G−1znft(z)Φ21 and

(∆1(z))12 =
m∏
j=1

(1− zje
−t)2βjet(αj+βj)e−iπ(αj+βj)z

−(αj+βj)
j e−iπ(αj+βj)

× (1− e−2t)−(α0−β0) exp

{
−

∞∑
k=1

V−ke
−tk

}
exp

{ ∞∑
k=0

Vke
tk

}
× n−2β0

× (2t)(α0−β0)e−2iβ0et(α0+β0)Φ21(λ(z))(1 +O(u)).

(3.4.111)

Next, we need to determine an appropriate asymptotics for Φ(λ, x) both when x is small and

when x becomes large. For the limit λ̂→ ∞, we obtain two asymptotic expansions:

Φ(λ̂) = I +
Ĉ1

λ̂
+O(λ̂)−2, (3.4.112)

of which one holds when x is small, say, 0 < x < δ, and the other holds when x > C, where

C is positive, and λ̂ = λ(z) ± x
2 . We aim to find a Ĉ1 for the expansion in (3.4.112) that

works for the two cases.

Asymptotics for Φ for large x

In [13] when x > C an expansion for the following function was obtained

Φ̃(ξ) = Φ(xξ = λ;x). (3.4.113)

The authors showed that

C̃1 =

 x−2+2αe−x

Γ(α0−β0)Γ(α0+β0)

(
1 +O(x−1)

)
−x−1+α0−β0e−x/2 e−2iπβ0

Γ(α0+β0)

(
1 +O(x−1)

)
x−1+α0−β0e−x/2 e2iπβ0

Γ(α0−β0)

(
1 +O(x−1)

) −x−2+2αe−x

Γ(α0−β0)Γ(α0+β0)

(
1 +O(x−1)

)


when when ξ → ∞. Further, by applying the transformation ξ → λ
x , we obtain the following

expansion for Φ21,

Φ21(λ;x) = xα0+β0e−x/2 e2πiβ0

Γ(α0 − β0)
λ−1

(
1+O(x−1)

)
+O(x2/λ2), as λ→ ∞ (3.4.114)

uniformly when x > C. Also, if we change λ → λ ± x
2 , we get the following uniform
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asymptotics for x > C:

Φ21(λ̂;x) = xα0+β0e−x/2 e2πiβ0

Γ(α0 − β0)
(λ̂)−1

(
1 +O(x−1)

)
+O(x2/λ̂2), as λ̂→ ∞.

(3.4.115)

Asymptotics for Φ for small x

To obtain the asymptotics of the Ψ Riemann-Hilbert problem and the Φ Riemann-Hilbert

problem as x → 0, we will use the analysis in [13]. Returning to the Ψ Riemann-Hilbert

problem, we will examine the following function:

Ψ̃(λ̃;x) = exσ3/2x−β0σ3 ×



ΨI(
λ
x + 1, x) for λ̃ ∈ I ′,

ΨII(
λ
x + 1, x) for λ̃ ∈ II ′,

ΨIII(
λ
x + 1, x) for λ̃ ∈ III ′,

ΨIV (
λ
x + 1, x) for λ̃ ∈ IV ′,

ΨV (
λ
x + 1, x) for λ̃ ∈ V ′

(3.4.116)

where λ̃(z) = λ(z) − x
2 and ΨI , ...,ΨV are the analytic continuation of Ψ from I, ..., V to

C \ [0,∞).

Here, the contour is turned into a contour in the λ̃-plane. In the ξ-plane, the contour is

translated by half, and then by realising that ξ(z) = λ(z)/x. It is important to note that the

point where the contour lines intersect is λ̃ = 0 instead of ξ = 1/2.

Using the Riemann-Hilbert problem for Ψ, the following Riemann-Hilbert problem for Ψ̃

can be derived directly:

Riemann-Hilbert Problem for Ψ̃.

(RH-Ψ̃1): Ψ̃ is analytic for λ̃ ∈ C \ Γ̃. Where Γ̃ = ∪6
j=1Γ̃j and

Γ̃1 = eiπ/4R+, Γ̃2 = e3iπ/4R+, Γ̃3 = e5iπ/4R+

Γ̃4 = e7iπ/4R+, Γ̃5 = R+, Γ̃6 = (−x, 0).
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(RH-Ψ̃2): Ψ̃ has continuous boundary values on Γ̃ \ {−x, 0} with the following jump

conditions:

Ψ̃+(λ̃) = Ψ̃−(λ̃)

1 eiπ(α0−β0)

0 1

 , λ̃ ∈ Γ̃1, (3.4.117)

Ψ̃+(λ̃) = Ψ̃−(λ̃)

 1 0

−e−iπ(α0−β0) 1

 , λ̃ ∈ Γ̃2, (3.4.118)

Ψ̃+(λ̃) = Ψ̃−(λ̃)

 1 0

eiπ(α0−β0) 1

 , λ̃ ∈ Γ̃3, (3.4.119)

Ψ̃+(λ̃) = Ψ̃−(λ̃)

1 −e−iπ(α0−β0)

0 1

 λ̃ ∈ Γ̃4, (3.4.120)

Ψ̃+(λ̃) = Ψ̃−(λ̃)e
2πiβ0σ3 λ̃ ∈ Γ̃5, (3.4.121)

Ψ̃+(λ̃) = Ψ̃−(λ̃)e
−πi(α0−β0)σ3 λ̃ ∈ Γ̃6. (3.4.122)

(Ψ̃3): As λ̃→ ∞ , it exhibits the following asymptotic behaviour:

Ψ̃(λ̃) = (I +O(λ̃−1))λ̃−β0σ3e−λ̃σ3/2. (3.4.123)

(Ψ̃4): Near these points, it has the following behaviour:

Ψ(λ̃) = O

|λ̃+ x|
(α0−β0)

2 |λ̃+ x|−
(α0−β0)

2

|λ̃+ x|
(α0−β0)

2 |λ̃+ x|−
(α0−β0)

2

 as λ̃→ −x, (3.4.124)

Ψ(λ̃) = O

|λ̃|−
(α0+β0)

2 |λ̃|
(α0+β0)

2

|λ̃|−
(α0+β0)

2 |λ̃|
(α0+β0)

2

 as λ̃→ 0, λ̃ ∈ I ′, V ′. (3.4.125)

For the asymptotics in other sections, we can apply appropriate jump conditions in (3.4.125).

In [13], the Ψ̃ Riemann-Hilbert problem was solved by using the steepest descent method.
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The authors constructed the global and local parametrix for small x, then matched them on

the boundary Uϵ of λ̃ = 0 that also contains [−x, 0]. They obtained the following asymptotics

for 21 element of Φ(λ;x):

Φ21(λ̃) = ex/4e2iπβ0(λ̃+ x)(α0−β0)/2λ̃(α0+β0)/2eλ̃/2ex/4e−λ̃/2

× Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̃−β0 λ̃−1(1 +O(λ̃−1))

= ex/2e2iπβ0
Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̃−(α0−β0)/2(1 +

x

λ̃
)−(α0−β0)/2λ̃(α0−β0)/2λ̃−1

× (1 +O(λ̃−1))

= ex/2e2iπβ0
Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̃−1(1 +O(λ̃−1)), as λ̃→ ∞

(3.4.126)

uniformly for x sufficiently small. Also by translating λ̃ = λ′ − x we obtain,

Φ21(λ
′) = ex/2e2iπβ0

Γ(1 + α0 + β0)

Γ(α0 − β0)
λ′−1

(
1 +O(λ′−1)

)
as λ′ → ∞, (3.4.127)

uniformly for small x.

Now we introduce the following function as in [33]:

K(x) = e
x
2

∫ ∞

x
yα0+β0e−ydy, (3.4.128)

which has the following behaviour,

K(x) ∼


e−

x
2 xα0+β0 as x→ ∞

e
x
2Γ(1 + α0 + β0) as x→ 0.

(3.4.129)

As a result, we may express Φ21(λ̂;x) for a fixed x usingK(x), which holds true asymptotically

for both large and small values of x. From (3.4.115), (3.4.126), and (3.4.127) we obtain

Φ21(λ̂;x) =
e2iπβ0

Γ(α0 − β0)
K(x)(λ̂)−1 +O

(
(λ̂)−2

)
as λ̂→ ∞. (3.4.130)
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In addition, we observe that for t fixed, if x = 2nt, λ̃ = n log z
et and λ′ = n log z

e−t ,

1

λ̃
=

et

n(z − et)
+O(z − et), z → et, (3.4.131)

and

1

λ′
=

e−t

n(z − e−t)
+O(z − e−t), z → e−t. (3.4.132)

Then, we derive the expression for (∆1(z))12 by combining the results from (3.4.110), (3.4.111),

and (3.4.126), (3.4.127) for z → e±t, respectively.

(∆1(z))12 = λ̃−1
m∏
j=1

(1− z−1
j e−t)2βjet(αj+βj)e−iπ(αj−βj)z

−(αj+βj)
j

× (1− e−2t)α0+β0 exp{
∞∑
k=0

Vke
−tk} exp{−

∞∑
k=1

V−ke
tk}

× (2t)α0β0et(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt).

(3.4.133)

(∆1(z))12 = λ′−1
m∏
j=1

(1− z−1
j e−t)2βje−t(αj−βj)e−iπ(αj−βj)z

−(αj−βj)
j

× (1− e−2t)α0+β0 exp{
∞∑
k=0

Vke
−tk} exp{−

∞∑
k=1

V−ke
tk}

× (2t)−(α0+β0)et(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt).

(3.4.134)

3.4.6 The small norm Riemann-Hilbert problem

Let us define the following matrix-valued function R(z) of the final transformation for the

original problem

R(z) =



S(z)N−1(z), z ∈ C \ Uzj ∪ Uz0 ∪ Γ,

S(z)P−1
zj (z), z ∈ Uzj ,

S(z)P−1
z0 (z), z ∈ Uz0 .

(3.4.135)
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Figure 3.4: The Final RH problem

Remark 3.4.4. So far, we have shown that the determinants of Pzj (z), Pz0(z), and N(z)

are all one, and so they are invertible. Also, we have verified that S(z)P−1
zj (z), j = 0, ...,m

are analytic in Uzj and that the jumps matrices of S(z) agree with the function N(z) on

C \ Uzj ∪ Uz0 ∪ Γ.

The following Riemann-Hilbert problem is solved by the function R(z) using the preceding

remark:

(RH-R1): R(z) is analytic in C \ Γ → C2×2, where Γ = ∪m
j=0∂Uzj ∪m

j=0 Σj∪m
j=0.

(RH-R2): R(z) satisfies the jump condition

R+(z) = R−(z)VR(z), z ∈ Γ (3.4.136)

with

VR(z) = N(z)Vk(z)N(z)−1 with


z ∈ ∪m

j=0Σj if k = 1

z ∈ ∪m
j=0Σ

′′
j if k = 2,

(3.4.137)
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where

V1 =

 1 0

z−kft(z)
−1 1

 , V2 =

 1 0

zkft(z)
−1 1


and the jump conditions on ∂Uz0 and ∂Uzj are given by

VR(z) =


Pzj (z)N

−1(z), z ∈ ∂Uzj , j = 1, ...,m

Pz0(z)N
−1(z), z ∈ ∂Uz0 .

(3.4.138)

(RH-R3): The function behaves as follows as z → ∞:

R(z) = I +O(z−1). (3.4.139)

Remark 3.4.5. The jump matrices on Σ and Σ′′ in (3.4.137) behave in the way we require,

that is, these matrices uniformly converge to the identity matrix at an exponential rate.

R+(z) = R−(z)

(
I +O(e−ϵn)

)
as n→ ∞, (3.4.140)

for a positive constant ϵ, with 0 < t < t0 and x /∈ {x1, ..., xk}.

Regarding the jump matrix on the contour ∂Uzj , where j = 1, ...,m, it can be observed

that these matrices exhibit a uniform expansion in the inverse power of n which is further

conjugated by nβjσ3z
−nσ3/2
j ,

VR(z) = I +∆1(z) + ∆2(z) + ...+∆k(z) + ∆
(r)
k+1(z) for z ∈ ∂Uzj (3.4.141)

where ∆k(z) = z
nσ3/2
j n−σ3βjO(n−1)nσ3βjz

−nσ3/2
j = O(n2maxj |ℜβj |−k). Similarly, on the

contour ∂Uz0 ,

Pz0(z)N(z)−1 = I +∆1(z) + ...+∆k(z) + ∆
(r)
k+1(z) for z ∈ ∂Uz0 . (3.4.142)

The condition VR = I + o(1) is required to get at the solution, which implies that ℜβj

and ℜβ0 are inside the interval (−1/2, 1/2). Using (3.4.70) and (3.4.103), it can be observed
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that the jump matrices in (3.4.138) converge uniformly to the identity matrix I + o(1).

Consequently, we conclude that

R+(z) = R−(z)

(
I +O(n−1)

)
as n→ ∞, (3.4.143)

uniformly on ∂Uzj .

Therefore, by using the asymptotic behaviour of the jump matrices in (3.4.140), and

(3.4.143), we have

R(z) = I +O(n−1) as n→ ∞, (3.4.144)

uniformly on C \ Γ = ∪m
j=0∂Uzj ∪m

j=0 Σj ∪m
j=0 Σ

′′
j .

Thus, the problem is a small norm problem in the case of the Fisher-Hartwig asymptotics,

and the Neumann series provides its solution (see, Theorem 7.8 of [19]):

R(z) = I +

k∑
p=1

Rp(z) +R
(r)
k+1. (3.4.145)

However, in the case of the Basor-Tracy conjecture when |||β(t)||| = 1, the behaviour

of R(z) in (3.4.145) does not meet the requirements because ℜβj /∈ (−1/2, 1/2). In order

to address these particular cases, we will consider the Riemann-Hilbert problem for R(z) as

presented in [19]. Let

R̂(z) = nωσ3R(z)n−ωσ3 , (3.4.146)

where

ω =
1

2
(min

j
ℜβj +max

j
ℜβj). (3.4.147)

By this transformation, all ℜβj are moved into the strip (−1/2, 1/2), which makes the asymp-

totics of the jump matrices above behave as I + o(1).

Let us examine how the change in (3.4.146) affects the jump conditions of the Riemann-
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Hilbert problem for R(z):

R̂ = nωσ3R+(z)n
−ωσ3 = nωσ3R−(z)VR(z)n

−ωσ3

= nωσ3R−(z)n
−ωσ3nωσ3VR(z)n

−ωσ3

= R̂−n
ωσ3VR(z)n

−ωσ3

. (3.4.148)

By this transformation, the jump matrices on the contours Σ and Σ′′ have the same

asymptotic behaviour as in the jump matrix for R in (3.4.140) but with different ϵ, VR(z) =

I +O(e−ϵn). The jump matrices on ∂Uzj , j = 0, ...,m have the form

R̂+ = R̂−

(
I + nωσ3∆1(z)n

−ωσ3 ++...+ nωσ3∆k(z)n
−ωσ3 + nωσ3∆

(r)
k+1(z)n

−ωσ3

)
.

(3.4.149)

Each term is of order O(n2maxj |ℜβj−ω|−k) and behaves asymptotically as I + o(1).

Therefore, the Riemann-Hilbert problem for R̂ is solvable for ℜβj ∈ (q − 1/2, q + 1/2),

j = 0, . . . ,m, q ∈ R, and the Neumann series

R̂(z) = I +
k∑

p=1

R̂p(z) + R̂
(r)
k+1(z) (3.4.150)

provides the solution.

The function R̂p(z) is repeatedly evaluated. The function R̂p(z) is analytic outside of the

boundary of ∪m
j=0∂Uzj , R̂p(z) → 0 at infinity for all p and satisfies

R̂p,+(z) = R̂p,−(z) +

p∑
i=1

R̂p−i,−(z)n
ωσ3∆i(z)n

−ωσ3 . (3.4.151)

We set R̂0(z) = I. The Riemann-Hilbert problem for R̂1(z) satisfies the following conditions:

(RH-R̂11): R̂1 : C \ ∪m
j=0∂Uzj → C2×2 is analytic

(RH-R̂12): R̂1(z) has the following jump conditions on the boundary of ∪m
j=0∂Uzj ,

R̂1,+(z) = R̂1,−(z) + nωσ3∆1(z)n
−ωσ3 . (3.4.152)
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(RH-R̂13): It has following behaviour as z → ∞,

R̂1(z) → 0. (3.4.153)

We recall the transformation (3.4.146) to solve the problem, which gives us

Rp(z) = n−ωσ3R̂p(z)n
ωσ3 , R(r)

p (z) = n−ωσ3R̂(r)
p (z)nωσ3 . (3.4.154)

Then, by applying the Plemelj formulas (see 2.6.2) and the residue theorem to this additive

Riemann-Hilbert problem, we obtain:

R1(z) =
1

2πi

∫
∂U

∆1(x)dx

x− z

=


∑m

k=1
Ak

z−zk
+

Aet

z−et +
Ae−t

z−e−t z ∈ C \ ∪m
j=0Uzj∑m

k=1
Ak

z−zk
+

Aet

z−et +
Ae−t

z−e−t −∆1 z ∈ Uzj ,

(3.4.155)

where Ak, Ae±t are the coefficients in the Laurent expansion of

∆1(z) =
Ak

z − zk
+Bk +O(z − zk), z → zk k = 1, ...,m, (3.4.156)

and

∆1(z) =
Ae±t

z − e±t
+Be±t +O(z − e±t) as z → e±t. (3.4.157)

The coefficients Ak, and Ae±t are given below. The 12 entries of ∆1(z) of each parametrix at

zj and e
±t were computed by (3.4.74), (3.4.133), and (3.4.134), we compute the 12 elements

of the matrices Ak, and Ae±t by using those in conjunction with (3.4.75), (3.4.131), and
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(3.4.132), respectively. We have

Ak ≡ A
(n)
k =

zj
n

m∑
j=1

znj e
V0 exp

{ ∞∑
k=1

Vkz
k
j

}
exp

{
−

∞∑
k=1

V−kz
−k
j

}
(1− zje

−t)(α0+β0)

× (1− e−tz−1
j )−(α0−β0) × et(α0+β0) ×

∏
k ̸=j

(
zj
zk

)αk

|zj − zk|2βk

× exp

{
− iπ

( j−1∑
k=1

αk −
m∑

k=j+1

αk

)}
n−2βj

Γ(1 + αj + βj)

Γ(αj − βj)
(1 +O(u)),

(3.4.158)

Ae−t =
e−t

n

m∏
j=1

eV0(1− z−1
j e−t)2βj (1− e−2t)(α0+β0) exp

{ ∞∑
k=1

Vke
−tk

}
exp

{
−

∞∑
k=1

V−ke
tk

}

× et(α0+β0)e−t(αj−βj)e−iπ(αj−βj)z
−(αj−βj)
j (2t)−(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt)(1 +O(n−1)),

(3.4.159)

and

Aet =
et

n

m∏
j=1

eV0(1− zje
−t)2βj (1− e−2t)−(α0−β0) exp

{ ∞∑
k=1

Vke
tk

}
exp

{
−

∞∑
k=1

V−ke
−tk

}

× et(α0+β0)et(αj+βj)e−iπ(αj+βj)z
−(αj+βj)
j (2t)(α0−β0) n−2β0

Γ(α0 − β0)
K(2nt)(1 +O(n−1)).

(3.4.160)

We note that the coefficients Bk and Be±t are easy to compute but are not needed in what

follows.

Now we consider the Riemann-Hilbert problem for R̂2(z):

(RH-R̂21): R̂2 : C \ ∪m
j=0∂Uzj → C2×2 is analytic.

(RH-R̂22): It has the following jump conditions on z ∈ ∪m
j=0∂Uzj ,

R̂2,+(z) = R̂2,−(z) + R̂1,−(z)ωσ3∆1(z)n
−ωσ3 + ωσ3∆2(z)n

−ωσ3 . (3.4.161)

(RH-R̂23): As z → ∞,

R̂2(z) → 0. (3.4.162)
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By analysing the following integral and once again using the Plemelj formulas, we can show

that

R̂2(z) =
1

2πi

∫
∂U

(R̂1,−(z)ωσ3∆1(z)n
−ωσ3 + ωσ3∆2(z)n

−ωσ3)
dx

x− z
(3.4.163)

solves the preceding Riemann-Hilbert problem.

Further, by observing that each ∆k(z) = O(n2maxj |ℜβj |−k), similarly to [16], we get

R̂
(r)
k+1 = O(|R̂k+1(z)|) +O(|R̂k+2(z)|). (3.4.164)

In particular,

R
(r)
3 (z) =

 O( δn) +O(δ2) O(δmaxk
n−2ℜβk

n )

O(δmaxk
n2ℜβk

n ) O( δn) +O(δ2),

 (3.4.165)

where

δ = max
j,k

n2ℜ(βj−βk−1). (3.4.166)

3.5 The case of the Fisher-Hartwig asymptotics

We now go back to the OPs and prove Theorem 3.2.1 by retracing the steps Y → T → S → R,

and using the solution of the Riemann-Hilbert problem for R(z). In the case of asymptotic

behaviour for the Toeplitz determinant with respect to the symbol (3.1.1) if |||β(t)||| < 1, we

have the following uniform asymptotics for z ∈ C \ Γ:

R̂(z) = I +O(n−1) as n→ ∞. (3.5.1)

We are only concerned with the solution near z = et and z = e−t as required by the differential

identity that we discuss next.

3.5.1 Differential identity

A differential identity will be used to connect Toeplitz determinants with the Riemann-Hilbert

problem for orthogonal polynomials with respect to the symbol ft(z) as seen in the following
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result.

Lemma 3.5.1. Let t > 0, n ∈ N and assume that the Riemann-Hilbert problem for Y (z;n, t)

is solvable with respect to ft(z). Then Dn(ft) ̸= 0 and the following differential identity

holds:

∂

∂t
logDn(t) = −(α0 + β0)e

t(Y −1dY

dz
)22(e

t) + (α0 − β0)e
−t(Y −1dY

dz
)22(e

−t), (3.5.2)

where (Y −1 dY
dz )22(ξ) represents the 22 entry of the matrix obtained by multiplying the two

matrices Y −1(z) and dY
dz (z) (each entry Y is differentiated with respect to z) and evaluating

the product at z = ξ.

In [34], the identity was proved by using orthogonal polynomials, whereas in [13] the

identity has been proved by using Fredholm integral operators.

Using the reverse transformation, we have

Y (z) = n−wσ3(I +O(n−1))nwσ3Pz0

= n−wσ3(I +O(n−1))nwσ3D(z)σ3

 0 1

−1 0

W (z)−1Φ(z)W (z),
(3.5.3)

as z → e−t, and

Y (z) = n−wσ3(I +O(n−1))nwσ3Pz0z
nσ3

= n−wσ3(I +O(n−1))nwσ3D(z)σ3

 0 1

−1 0

W (z)−1Φ(z)W (z)
(3.5.4)

as z → et.

Using the asymptotics for R̂(z) in (3.5.1), we observe that the the preceding two limits

are uniform for 0 < t < t0 when x = 2nt remains away from the set {x0, x1, ..., xk}.
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Using (3.5.3) and (3.5.4), we get

Y −1Y
′
z =



P−1P
′
z + P−1(z)n−wσ3(I +O(n−1))−1O(n−1)

′
zn

wσ3P (z) if z → e−t

n−wσ3P−1(z)n−wσ3(I +O(n−1))−1O(n−1)
′
zn

wσ3P (z)znσ3

+nσ3
z + z−nσ3P−1P

′
zz

nσ3 if z → et

(3.5.5)

and

P−1P
′
z =


σ3

A
′

A +W−1Φ−1Φ
′
zW −W−1Φ−1σ3ΦW (A

′
z

A + D
′
z

D ), near e−t

−σ3A
′

A +W−1Φ−1Φ
′
zW −W−1Φ−1σ3ΦW (A

′
z

A + D
′
z

D ), near et.

(3.5.6)

Define

A(z) =


−G(λ(z))−

1
2 z

n
2 f(z)−

1
2 , for |z| < 1

G(λ(z))−
1
2 z

n
2 f(z)

1
2 , for |z| > 1

(3.5.7)

and note that W (z), which was defined in (3.4.98), can be rewritten as

W (z) =


A(z)σ3σ3, for |z| < 1

A(z)σ3σ1, for |z| > 1.

(3.5.8)

The derivative of A(z) can be expressed as follows:

A
′
(z) =



1
2(

n
z )

[
− (α0 − β0)(n log z + nt)−1 + (α0 + β0)(n log z − nt)−1

]
A(z)

−1
2f

−1(z)f
′
(z)A(z) near e−t

1
2(

n
z )

[
(α0 − β0)(n log z + nt)−1 − (α0 + β0)(n log z − nt)−1

]
A(z)

+1
2f

−1(z)f
′
(z)A(z) near et,

(3.5.9)
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where

G− 1
2 (λ(z))

′
=

[
(α0 − β0)(n log z + nt)−1 − (α0 + β0)(n log z − nt)−1 − 1

]
× 1

2
(
n

z
)G(λ(z))−

1
2 ,

(3.5.10)

and

f
′
z = V

′
(z)f(z)−

m∑
j=1

(αj − βj)z
−1f(z) +

m∑
j=1

2αj(z − zj)
−1f(z)

+ (α0 + β0)(z − et)−1f(z) + (α0 − β0)(z − e−t)−1f(z)− (α0 − β0)z
−1f(z).

(3.5.11)

Next we compute the derivative of |z−zj |2αj using the function hαj (z) in (3.4.19) as follows:

(hαj )
′
(z) = αj(z − zj)

−1hαj (z)−
αj

2
z−1hαj (z). (3.5.12)

Consequently, by applying (3.5.7) and (3.5.9), we obtain

A
′

A
(z) =


α0+β0

4 e−t + α0−β0

4 e−t

(
1
t +

e−t

sinh t

)
+ 1

2V
′
z (e

t)−
∑m

j=1
αj−βj

2 e−t +
∑m

j=1 αj(e
t − zj)

−1 near et

α0−β0

4 et + α0+β0

4 et
(

1
t +

e−t

sinh t

)
− 1

2V
′
z (e

−t) +
∑m

j=1
αj−βj

2 et −
∑m

j=1 αj(e
−t − zj)

−1 near e−t

(3.5.13)

and

D
′

D
(z) =


∑m

j=1(αj + βj)

(
1

e−t−zj

)
− (α0 + β0)

1
2 sinh t +

∑∞
k=0 kVke

−t(k−1) for z = e−t

∑m
j=1(−αj + βj)

(
zje

−t

et−zj

)
− (α0 − β0)

e−2t

2sinht −
∑−1

k=−∞ kVke
t(k−1) for z = et

(3.5.14)

Then by using (3.5.6), we will get the 22 entry on (P−1P
′
) as follows:

(P−1P
′
)22(e

−t) = −A
′

A
(e−t) + (Φ−1Φ

′
z)22(e

−t)− (Φ−1σ3Φ)22(e
−t)

[
A

′

A
(e−t) +

D
′

D
(e−t)

]
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and

(P−1P
′
)22(e

t) =
A

′

A
(et) + (Φ−1Φ

′
z)11(e

t)− (Φ−1σ3Φ)11(e
t)

[
A

′

A
(et) +

D
′

D
(et)

]
.

Utilising the previous results and combining them with (3.5.6), we obtain

(e−t)(P−1P
′
)22(e

−t) = −α0 − β0
4

− α0 + β0
4

(
1

t
+

e−t

sinh t

)
+

1

2
e−tV

′
z (e

−t)−
m∑
j=1

αj − βj
2

+
m∑
j=1

αj
e−t

(e−t − zj)
+ e−t(Φ−1Φ

′
z)22(e

−t)− (Φ−1σ3Φ)22(e
−t)

[
α0 − β0

4

− 1

2
e−tV

′
z (e

−t) +
α0 + β0

4

(1
t
− e−t

sinh t

)
+

m∑
j=1

αj − βj
2

+

m∑
j=1

βj
e−t

e−t − zj
+

∞∑
k=1

kVke
−tk

]
.

(3.5.15)

For z = et we obtain,

(et)(P−1P
′
)22(e

t) =
α0 + β0

4
− α0 − β0

4

(
1

t
+

e−t

sinh t

)
+

1

2
etV

′
z (e

t)−
m∑
j=1

αj − βj
2

+
m∑
j=1

αj
et

(et − zj)
+ et(Φ−1Φ

′
z)11(e

t)− (Φ−1σ3Φ)11(e
t)

[
α0 + β0

4

+
α0 − β0

4

(
1

t
− e−t

sinh t

)
+

1

2
etV

′
z (e

t)−
m∑
j=1

αj − βj
2

(
et + zj

2(et − zj)

)

+

m∑
j=1

αj
et

et − zj
−

−1∑
k=−∞

kVke
tk

]
.

(3.5.16)

From (3.5.5) we obtain,

e−t(Y −1Y
′
)22(e

−t) = e−t(P−1P
′
)22(e

−t) +
( ˆΦ−1(t)O(n−1)Φ̂(t)

)
22
,

where nβσ3P (et) = Φ̂(t)nβσ3 and Φ̂(t) is bounded in n as long as Φ(x2 ) is bounded. Then
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we find

e−t(Y −1Y
′
)22(e

−t) = −α0 − β0
4

− α0 + β0
4

(
1

t
+

e−t

sinh t

)
+

1

2
e−tV

′
z (e

−t)−
m∑
j=1

αj − βj
2

+
m∑
j=1

αj
e−t

(e−t − zj)
+ e−t(Φ−1Φ

′
z)22(e

−t)− (Φ−1σ3Φ)22(e
−t)

[
α0 − β0

4

− 1

2
e−tV

′
z (e

−t) +
m∑
j=1

αj − βj
2

+
α0 + β0

4

(
1

t
− e−t

sinh t

)
+

m∑
j=1

βj
e−t

e−t − zj

+

∞∑
k=1

kVke
−tk

]
+

(
ˆΦ−1(t)O(n−1)Φ̂(t)

)
22

,

(3.5.17)

and near z = et, we have

et(Y −1Y
′
)22(e

t) = −n+
α0 + β0

4
+
α0 − β0

4

(
1

t
+

e−t

sinh t

)
+

1

2
etV

′
z (e

t)−
m∑
j=1

αj − βj
2

+

m∑
j=1

αj
et

et − zj)
+ et(Φ−1Φ

′
z)11(e

t)− (Φ−1σ3Φ)11(e
t)

[
α0 + β0

4

+
α0 − β0

4

(
1

t
− e−t

sinh t

)
+

1

2
etV

′
z (e

t)−
m∑
j=1

(αj − βj)

(
et + zj

2(et − zj)

)

+
m∑
j=1

αj
et

et − zj
−

−1∑
k=−∞

kVke
tk

]
+

(
ˆΦ−1(t)O(n−1)Φ̂(t)

)
22

.

(3.5.18)
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Using the differential identity (3.5.2), we obtain

d

dt
logDn(t) = −(α0 + β0)e

t(Y −1dY

dz
)22(e

t) + (α0 − β0)e
−t(Y −1dY

dz
)22(e

−t)

= n(α0 + β0)−
α2
0 + β20
2

− α2
0 − β20
2

(
1

t
+

e−t

sinh t

)
+ β0

m∑
j=1

(αj − βj)

− α0 + β0
2

etV
′
z (e

t) +
α0 − β0

2
e−tV

′
z (e

−t) +
m∑
j=1

αj

[
− (α0 + β0)

et

et − zj

+ (α0 − β0)
e−t

e−t − zj

]
+ 2wn+

α0 + β0
2

(Φ−1σ3Φ)11(e
t)

[
α0 + β0

2

+
α0 − β0

2

(
1

t
− e−t

sinh t

)
+ etV

′
z (e

t)−
m∑
j=1

(αj − βj)

(
et + zj
(et − zj)

)

+

m∑
j=1

2αj
et

et − zj
− 2

−1∑
k=−∞

kVke
tk

]
− α0 − β0

2
(Φ−1σ3Φ)22

[
α0 − β0

2

+
α0 + β0

2

(
1

t
− e−t

sinh t

)
− e−tV

′
z (e

−t) +
m∑
j=1

(αj − βj) +
m∑
j=1

2αj
e−t

e−t − zj

+ 2
∞∑
k=1

kVke
−tk

]
+ ( ˆΦ−1(t)O(n−1)Φ̂(t))22,

where

w(x) = −(α0 + β0)

2
(Φ−1Φ

′
λ)11(

x

2
) +

(α0 − β0)

2
(Φ−1Φ

′
λ)22(

x

2
). (3.5.19)

We now recall some results on Painlevé V obtained in [13] that will be needed in what follows.

Proposition 3.5.2 (Proposition 4.4 of [13])). Set

a(ξ;x) = (Ψ(ξ;x)σ3Ψ
−1(ξ;x))11 = −(Ψ(ξ;x)σ3Ψ

−1(ξ;x))22. (3.5.20)

Then we have the following identities,

(α0 − β0)

2
a(0;x) = A0,11 = −v(x) + (α0 − β0)

2
, (2.5.21)

(α0 + β0)

2
a(1;x) = −A1,11 = −v(x) + (α0 + β0)

2
. (3.5.22)
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Proposition 3.5.3 (Proposition 4.5, [13]). Let w(x) be defined as in (3.5.18). Then

v(x) = −(xw(x))
′

(3.5.23)

σ(x) = xw(x) (3.5.24)

σ(x) =

∫ ∞

x
v(ξ)dξ. (3.5.25)

Now, applying the previous two propositions, we arrive at the following:

d

dt
logDn(t) = n(α0 + β0)−

α2
0 + β20
2

− α2
0 − β20
2

(
1

t
+

e−t

sinh t

)
+ β0

m∑
j=1

(αj − βj)

− α0 + β0
2

etV
′
z (e

t) +
α0 − β0

2
e−tV

′
z (e

−t) +

m∑
j=1

αj

[
− (α0 + β0)

et

et − zj

+ (α0 − β0)
e−t

e−t − zj

]
+

1

t
σ(x) +

(
− v(x) +

α0 + β0
2

){
α0 + β0

2

+
α0 − β0

2

(
1

t
− e−t

sinh t

)
−

m∑
j=1

(αj − βj)
et + zj
et − zj

+

m∑
j=1

2αj
et

et − zj

+

∞∑
k=1

k(Vke
tk + V−ke

−tk

}
+

(
− v(x) +

α0 − β0
2

){
α0 − β0

2

+
α0 + β0

2

(
1

t
− e−t

sinh t

)
−

m∑
j=1

(αj − βj) +

m∑
j=1

2βj
e−t

e−t − zj

∞∑
k=1

k(Vke
−tk + V−ke

tk

}
.

The preceding expression can be simplified as follows:

d

dt
logDn(t) = n(α0 + β0)− (α2

0 − β20)

(
e−t

sinh t

)
+ (α0 + β0)

∞∑
k=1

k(V−ke
tk) + (α0 − β0)

∞∑
k=1

k(Vke
−tk)

+
1

t
σ(x) +

m∑
j=1

(αj + βj)(α0 − β0)

(
e−t

e−t − zj

)
−

m∑
j=1

(αj − βj)(α0 + β0)

(
et

et − zj

)

−
m∑
j=1

(αj − βj)(α0 + β0)− v(x)

[
α0 + α0(

1

t
− e−t

sinh t
) + 2

∞∑
k=1

k cosh kt(Vk + V−k)

+

m∑
j=1

2βj(
et

et − zj
+

e−t

e−t − zj
)

]
+ Φ̂−1(t)O(n−1)Φ̂(t).

(3.5.26)
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Using
∫ t
ϵ

d
dt logDn(τ)dτ = logDn(t)−logDn(ϵ), where 0 < ϵ < t < t0, and the following

integrals ∫ t

ϵ

eτ

eτ − zj
dτ = log(1− zje

−t)− log(1− zje
−ϵ) + t− ϵ. (3.5.27)

∫ t

ϵ

e−τ

e−τ − zj
dτ = − log(

zj
eiπ

)− log(1− z−1
j e−t) + log(e−ϵ − zj), (3.5.28)

we obtain

logDn(t) = logDn(ϵ) + n(α0 + β0)(t− ϵ) +
∞∑
k=1

k[Vk − (α0 + β0)
e−tk

k
][V−k − (α0 − β0)

e−tk

k
]

−
∞∑
k=1

kVkV−k + (α0 + β0)
∞∑
k=1

V−ke
−ϵk + (α0 − β0)

∞∑
k=1

V−ke
−ϵk +

(
(α0 + β0)

− (α0 + β0)

) m∑
j=1

(αj − βj)(t− ϵ)− (α0 − β0)

∞∑
j=1

(αj + βj) log(
zj
eiπ

)

+ (α0 + β0)
∞∑
j=1

(αj − βj)
∞∑
k=1

(
zkj e

−tk

k
) + (α0 − β0)

∞∑
j=1

(αj + βj)
∞∑
k=1

(
z−k
j e−tk

k
)

(α0 + β0)
m∑
j=1

(αj − βj) log(1− zje
−ϵ) + (α0 − β0)

m∑
j=1

(αj + βj) log(e
−ϵ − zj)

+

[ ∫ 2nt

2nϵ

σ(x)− (α2
0 − β20)

x
dx+ (α2

0 − β20) log(2nt) + (α2
0 − β20) log

(
n(1− e−2ϵ)

2nϵ

)]
− (α2

0 − β20) log n+Rn(t) +O(n−1),

(3.5.29)

where

Rn(t) = −
∫ t

ϵ
v(2nt)

{
α0 + α0

(
1

t
− e−t

sinh t

)
+

m∑
j=1

2βj

(
et

et − zj
+

e−t

e−t − zj

)}
. (3.5.30)

In addition, as in [13], we have

|Rn(t)| < C

∫ t

0
|v(2nu)|du = O(n−1), as n→ ∞, 0 < t < t0. (3.5.31)

Finally, after taking the limit ϵ→ 0, using L’Hospital’s rule for log

(
n(1−e−2ϵ)

2nϵ

)
and performing

some cancellations (recall that we take the branch of log z to be the negative real line), we

obtain Theorem 3.2.1.
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3.5.2 Emerging singularity at any point on the unit circle

Define gt(z) : T → C by

gt(z) = eV (z)(z − et+iϑ)α+β(z − e−t+iϑ)α−βz−α+βe−iπ(α+β). (3.5.32)

Now we will consider the asymptotic behaviour of Toeplitz determinants Dn(gt(z)). Note

that for t > 0, this symbol is analytic in C \ ([0, e−t+iϑj ] ∪ [et+iϑj ,∞]). However, as t → 0,

the emerging singularity will appear at any point on the unit circle.

The Fourier coefficients of log gt(z) can be easily computed and are given as follows:

(log gt)0 = V0 + (α+ β)(t+ iϑ), (3.5.33)

(log gt)k = Vk − (α+ β)
e−(t+iϑ)k

k
, (3.5.34)

(log gt)−k = V−k − (α− β)
e−(t−iϑ)k

k
. (3.5.35)

The asymptotic study of Dn(gt(z)) can be split into two cases:

1. For t > 0, by Theorem 2.3.3, as n→ ∞,

logDn(gt(z)) = nV0 + n(α+ β)(t+ iϑ) (3.5.36)

+
∞∑
k=1

k
[
V−k − (α− β)

e−tk−iϑk

k

][
Vk − (α+ β)

e−tk+iϑk

k

]
+ o(1).

2. For t = 0, by Theorem 2.4.2,

logDn(gt(z)) = nV0 + n(α+ β)(iϑ) +
∞∑
k=1

kVkV−k − (α+ β)
∞∑
k=1

V−ke
iϑk

− (α− β)
∞∑
k=1

Vke
−iϑk + (α2 − β2) log n+ logGα+β,α−β + o(1).

(3.5.37)
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Note that (3.5.37) cannot be obtained from (3.5.36). To determine the asymptotics for

Toeplitz determinants with respect to gt(z) that holds uniformly for t ≥ 0, we apply the uni-

form asymptotic expansion for Toeplitz determinants in (2.7.2), using the Fourier coefficients

for gt(z):

logDn(gt(z)) = nV0 + n(α+ β)(t+ iϑ) +
∞∑
k=1

k
[
V−k − (α− β)

e−tk−iϑk

k

][
Vk − (α+ β)

e−tk+iϑk

k

]
+ logGα+β,α−β +Ω(2nt) + o(1),

(3.5.38)

where G(z) is the Barnes G-function (2.4.12), and Ω(2nt) is defined by

Ω̃(2nt) = expΩ(2nt) = exp

{∫ 2nt

0

σ(x)− α2
0 + β20

x
dx+ (α2 − β20) log 2nt

}
. (3.5.39)

Recall that the function σ(x), defined in (2.7.4), is related to Painlevé V transcendent.

Reconstructing Szegő and Fisher-Hartwig asymptotics

We can find the asymptotics in (3.5.36) and (3.5.37) from the formula in (3.5.38). To get

Fisher-Hartwig asymptotics, we let t → 0 and n be fixed. Next, we look at the function

Ω(2nt) in (2.7.4), which yields the following asymptotics:

Ω(2nt) =
(
α2 − β2

)
log (2nt) + o(1), (3.5.40)

in addition by applying the formula
∑∞

k=1
e−2kt

k = − log (1− e−2t), then (3.5.37) provides

the asymptotics.

The expansion (3.5.38) should also match the Szegő asymptotics for fixed t. We can easily

observe that for a fixed t, the O(n)-term produces the same term in the Szegő asymptotics.

The similarity of the O(1)-terms, on the other hand, leads to an interesting identity involving

the Painlevé function σ(x) via (3.5.40),

Ω(+∞) = − logGα+β,α−β = − log
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
. (3.5.41)
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3.6 The case of Basor-Tracy conjecture

Consider the asymptotic behaviour of the Toeplitz determinant Dn(ft(z)) when the seminorm

|||β(t)||| = max1≤j,k≤m |ℜβj −ℜβk| = 1. This means that ℜβ0 = q−1/2 and ℜβj = q+1/2

can be expressed for some q ∈ R, and j ∈ N. To determine this asymptotics of Dn(ft(z)) as

n→ ∞ and t→ 0, we will investigate two possible cases:

1. If |||β1, ..., βm||| < 1 for t > 0 and at emerging singularity |||β0, ..., βm||| = 1

2. If |||β1, ..., βm||| = 1 for t > 0 and at the emerging singularity |||β0, ..., βm||| = 1.

Remark 3.6.1. Note that if there are no jumps or less than two jump singularities, the Tracy-

Basor conjecture will not be needed. Thus, we need to consider the case when |||β(t)||| = 1

because our symbol in (3.1.1) possesses m Fisher-Hartwig singularities when t > 0 and m+1

Fisher-Hartwig singularities when t = 0. For |||β(t)||| ≥ 1 when 0 < t < t0, this could be

addressed in the same way as in [16].

3.6.1 The first case

Using Lemma 3.6.3 and some methods described in [16], we can deal with the case when

the semi-norm equals one.Without loss of generality, and by relabeling βj according to the

increasing real component, we assume that

ℜβ0 < ℜβ1 ≤ ... ≤ ℜβm−1 < ℜβm. (3.6.1)

Next, we introduce the symbol ft(z) as defined in (3.1.1), but replace the βj parameters by

β̃j , j = 0, ...,m as follows:

1. β̃0 = β0,

2. β̃j = βj for j = 1, ...,m− 1,

3. β̃m = βm − 1.

The symbol f̃t(z) satisfies |||β̃0, β̃1, ..., β̃m||| < 1 and the asymptotic behaviour of Toeplitz

determinants was computed in the previous section with βj replaced by β̃j . Subsequently,
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our goal is to establish a link between the two symbols, namely the original symbol with

|||β(t)||| = 1 and f̃(z, t), by utilizing the known asymptotics properties of f̃(z, t).

Remark 3.6.2. If (3.6.1) holds, we can define a non-trivial Fisher-Hartwig representation

by shifting β0 by +1. Then, we can connect the symbol f̃t(z) by the symbol f̂t(z) by the

following relation:

f̂t(z) = (−1)
z(z − et)

(z − e−t)
f̃t(z) (3.6.2)

where f̂t(z) satisfies the following

ft(z) = eV (z)(z − et)α0+β0+1−1(z − e−t)α0−β0+1−1z−α0+β0+1−1e−iπ(α0+β0+1−1)

× z
∑m−1

j=1 βjzβm−1+1 ×
∏

1<j<k<m−1

|zj − zk|2αjgzj ,βj
z
−βj

j × |zm − zk|2αm

× gzm,βm−1+1(z)z
−βm+1−1
m

=
(z − e−t)

(z − et)
z−1
m f̂(z, t)

(3.6.3)

with parameters β̂0 = β0 + 1, β̂j = βj , j = 1, ...,m− 1, and β̂m = βm − 1.

Additionally, we can change β̃j in f̃t(z) back by +1; this is referred to as a trivial Fisher-

Hartwig representation. Then we can use the following relation:

f(z, t) = (−1)zz−1
m f̃(z, t) (3.6.4)

Lemma 3.6.3 (Lemma 2.4 of [16]). Let Dn(f) with respect to the symbol f(z) be nonzero

for all n ≥ N0 with fixed N0 ≥ 0. Let Φk = ϕk(z)
χk

, Φ̂k = ϕ̂k(z)
χk

, with k = N0, N0 + 1, . . .,

be the system of monic polynomials orthogonal on the unit circle with the weight f(z). Fix

l > 0. Thus if

Fn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φk(0) Φk+1(0) ... Φk+l−1(0)

d
dzΦk(0)

d
dzΦk+1 ... d

dzΦk+l−1(0)

. . . . . . . . . . . .

dl−1

dzl−1Φk(0)
dl−1

dzl−1Φk+1(0) ... dl−1

dzl−1Φk+l−1(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0 (3.6.5)
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we have

Dn(z
lf(z)) =

(−1)lnFn∏l−1
j=1 j!

Dn(f(z)), n ≥ N0. (3.6.6)

In particular, if l = 1, ϕk(0) ̸= 0, k = N0, N0 + 1, ..., n− 1, we have

Dn(zf(z)) = (−1)n
ϕn(0)

χn
Dn(f(z)), n ≥ N0. (3.6.7)

Thus, using (3.6.7) and the relation in (3.6.4), we have

Dn

(
(−1)zz−1

m f̃(z, t)

)
= z−n

m Dn(zf̃t(z))

= z−n
m

ϕn(0)

χn
Dn(f̃t(z))

(3.6.8)

If Y is the solution of Riemann-Hilbert problem with respect to the symbol f̃t(z) in (3.3.1),

then

Y11(0) = χ−1
n ϕn(0). (3.6.9)

Using the final solution of Riemann-Hilbert problem R(z) and transformations R(z) 7→

S(z) 7→ T (z) 7→ Y (z), we get for |z| < 1

Y (z) =
[
I +R1(z) +R2(z) +R

(r)
3 (z)

]
D(z)σ3

 0 1

−1 0

 (3.6.10)

which subsequently gives R12(0),

ϕn(0)

χn
= Y11(0) = −D(0)−1

[
R1,12(0) +R2,12(0) +O

(
δmax

k

n−2ℜβk

n

)]
. (3.6.11)

Moreover, by (3.4.13), we have

D(0) = eV0et(α0+β̃0) (3.6.12)
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and so

ϕn(0)

χn
= D(0)−1

( m∑
j=1

An
j,12

zj
+
Aet,12

et
+
Ae−t,12

e−t
+O

(
δmax

k

n−2ℜβk

n

))
. (3.6.13)

Using (3.4.13), (3.4.158), (3.4.159), and (3.4.160), we obtain the asymptotics of OPs with

respect to f̃t(z) as follows:

ϕn(0)

χn
=

[ m∑
j=1

znj exp

{ ∞∑
k=1

[
Vk − (α0 + β̃0)

e−tk

k

]
zkj

}
exp

{
−

∞∑
k=1

[
V−k − (α0 − β̃0)

e−tk

k

]
z−k
j

}

× n−2β̃j−1Γ(1 + αj + β̃j)

Γ(αj − β̃j)
× νj +O

([
δ +

1

n

]
n−2ℜβ̃j−1

)
+

m∏
j=1

(1− zje
−t)2β̃j

×(1− e−2t)−(α0−β̃0) × exp

{ ∞∑
k=1

Vke
tk

}
× exp

{
−

∞∑
k=1

V−ke
−tk

}
× (e−iπetz−1

j )(αj+β̃j)

×(2t)α0−β̃0
n−2β̃0−1

Γ(α0 − β̃0)
K(2nt) +

m∏
j=1

(1− z−1
j e−t)2β̃j × (1− e−2t)(α0+β̃0) × exp

{ ∞∑
k=1

Vke
−tk

}

× exp

{
−

∞∑
k=1

V−ke
tk

}
(e−iπe−tz−1

j )(αj−β̃j) × (2t)−(α0+β̃0) n−2β̃0−1

Γ(α0 − β̃0)
K(2nt)

]
(1 + o(1)),

(3.6.14)

where νj =
∏

k ̸=j

(
zj

zkeiπ

)αk

|zj − zk|2β̃k .

Using Lemma 3.6.3, we have

Dn(ft(z)) = z−n
m ×

{
D(0)−1

(
An

m,12

zm
+
Aet,12

et
+
Ae−t,12

e−t
+O

(
δmax

k

n−2ℜβk

n

))}
Dn(f̃t(z))

(3.6.15)

After a simple computation, and by using the following expression

exp
{
log(1− z)α±β

}
= exp

{
− (α± β)

∞∑
k=1

zk

k

}
, for |z| < 1.

In addition, based on the properties and definition of the Barnes G-function, the following

equation was used:

Gαj+βj+1,αj−βj−1 =
Γ(1 + αj + βj)

Γ(αj − βj)
Gαj+βj ,αj−βj

. (3.6.16)
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we conclude that,

Dn(ft(z)) = Dn

(
f(z;α0, αj , αm, β̃0, β̃j , β̃m + 1)

)
× Ω̃(2nt)(1 + o(1))

+ z−n
m

[
exp

{
nV0 + nt(α0 + β̃0)

}
exp

{ ∞∑
k=1

k
[
Vk − (α0 + β̃0 + 1)

e−kt

k

]
×
[
V−k − (α0 − β̃0)

e−kt

k

]}
× n

∑m
j=1(α

2
j−β̃j

2
) × n−2β̃0−1 × exp

{
−

m−1∑
j=1

(αj − β̃j)

∞∑
k=1

[
Vk

− (α0 + β̃0)
e−tk

k

]
zkj

}
× exp

{
− (αm − β̃m)

∞∑
k=1

[
Vk − (α0 + β̃0 + 1)

e−tk

k

]
zkm

}

× (1− etz−1
m )αm+β̃m × exp

{
−

m∑
j=1

(αj + β̃j)
∞∑
k=1

[
V−k − (α0 − β̃0)

e−tk

k

]
z−k
j

}

×
m∏
j=1

Gαj+β̃j ,αj−β̃j
×
Gα0+β̃0+1,α0−β̃0−1

Γ(1 + α0 + β̃0)
× (2t)α0−β̃0 × exp

{ ∞∑
k=1

Vke
tk
}

×
∏

1≤j≤k<m

|zj − zk|
2

(
βkβ̃j−αjαk

)(
zk
zjeiπ

)(αjβk−αkβ̃j

)
× k(2nt)× Ω̃(2nt)

+ exp

{
nV0 + nt(α0 + β̃0)

}
× exp

{ ∞∑
k=1

k
[
Vk − (α0 + β̃0)

e−kt

k

][
V−k − (α0 − β̃0 − 1)

e−kt

k

]}

× exp

{
−

m∑
j=1

(αj − β̃j)
∞∑
k=1

[
Vk − (α0 + β̃0)

e−tk

k

]
zkj

}
exp

{
−

m−1∑
j=1

(αj + β̃j)
∞∑
k=1

[
V−k

− (α0 − β̃0)
e−tk

k

]
z−k
j

}
× exp

{
− (αm + β̃m)

∞∑
k=1

[
V−k − (α0 − β̃0 − 1)

e−tk

k

]
z−k
m

}

× exp
{
−

∞∑
k=1

V−ke
tk
}
×

m∏
j=1

Gαj+β̃j ,αj−β̃j
×
Gα0+β̃0+1,α0−β̃0−1

Γ(1 + α0 + β̃0)
× n

∑m
j=1(α

2
j−β̃j

2
)n−2β̃0−1

× (2t)−(α0+β̃0) × (1− etzm)−(αm−β̃m) × k(2nt)×
∏

1≤j≤k<m

|zj − zk|
2

(
βkβ̃j−αjαk

)

×
(

zk
zjeiπ

)(αjβk−αkβ̃j

)
× Ω̃(2nt)

](
1 + o(1)

)
.

(3.6.17)
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Recalling the relation between βj , β̃j , and β̂j for j = 0, ...,m, we get

Dn(ft(z)) = Dn

(
f(z;α0, αj , αm, β0, βj , βm)

)
× Ω̃(2nt)(1 + o(1))

+ z−n
m

[
exp

{
nV0 + nt(α0 + β0)

}
exp

{ ∞∑
k=1

k
[
Vk − (α0 + β̂0)

e−kt

k

]
×
[
V−k − (α0 − β0)

e−kt

k

]}
× n

∑m
j=1(α

2
j−β̂2

j ) × n−2β0−1 × exp

{
−

m−1∑
j=1

(αj − β̂j)
∞∑
k=1

[
Vk

− (α0 + β0)
e−tk

k

]
zkj

}
× exp

{
− (αm − β̂m)

∞∑
k=1

[
Vk − (α0 + β̂0)

e−tk

k

]
zkm

}

(1− etz−1
m )αm+β̂m × exp

{
−

m∑
j=1

(αj + β̂j)
∞∑
k=1

[
V−k − (α0 − β0)

e−tk

k

]
z−k
j

}

×
m∏
j=1

Gαj+β̂j ,αj−β̂j
×

Gα0+β̂0,α0−β̂0

Γ(1 + α0 + β0)
× (2t)α0−β0 × exp

{ ∞∑
k=1

Vke
tk
}

×
∏

1≤j≤k<m

|zj − zk|
2

(
βkβ̂j−αjαk

)(
zk
zjeiπ

)(αjβk−αkβ̂j

)
× k(2nt)× Ω̃(2nt)

+ exp

{
nV0 + nt(α0 + β0)

}
exp

{ ∞∑
k=1

k
[
Vk − (α0 + β0)

e−kt

k

][
V−k − (α0 − β̂0)

e−kt

k

]}

× exp

{
−

m∑
j=1

(αj − β̂j)
∞∑
k=1

[
Vk − (α0 + β0)

e−tk

k

]
zkj

}
exp

{
−

m−1∑
j=1

(αj + β̂j)
∞∑
k=1

[
V−k

− (α0 − β0)
e−tk

k

]
z−k
j

}
× exp

{
− (αm + β̂m)

∞∑
k=1

[
V−k − (α0 − β̂0)

e−tk

k

]
z−k
m

}

× exp
{
−

∞∑
k=1

V−ke
tk
}
×

m∏
j=1

Gαj+β̂j ,αj−β̂j
×

Gα0+β̂0,α0−β̂0

Γ(1 + α0 + β0)
× n

∑m
j=1(α

2
j−β̂2

j )n−2β0−1

× (2t)−(α0+β0) × (1− etzm)−(αm−β̂m) × k(2nt)×
∏

1≤j≤k<m

|zj − zk|
2

(
βkβ̂j−αjαk

)

×
(

zk
zjeiπ

)(αjβk−αkβ̂j

)
× Ω̃(2nt)

](
1 + o(1)

)
(3.6.18)
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By Simplifying the expression (3.6.17), we obtain

Dn(ft(z)) = R

(
f(z;β0, βj , βm)

)
× Ω̃(2nt)(1 + o(1)) (3.6.19)

+

(
z−n
m

)n

× Ω̃(2nt)× K(2nt)

ent
× n−2β0−1

Γ(1 + α0 + β0)

× (1− e−2t)−2β0−1Σ
′
(t)×R

(
f(z; β̂0, β̂j , β̂m)

)(
1 + o(1)

)

where R

(
f(z; β̂0, β̂j , β̂m)

)
corresponds to the RHS of (3.2.1) for symbol f with β̂’s param-

eters and without the error term nor Ω̃(2nt), and

Σ
′
(t) =

[(
zm − et

zm − e−t

)αm+β̂m

exp

{
2

∞∑
k=1

Vk(sinh(tk))

}(
2t

1− e−2t

)α0−β0

× (1− e−tzj)
∑m−1

j=1 (αj−β̂j) × (1− e−tz−1
j )

∑m−1
j=1 −(αj+β̂j)

+

(
zm − et

zm − e−t

)αm−β̂m

exp

{
− 2

∞∑
k=1

V−k(sinh(tk))

}
×
(

2t

1− e−2t

)−(α0+β0)

× (1− e−tzj)
∑m−1

j=1 (αj−β̂j) × (1− e−tz−1
j )

∑m−1
j=1 (αj+β̂j)

]
.

(3.6.20)

Now, we will assume that we have more than one maximum of ℜβj and that l = 2. Then,

by rewriting the real parts of βj in an increasing order, we have

ℜβ0 < ℜβ1 ≤ ... ≤ ℜβm−2 < ℜβm−1 = ℜβm (3.6.21)

Define the function f̃t(z) by the following changes:

ℜβ̃j = ℜβj for j = 0, ...,m− 2,

ℜβ̃j = ℜβj − 1 for j = m− 1,m,

and

f(z, t) = z2
m∏

j=m−1

z−1
j f̃t(z), (3.6.22)

which can be dealt with using Lemma 3.6.3. Then we must evalute the determinants Fn, n >
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N0 for a sufficiently large N0 > 0. By using (3.4.155) and (3.6.11), we have

ϕn+r(0)

χn+r
= D(0)−1ρn+r(0), (3.6.23)

ρn+r(z) = −
m∑
k=1

An+r
k,12

z − zk
−
Aet,12

z − et
−
Ae−t,12

z − e−t
+O

(
δmax

k

n−2ℜβk

n

)
.

This expansion is uniform and differentiable at z = 0 and

Fn = D(0)−2

∣∣∣∣∣∣∣
ρn(0) ρn+1(0)

d
dzρn(0)

d
dzρn+1(0)

∣∣∣∣∣∣∣ . (3.6.24)

Then we obtain the derivative of ρ(z) in (3.6.24) as |||ℜβ̃j −ℜβ̃k||| < 1 and αj ± β̃k ̸∈ Z−,

ρn+r(0) =
m∑

j=m−1

djz
n+r
j +

Aet,12

et
+
Ae−t,12

e−t
+O

(
δmax

k

n−2ℜβk

n

)
(3.6.25)

and

ds

dzs
ρn+r(0) = s!

m∑
j=m−1

djz
n+r−s
j +O([δ +

1

n
]n−2ℜβ̃j−1) (3.6.26)

where

dj = (1− zje
−t)(α0+β̃0) × (1− e−tz−1

j )−(α0−β̃0) × et(α0+β̃0)n−2β̃j−1

×µj
Γ(1 + αj + β̃j)

Γ(αj − β̃j)
(1 +O(u))

(3.6.27)

and

µj = eV0

exp
{∑∞

k=1 Vkz
k
j

}
exp

{
−
∑∞

k=1 V−kz
−k
j

} exp

{
− iπ

( j−1∑
k=1

αk −
m∑

k=j+1

αk

)}∏
k ̸=j

( zj
zk

)αk

|zj − zk|2βk .

(3.6.28)

When these expressions are substituted into the determinant Fn and we use (3.4.159),
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(3.4.160), we obtain

Fn = D(0)−2

[
dm−1dmz

n
m−1z

n
m−1|zm−1 − zm|2

+

( m∑
j=m−1

djz
n
j −

m∑
j=m−1

djz
n−1
j

)
×
(
Aet,12

et
+
Ae−t,12

e−t

)]
(1 + o(1)).

(3.6.29)

Consequently, we have

Dn(z
2f̃t(z)) =

m∏
j=m−1

z−n
j D(0)−2

[
dm−1dmz

n
m−1z

n
m|zm−1 − zm|2 (3.6.30)

+

( m∑
j=m−1

djz
n
j −

m∑
j=m−1

djz
n−1
j

)
×
(
Aet,12

et
+
Ae−t,12

e−t

)]
Dn(f̃t(z))(1 + o(1))

Then, using the previous results Theorem 3.2.1 with seminorm less than one for (Dn(ft(z)))
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relative to β̃-parameters and substituting them in (3.6.30), we get

Dn(ft(z)) = Dn

(
f(z;α0, αj , αm−1, αm, β̃0, β̃j , β̃m−1 + 1, β̃m + 1)

)
× Ω̃(2nt)(1 + o(1))

+

( m∏
j=m−1

z−n
j

)[
exp

{
nV0 + nt(α0 + β̃0)

}
exp

{ ∞∑
k=1

k
[
Vk − (α0 + β̃0 + 1)

e−kt

k

]

×
[
V−k − (α0 − β̃0)

e−kt

k

]}
× n

∑m
j=1(α

2
j−β̃j

2
) × n−2β̃0−1 × exp

{
−

m−2∑
j=1

(αj − β̃j)
∞∑
k=1

[
Vk

− (α0 + β̃0)
e−tk

k

]
zkj

}
× exp

{
−

m∑
j=m−1

(αj − β̃j)
∞∑
k=1

[
Vk − (α0 + β̃0 + 1)

e−tk

k

]
zkj

}

×
m∏

j=m−1

(1− etz−1
j )αj+β̃j × exp

{
−

m∑
j=1

(αj + β̃j)
∞∑
k=1

[
V−k − (α0 − β̃0)

e−tk

k

]
z−k
j

}

×
m∏
j=1

Gαj+β̃j ,αj−β̃j
×
Gα0+β̃0+1,α0−β̃0−1

Γ(1 + α0 + β̃0)
× (2t)α0−β̃0 × exp

{ ∞∑
k=1

Vke
tk
}

×
∏

1≤j≤k<m

|zj − zk|
2

(
βkβ̃j−αjαk

)(
zk
zjeiπ

)(αjβk−αkβ̃j

)
× k(2nt)× Ω̃(2nt)

+ exp

{
nV0 + nt(α0 + β̃0)

}
× exp

{ ∞∑
k=1

k
[
Vk − (α0 + β̃0)

e−kt

k

][
V−k − (α0 − β̃0 − 1)

e−kt

k

]}

× exp

{
−

m∑
j=1

(αj − β̃j)

∞∑
k=1

[
Vk − (α0 + β̃0)

e−tk

k

]
zkj

}
exp

{
−

m−2∑
j=1

(αj + β̃j)

∞∑
k=1

[
V−k

− (α0 − β̃0)
e−tk

k

]
z−k
j

}
× exp

{
−

m∑
j=m−1

(αj + β̃j)

∞∑
k=1

[
V−k − (α0 − β̃0 − 1)

e−tk

k

]
z−k
j

}

× exp
{
−

∞∑
k=1

V−ke
tk
}
×

m∏
j=1

Gαj+β̃j ,αj−β̃j
×
Gα0+β̃0+1,α0−β̃0−1

Γ(1 + α0 + β̃0)
× n

∑m
j=1(α

2
j−β̃j

2
)n−2β̃0−1

× (2t)−(α0+β̃0) ×
m∏

j=m−1

(1− etzj)
−(αj−β̃j) × k(2nt)×

∏
1≤j≤k<m

|zj − zk|
2

(
βkβ̃j−αjαk

)

×
(

zk
zjeiπ

)(αjβk−αkβ̃j

)
× Ω̃(2nt)

]
×

m∑
j=m−1

(znj − zn−1
j )

[
exp

{ ∞∑
k=1

[
Vk − (α0 + β̃0)

e−tk

k

]
zkj

}
exp

{ ∞∑
k=1

−
[
V−k − (α0 − β̃0)

e−tk

k

]
z−k
j

}
× vj ×

Γ(1 + αj + β̃j)

Γ(αj − β̃j)
n−2β̃j−1

](
1 + o(1)

)
(3.6.31)
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where,

vj = exp

{
− iπ

( j−1∑
k=1

αk −
m∑

k=j+1

αk

)}∏
k ̸=j

( zj
zk

)αk

|zj − zk|2β̃k . (3.6.32)

Then by simplifying the last equation, we have

Dn(ft(z)) = Dn

(
f(z;α0, αj , αm−1, αm, β̃0, β̃j , β̃m−1 + 1, β̃m + 1)

)
× Ω̃(2nt)(1 + o(1))

+Dn

(
f(z;α0, αj , αm−1, αm, β̃0, β̃j , β̃m−1 + 1, β̃m + 1)

)
× n−2β0−1K(2nt)Ω̃(2nt)

× 1

Γ(α0 − β0)

m∏
j=m−1

(
z−n
j

)n m∑
j=m−1

(znj − zn−1
j )Σ(t)(1 + o(1))

(3.6.33)

where

Σ(t) =

(
2t

1− e−2t

)α0−β0 m∏
j=m−1

(1− etz−1
j )αj+β̃j (1− e−tzj)

−(αj−β̃j) exp

{
−

∞∑
k=1

e−tkV−k

}

× exp

{ ∞∑
k=1

e−tkVk

}
+

(
1− e−2t

2t

)α0+β0 m∏
j=m−1

(1− etzj)
−(αj−β̃j)(1− e−tz−1

j )αj+β̃j

× exp

{
−

∞∑
k=1

e−tkVk

}
exp

{
−

∞∑
k=1

etkV−k

}
.

(3.6.34)

3.6.2 The second case

Suppose that |||β1, ..., βm||| = 1 for t > 0 and at the emerging singularity |||β0, ..., βm||| = 1.

This will be divided to two possible subcases. Case 1: ℜβ0 = min{ℜβj : 1 ≤ j ≤ m} or

ℜβ0 = max{ℜβj : 1 ≤ j ≤ m}, and Case 2: minℜβj < ℜβ0 < maxℜβj .

Let us assume without loss of generality , and by relabeling βj according to the increasing

real part, we get

ℜβ0 = ℜβ1 = ... = ℜβp < ℜβp+1 = ... = ℜβm−l < ℜβm−l+1 = ... = ℜβm

Then, using the same procedure as in the first case where |||β1, ..., βm||| < 1 for t > 0 and at

the emerging singularity |||β0, ..., βm||| = 1., we will define f̃t(z) with |||β̃(t)||| < 1, and we
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will compute the asymptotics for the original ft(z) using the asymptotic behaviour of Toeplitz

determinants with respect to f̃t(z) and

ft(z) = (−1)l
l∏

j=1

z−1
j zlf̃t(z). (3.6.35)

Then, by using (3.6.35) and Lemma 3.6.3, we get

Dn(ft(z)) = (−1)n(l+1)
l∏

j=1

z−n
j

Fn∏l−1
j=1 j!

Dn(f̃t(z)). (3.6.36)

For example, if we assume that l = 2 this gives us the same result as in (3.6.33).

For the case when minℜβj < ℜβ0 < maxℜβj , the above gives us the result proved in

Theorem 1.13 of [16].

3.7 Open problems

1. In [5], the authors computed the asymptotic expansion for Toeplitz determinants with

matrix-valued symbols that possess jump singularities βj when |||β||| < 1. However,

it is still an open problem to describe the asymptotics for Toeplitz determinants in the

block case when |||β||| = 1. In addition, in the block case, there is no description of

the asymptotics of Toeplitz determinants Dn(f) when the symbol possesses root type

singularities αj ̸= 0.

2. It would also be interesting to compute the double-scaling limits of Toeplitz determi-

nants with scalar symbols using operator theoretic methods, where the main difficulty is

related to the connection with the Painlevé V equations (see [16] for how the connection

can be obtained using the Riemann-Hilbert approach).

3. Finally, notice that so far there is no description of double-scaling limits of Toeplitz

determinants with matrix-valued symbols using operator theoretic or Riemann-Hilbert

methods.



Chapter 4

Ising correlations above the critical

temperature

The characterization of the diagonal and horizontal two-point correlation functions in the

2D Ising model using the Toeplitz determinant and other means is considered to be one of

the most remarkable and groundbreaking results in statistical mechanics. In the physics and

mathematics literature, it is proven that at T = Tc the correlation functions decay like n−1/4

and the double scaling limit as n → ∞ and T ↗ Tc is described by a special Painlevé

V transcendent. In the high-temperature regime, it is known that the correlations decay

exponentially fast in physics and it has been described briefly in [17]. In this chapter, we

will extend the description of this behaviour by using the Riemann-Hilbert approach for the

diagonal directions.

4.1 Introduction

In this chapter, our analysis is based on the Riemann-Hilbert problem. We will connect Toeplitz

determinants to orthogonal polynomials ϕn(z) and ϕ̂n(z
−1) which satisfy the conditions in

(2.5.1) with respect to the symbol η(z) on the unit circle, and is given by

η(z; t) = eiπ/2(z − k)−1/2(z − k−1)1/2z1/2 (4.1.1)

93
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Then we find the asymptotics of Toeplitz determinants by analyzing the corresponding Riemann-

Hilbert problem.

4.1.1 Riemann-Hilbert problem for OPUC with Szegő type-

symbols

Recalling the matrix-valued function (3.3.1), as in Chapter 3, Y (z) is the unique solution to

the following Riemann-Hilbert problem with respect to the Szegő-type symbol.

RH-Y1: Y : C \ T → C2×2 is analytic,

RH-Y2: Let z ∈ T \∪m
j=1zj , where j = 1, · · ·,m, Y (z) has continuous boundary values

Y+(z) and Y−(z), related by the jump condition

Y+(z) = Y−(z)

1 z−nη(z)

0 1

 , z ∈ T, (4.1.2)

RH-Y3: It has the following asymptotic behaviour as z → ∞:

Y (z) = (I +O(
1

z
))

zn 0

0 z−n

 . (4.1.3)

4.1.2 Solution for Riemann-Hilbert problem Y (z)

Here, again we solve the Riemann-Hilbert problem for Y (z) using the steepest descent tech-

nique [21]. The standard steepest descent has been introduced in the Appendices of [4]. To

begin, we define T (z) to normalize the function at z → ∞ as follows:

T (z) = Y (z)


z−nσ3 : |z| > 1

I : |z| < 1

. (4.1.4)

This solves the following Riemann-Hilbert problem:

RH-T1: It is analytic for z ∈ C \ T,
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Figure 4.1: R-H problem for S(z)

RH-T2: The jump condition on z ∈ T is

T+(z) = T−(z)

zn η(z)

0 z−n

 , (4.1.5)

RH-T3: As z → ∞, the function has the following behaviour:

T (z) =
(
I +O(z−1)

)
.

The next step will deform the unit circle to solve the oscillations in the jump matrix (4.1.5)

when n→ ∞. Let

S(z) =



T (z), for z ∈ Ω0 ∪ Ω∞,

T (z)

 1 0

η(z)−1z−n 1

 , for z ∈ Ω2,

T (z)

 1 0

−η(z)−1zn 1

 , for z ∈ Ω1

, (4.1.6)
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where we factorize the jump matrix as follows:

zn η(z)

0 z−n

 =

 1 0

z−nη(z)−1 1


 0 η(z)

−η(z)−1 0


 1 0

znη(z)−1 1

 (4.1.7)

= J1(z, n)J
(∞)J2(z, n).

Observe that the matrices J1 and J2 tend to the identity matrix uniformly on their respective

contours, and exponentially quickly as n → ∞. The function S(z) can be used to solve the

following Riemann-Hilbert problem:

RH-S1: S(z) is analytic for z ∈ C \ Γs, where Γs = Γ0 ∪ T ∪ Γ1,

RH-S2: The boundary values are defined by the following jump conditions:

S+(z) = S−(z)Js(z, n), z ∈ Γs,

where

Js(z, n) =



 1 0

z−nη(z)−1 1

 , z ∈ Γ0

 0 η(z)

−η(z)−1 0

 , z ∈ T

 1 0

znη(z)−1 1

 , z ∈ Γ1

, (4.1.8)

RH-S3: It has the following asymptotic behaviour as z → ∞:

S(z) =
(
I +O(z−1)

)
.

4.1.3 Global parametrix N(z)

We assume the following Riemann-Hilbert problem for N(z).
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RH-N1: It is analytic for z ∈ C \ T,

RH-N2: The boundary values are determined by the following jump conditions:

N+(z) = N−(z)

 0 η(z)

−η−1 0

 , for z ∈ T, (4.1.9)

RH-N3: As z → ∞, the function has the following behaviour:

N(z) =
(
I +O(z−1)

)
. (4.1.10)

The above Riemann-Hilbert problem for N(z) has the following unique solution:

N(z) =


D(z)σ3

 0 1

−1 0

 , for |z| < 1

D(z)σ3 , for |z| > 1

, (4.1.11)

where D(z) is the unique function related to η(z), it is analytic in C \ T with the following

jump condition:

D+(z)D
−1
− (z) = η(z), z ∈ T. (4.1.12)

By the Plemelj-Sokhotski formulas, we have

D(z) = exp

[
1

2πi

∫
T

log(η(s))ds

s− z

]
. (4.1.13)

The function D(z) (Szegő function) has the following behaviour as z → ∞:

D(z) = 1 +O(1/z).
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4.1.4 Small Riemann-Hilbert problem

Let us introduce the function

R(z, n) = S(z, n)N−1(z, n). (4.1.14)

The Riemann-Hilbert problem for R(z) is given as follows:

RH-R1 R(z) is analytic in C \ (Γ1 ∪ Γ0),

RH-R2 R+(z, n) = R−(z, n)JR(z, n), z ∈ Γ0 ∪ Γ1 = ΣR,

RH-R3 R(z, n) = I +O(1/z) as z → ∞.

For large n, this Riemann-Hilbert problem is solvable and it can be written as follows:

R(z, n) = I +R1(z, n) +R2(z, n) + · · ·, (4.1.15)

where for k ≥ 1

Rk(z, n) =
1

2πi

∫
T

[Rk−1(τ ;n)]−(JR(τ ;n)− I)

τ − z
dτ, z ∈ C \ ΣR. (4.1.16)

In order to calculate R1(z, n), we have

JR − I =



0 znη−1(z)β2(z)

0 0

 , z ∈ Γ0,

 0 0

z−nη−1(z)β−2(z) 0

 , z ∈ Γ1.

(4.1.17)

Thus, we obtain

R1(z, n) =

 0 −1
2πi

∫
Γ0

τnη−1(τ)β2(τ)
τ−z dτ

1
2πi

∫
Γ1

τ−nη−1(τ)β−2(τ)
τ−z dτ 0

 . (4.1.18)
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The Riemann-Hilbert problems for Y (z) can be solved by going back to the steps R→ S →

T → Y . Indeed,

Y (z, n) = R(z, n)



D(z) 0

0 D−1(z)

 znσ3 , z ∈ Ω∞

 D(z) 0

−z−nD−1(z)η−1(z) D−1(z)

 znσ3 , z ∈ Ω2

znD(z)η−1(z) D(z)

−D−1(z) 0

 , z ∈ Ω1

 0 D(z)

−D−1(z) 0

 znσ3 , z ∈ Ω0

, (4.1.19)

where for z ∈ C \ ΣR, we have

R(z, n) =

 1 +O( ρ
−2n

1+|z|) R1,12(z, n) +O( ρ
−3n

1+|z|)

R1,21 +O( ρ
−3n

1+|z|) 1 +O( ρ
−2n

1+|z|)

 , as n→ ∞. (4.1.20)

4.2 Ising models and Toeplitz determinants

One of the most important models in statistical mechanics is the 2D Ising model (See [17]),

which was solved by Onsager in [41]. It is a 2M × 2N rectangular lattice of Z2 that involves

the interactions of random spins σi and σj taking values 1 and −1 at each site (i, j), where

−M ≤ i ≤,M − 1, and −N ≤ j ≤ N − 1. The number of possible spin configurations of

the lattice related to values of σij is 2MN . The nearest neighbour spins interactions are the

most interesting, and the total interaction energy is given by

E(σ) = −
M−1∑
j=−M

N−1∑
i=−N

(
Jhσjiσji+1 + Jvσjiσj+1i

)
, Jh, Jv > 0, (4.2.1)

where Jh, Jv are the horizontal and vertical interaction as the nearest constants What do you

mean by this sentence?. The system is called ferromagnetic, i.e., parallel spins, if Jh and Jv
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are positive. It has lower energy than the anti-parallel spins, where Jh and Jv are negative.

The associated normalized Gibbs measure is given by

Pr(σ) =
1

Z(T )
e−Eσ/KBT ,

where KBT is the Boltzmann’s constant and T is the temperature. Note that the partition

function is given by

Z(T ) =
∑
σ

e−E(σ)/kBT , (4.2.2)

where the sum is being taken over all possible configurations. The existence of a thermody-

namic phase transition is the most significant aspect of the 2D Ising model as the size of the

lattice becomes infinitely large at a certain critical temperature Tc which is dependent on Jh

and Jv.

The two-spin correlation function is defined by the following expression:

< σ0,0σN,M > = lim
M,N→∞

1

Z(T )

∑
σ

σ0,0σN,Me
−E(σ)/T . (4.2.3)

Using this function, we can evaluate the magnetization by measuring the long-range order in

the lattice at temperature T . As an example, a bar magnet has a critical temperature Tc,

also known as the Curie point. Below T < Tc, it spontaneously exhibits magnetization, and

above T > Tc, it does not (in the absence of an external field). The one-dimentional Ising

model fails to go through a phase transition at any temperature as demonstrated by Ising

[27]. However, in two or three dimensions, it does indeed exhibit spontaneous magnetization,

as shown by Peierls in [45] whose work included an incorrect step which was corrected by

Griffiths [26] many years later. Kramers and Wannier obtained the first exact quantitative

result for the 2D Ising model in 1941 [35], when they formulated the following formula for

Tc. In the situation where Jh = Jv = J ,

sinh

(
2J

Tc

)
= 1. (4.2.4)
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For the square lattice of size N × N , Onsager formulated the partition function [44]. The

analysis done by Onsager makes possible a variety of interaction constants Jh ̸= Jv what does

it mean?

sinh
2Jh
KBTc

sinh
2Jv
KBTc

= k = et = 1. (4.2.5)

4.2.1 The horizontal correlation functions < σ1,1σ1,1+n >

In 1949, Onsager and Kaufman presented their result for the spontaneous magnetization M

of the two-dimensional Ising model [32] as follows:

M = (1− k2ons)
1/8, kons =

(
sinh

2Jh
KBTc

sinh
2Jv
KBTc

)−1

, (4.2.6)

where 0 < kons < 1 ⇐⇒ T < Tc , and T > Tc,⇐⇒ kons > 1 ? and in this case M = 0

what case?. By some physical arguments, the spontaneous magnetization M was shown to

be given by

M =
√

lim
n→∞

< σ1,1σ1,1+n >. (4.2.7)

In [32], the expression < σ1,1σ1,1+n > was given by Kaufman and Onsager as a sum of

two Toeplitz determinants. Therefore, the challenge that Kaufman and Onsager faced to

compute M through the formula (4.2.7), was to compute the asymptotics of n× n Toeplitz

determinants as n approaches infinity. Nevertheless, at that time, the only result that was

known to exist was szegő’s result with an unknown error term o(n). However, in order to

compute the magnetization M , it is essential to describe the error terms. Three years passed

between Onsager’s 1948 and 1949 announcements of formula (4.2.6) forM without proof, and

Yang’s successful discovery of the formula’s derivation in 1952 [50]. Yang’s methodology is

based on the findings of Kaufman and Onsager, and it does not employ Toeplitz determinants

directly. He proved the result in the case Jh = Jv, with T < Tc, which was then proved in

the general case where Jh ̸= Jv by Chang [12].

In 1955, Potts and Ward [PotWar], demonstrated that the correlation function< σ1,1σ1,1+n >

along a row for the two-dimensional Ising model could be represented using a single Toeplitz
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determinant, as opposed to the summation of two Toeplitz determinants, as follows:

< σ1,1σ1,1+n >= Dn(ϕons). (4.2.8)

The function ϕons is the Onsager function

ϕons(e
iθ) =

[(
1− γ1e

iθ

1− γ1e−iθ

)(
1− γ2e

−iθ

1− γ1eiθ

)]1/2
, (4.2.9)

where γ1 = z1z
∗
2 , γ2 = z∗2/z1, z1 = tanh Jh

KBT , z2 = tanh Jv
KBT , and z

∗
2 = 1−z2

1+z2
. Notice that

γ2 ≶ 1 ⇐⇒ kons ≶ 1. (4.2.10)

To see the equivalence, see [17]. This implies that T ≶ Tc corresponds to z
∗
2 ≶ z1, respectively,

and T = Tc is equivalent to z
∗
2 = z1.

1. In [43], it was observed that when T < Tc, certain smoothness conditions are satisfied,

0 < γ1, and γ2 < 1 by (4.2.10), and ϕons does not possess winding on the unit circle.

To determine the asymptotic behaviour of the correlation function, Theorem 2.3.3 is

applied. Then in [49], Wu derived the higher-order terms as n→ ∞:

< σ1,1, σ1,1+n > = (1− k2ons)
1/4

(
1 + (2πn2)−1γ2n2 (γ−1

2 − γ2)
−2[1 +

c1
n

+
c2
n2

+ · · ·]
)
,

(4.2.11)

where c1, c2 are given in terms of γ1 and γ2. If γ2 < 1, < σ1,1, σ1,1+n >→ M =

(1− k2ons)
1/4 exponentially fast.

2. For T > Tc, it is observed that 0 < γ1 < 1 < γ2. Consequently, the winding number

of ϕons is determined to be −1. The asymptotic behaviour of ϕons has been described

in the study conducted by Wu in [49], as follows:

< σ1,1, σ1,1+n > = (πn)−1/2γ−n
2 (1− γ21)

1/4(1− γ−2
2 )−1/4(1− γ1γ2)

−1/2 (4.2.12)

× (1 +
A1

n
+
A2

n2
+ · · ·),
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with explicit expressions for A1, A2 in terms of γ1 and γ2 .

3. Wu further demonstrated that for T = Tc, the function ϕons has a jump discontinuity

at θ = 0 and is asymptotically represented by

< σ1,1, σ1,1+n > = e1/421/12A−3n−1/4(1 + γ1)
1/4(1− γ1)

−1/4 (4.2.13)

×(1 +B1n
−2 +O(n−3)),

where A is Glaisher’s constant

A = e1/12e−ξ
′
(−1).

Here ξ is the Riemann’s zeta function and B1 is expressed explicitly in terms of γ1.

4.2.2 The diagonal correlation function < σ0,0σn,n >

It is a remarkable fact that the two-spin correlation function is a Toeplitz determinant

< σ0,0σn,n > = ent/2Dn(f(z, t)), (4.2.14)

where

f(z, t) = eV (z)z
∑m

j=0 βj

m∏
j=0

|z − zj |2αjgzj ,βj
(z)z

−βj

j , θ ∈ [0, 2π). (4.2.15)

This symbol has the following properties depending on whether temperature T is below,

equal to, or above the critical temperature Tc:

1. For T < Tc ⇐⇒ t > 0 , using the symbol (4.2.15), there is no Fisher-Hartwig singularity

at z = 1. In this case, the determinant can be given by the strong Szegő theorem,

because the function is analytic in a neighbourhood of the unit circle. In [42], the

diagonal long-range order in low-temperature regime has been given by:

M =
√

lim
n→∞

< σ00σnn > = (1− k−2)1/8. (4.2.16)
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2. For T = Tc ⇐⇒ t = 0 , there is a Fisher-Hartwig singularity at z = 1 with parameter

α = 0, and β = −1
2 . Using [41] and [40] , we obtain the following asymptotics

Dn(0) =
(π)1/2G(1/2)2

n1/4
(1 + o(1)). (4.2.17)

3. For the high-temperature regime T > Tc ⇐⇒ t < 0, the symbol f(z, t) has a Fisher-

Hartwig singularity at z = 1 with α = 0 and β = −1.

f(z, t) = z−1η̂(z), (4.2.18)

where η̂(z) is the function associated to 2D Ising model and is given by

η̂(z; t) = k1/2η(z) = eiπ/2k1/2(z − k)−1/2(z − k−1)1/2z1/2. (4.2.19)

This expression can be rewritten as follows:

η̂ =

√
1− kz

1− kz−1
. (4.2.20)

To determine whether f(z; t) is a Fisher-Hartwig symbol, we will show that arg f(1+0i, t) =

π = − arg f(1− 0i, t). Indeed,

f(z; t) = exp

{
1

2
log |z|+ 1

2
log |z − k−1| − 1

2
log |z − k|

}
(4.2.21)

× exp i

{
π

2
− 1

2
(0) +

π

2
− 1

2
(0)

}
= exp

{
1

2
log |z|+ 1

2
log |z − k−1| − 1

2
log |z − k|

}
eiπ,

which gives us,

arg f(1 + 0i, t) =π, and arg f(1− 0i, t) = −π. (4.2.22)

For the high-temperature regime t < 0, η̂(z) is analytic in C \ ([0, et] ∪ [e−t,∞]) and the

winding number is equal to zero. Therefore, η̂(z) is the Szegő symbol. To show this, it is
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sufficient to show that arg η̂(1− 0i, t) = arg η̂(1 + 0i, t). Note that

η̂(z) = exp

{
1

2
log |z| − 1

2
log |z − k|+ 1

2
log |z − k−1|

}
exp i

{
π

2
+

1

2
arg z +

1

2
arg(z − et)

(4.2.23)

+
1

2
arg(z − e−t)

}
.

Then

arg η̂(1 + 0i, t) =

{
π

2
+

1

2
(0)− 1

2
(0) +

1

2
(π)

}
= π, (4.2.24)

and

arg η̂(1− 0i, t) =

{
π

2
+

1

2
(2π)− 1

2
(2π) +

1

2
π

}
= π. (4.2.25)

For the symbol f(z; t) in (4.2.18), the result in (2.4.11) does not hold because the Barnes

G function will vanish if α± β ∈ Z−.

In the high-temperature regime with k < 1, the asymptotic behaviour of the Toeplitz

determinant was described in [17] as n→ ∞. Here will give more details:

To find the determinant, we will apply Lemma 3.6.3 to the function f(z) in (4.2.18),

which will give us the following:

Dn(f) = Dn(z
−1η̂(z)) = (−1)n

ϕ̂(0)

χn
Dn(η̂(z)). (4.2.26)

We can find a piecewise analytic functionD(z), which solves the following scalar multiplicative

Riemann-Hilbert problem:

D+(z)D
−1
− (z) = η̂(z), z ∈ T. (4.2.27)
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Thus, by using the Plemelj-Sokhotski formula we get

D(z) =


√
1− kz : |z| < 1

√
1− kz−1 : |z| > 1

. (4.2.28)

After that, to determine the asymptotics of the Toeplitz determinant, we need to compute

the Fourier coefficients for the function η̂(z).

Firstly , we will compute (log η̂)0:

(log η̂)0 =
1

2πi

∫
log

(
(z − et)−1/2(z − e−t)1/2z1/2eiπ/2et/2

)
dz

z

=
−1

4iπ

∫
log(z − et)

dz

z
+

1

4iπ

∫
log(z − e−t)

dz

z
+

1

4iπ

∫
log(z)

dz

z

+
1

4iπ

∫
log(eiπ)

dz

z
+

1

4iπ

∫
log(et)

dz

z
.

(4.2.29)

Each term is calculated independently. Using the following expansion, log(z− et) = log(z)−∑∞
j=1

etjz−j

j , and we have:

1

4iπ

∫
log(z − et)

dz

z
= − 1

4iπ

∫
log(z)

dz

z
+

1

4iπ

∫
log(1− z−1et)

dz

z

= − 1

4iπ

∫
log(z)

dz

z
.

(4.2.30)

Similarly, 1
4iπ

∫
log(z − e−t)dzz can be calculated by using the expansion log(z − e−t) =

log(−e−t)−
∑∞

j=1
etjzj

j :

1

4iπ

∫
log(z − e−t)

dz

z
=

1

4iπ

∫
log(eiπ)

dz

z
− 1

4iπ

∫
log(et)

dz

z
+

1

4iπ

∫
log(1− zet)

dz

z

=
1

4iπ

∫
log(eiπ)

dz

z
− 1

4iπ

∫
log(et)

dz

z
− 1

4iπ

∫ ∞∑
j=1

etjzj

j

dz

z

=
1

4iπ

∫
log(eiπ)

dz

z
− 1

4iπ

∫
log(et)

dz

z
.

(4.2.31)

Using (4.2.30) and (4.2.31), we obtain the following:

(log η̂)0 = iπ. (4.2.32)
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In order to figure out E(η̂), we will first find (log(η̂))k and (log(η̂))−k, respectively.

(log η̂)k =
1

2πi

∫
log
(
z1/2(z − et)−1/2(z − e−t)1/2eiπ/2et/2

)
z−k dz

z

=
1

4iπ

∫
(log z)z−k dz

z
− 1

4iπ

∫
log(z − et)z−k dz

z
+

1

4iπ

∫
log(z − e−t)z−k dz

z

+
1

4iπ

∫
log eiπz−k dz

z
+

1

4iπ

∫
log etz−k dz

z
.

(4.2.33)

After that, we determine the integration for each term.

−1

4iπ

∫
log(z − et)z−k dz

z
d =

−1

4π

∫
log

(
z(1− etz−1)

)
z−k dz

z

=
−1

4iπ

∫
(log z)z−k dz

z
− 1

4iπ

∫
log

(
1− etz−1

)
z−k dz

z

=
−1

4iπ

∫
(log z)z−k dz

z
+

1

4iπ

∫ ∞∑
j=1

etjz−j

j
z−k dz

z

=
−1

4iπ

∫
(log z)z−k dz

z
,

(4.2.34)

and we have

1

4iπ

∫
log(z − e−t)z−k dz

z
=

1

4iπ

∫
log

(
− e−t(1− etz)

)
z−k dz

z

=
1

4iπ

∫
log eiπz−k dz

z
+

1

4iπ

∫
log(et)z−k dz

z

+
1

4iπ

∫
log

(
1− etz

)
z−k dz

z

=
1

4iπ

∫
log eiπz−k dz

z
+

1

4iπ

∫
log(et)z−k dz

z

− 1

4iπ

∫ ∞∑
j=1

etjzj

j
z−k dz

z
= −1

2

etk

k
.

(4.2.35)

Therefore, applying (4.2.34) and (4.2.35), we get the following:

(log η̂)k =
−1

2

etk

k
. (4.2.36)
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In a similar manner, for (log η̂)−k we get:

(log η̂)−k =
1

2iπ

∫
log
(
z1/2(z − et)−1/2(z − e−t)1/2eiπ/2et/2

)
zk
dz

z

=
1

4iπ

∫
(log z)zk

d

z
+

1

4iπ

∫
log(z − et)−1/2zk

dz

z
+

1

4iπ

∫
log(z − e−t)zk

dz

z

+
1

4iπ

∫
log eiπ/2zk

dz

z
+

1

4iπ

∫
log et/2zk

dz

z
.

(4.2.37)

Subsequently, we derive the integration for each term:

−1

4iπ

∫
log(z − et)zk

dz

z
=

−1

4iπ

∫
log

(
z(1− etz−1)

)
zk
dz

z

=
−1

4iπ

∫
(log z)zk

dz

z
− 1

4iπ

∫
log

(
1− etz−1)zk

dz

z

=
−1

4iπ

∫
(log z)zk

dz

z
+

1

4iπ

∫ ∞∑
j=1

etjz−j

j
zk
dz

z

=
−1

4iπ

∫
(log z)zk

dz

z
+

1

2k
etk,

(4.2.38)

and

1

4iπ

∫
log(z − e−t)zk

dz

z
=

1

4iπ

∫
log

(
− e−t(1− etz)

)
zk
dz

z

=
1

4iπ

∫
log eiπzk

dz

z
− 1

4iπ

∫
log etzk

dz

z
+

1

4iπ

∫
log

(
1− etz

)
zk
dz

z

=
1

4iπ

∫
log eiπzk

dz

z
− 1

4iπ

∫
log etzk

dz

z
+

1

4iπ

∫ ∞∑
j=1

etjzj

j
zk
dz

z
= 0.

(4.2.39)

above eq, overfull! Hence, combining (4.2.38) and (4.2.39), we get:

(log η̂)−k =
1

2k
etk. (4.2.40)
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This leads us to

E(η̂) = exp

(∑
k≥1

k(log η̂)k(log η̂)−k

)

= exp

(∑
k≥1

k(
1

2k
etk × −1

2k
etk)

)
= (1− e2t)1/4.

(4.2.41)

Consequently, the Toeplitz determinant for η̂(z) is given by:

Dn(η̂(z)) = G(η̂)nE(η̂) (4.2.42)

= einπ
(
1− k2

)1/4
(1 + o(1)).

Then we will find ϕ̂(0)
χn

. By using the solution to the Riemann-Hilbert problem (3.3.1), we

have:

χ2
n−1 = −Y21(0),

and by using the steepest descent method as presented in the previous section, we have:

χ2
n−1 = −D(0)−1

(
1 +O

(
ρ−2n

1 + |z|

))
(4.2.43)

= −e−iπ

(
1 +O

(
ρ−2n

1 + |z|

))
= 1 +O

(
ρ−2n

1 + |z|

)
,

where D(0) = G(η̂) = eiπ. Also, by the solution to the Riemann-Hilbert problem (3.3.1), we

obtain:

Y21(z) = −χn−1z
n−1ϕ̂n−1(z), (4.2.44)

which gives us:

ϕ̂n−1(0)

χn−1
=

limz→∞(Y21(z;n)/z
n−1)

Y21(0, n)
, (4.2.45)
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where

Y21(0, n) = −χ2
n−1(I + o(1)). (4.2.46)

Then, from (4.1.19) and (4.1.20), we obtain:

ϕ̂n−1(0)

χn−1
= − 1

χ2
n−1

lim
z→∞

D(z)zn
[
R1,21(z, n) +O

(
ρ−3n

1+|z|

)]
zn−1

= − 1

χ2
n−1

(
lim
z→∞

zR1,21(z, n) +O
(
ρ−3n

1 + |z|

))
,

(4.2.47)

and by (4.1.18), we have:

− lim
z→∞

zR1,21(z, n) = − lim
z→∞

z

2iπ

∫
Γ1

τ−nη̂−1(τ)D−2(τ)dτ

τ − z

=
1

2iπ

∫
Γ1

τ−nη̂−1(τ)D−2(τ)dτ.

(4.2.48)

Then, using (4.2.20) and (4.2.28), and putting λ = τ−1 and dτ = −dλ
λ2 , we obtain the

following:

1

2iπ

∫
Γ1

τ−nη̂−1(τ)D−2(τ)dτ =
1

2iπ

∫
Γ0

λn−
3
2 η−1(λ−1)D−2(λ−1)dλ

=
−1

2π
√
k

∫
Γ0

λn−3/2(λ− k)−1/2(λ− k−1)−1/2dλ,

(4.2.49)

where (λ − k−1)−1/2 is a holomorphic function at λ = k. Thus, we can write it as Taylor

series

f(λ) = (λ− k−1)−1/2 =
∞∑
l=0

dl(λ− k)l, (4.2.50)

where

d0 =
−i

√
k√

1− k2
. (4.2.51)
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Now, we rewrite the right-hand side of (4.2.49) as follows:

−1

2π
√
k

∫
Γ0

λn−3/2(λ− k)−1/2(λ− k−1)−1/2dλ =
−1

2π
√
k

∞∑
l=0

dl

∫
Γ0

λn−3/2(λ− k)l−1/2dλ.

(4.2.52)

After that, we will shrink the contour Γ0 to [0, k], and we obtain:

∫
Γ0

λn−3/2(λ− k)l−1/2dλ =
2

i

∫ k

0
xn−2(x− k)l

(
x1/2(x− k)−1/2

)
+

dx

=
2

i
(−1)l

∫ k

0
xn−3/2(k − x)l−1/2dx

=
2

i
(−1)l

∫ 1

0
(ky)n−3/2(k − ky)l−1/2kdy

=
2

i
(−1)lkn−3/2+l−1/2+1

∫ 1

0
(y)n−3/2(1− y)l−1/2dy

=
2

i
(−1)lkn+l−1

∫ 1

0
(y)n−3/2(1− y)l−1/2dy

=
2

i
(−1)lkn+l−1B(n− 1/2, l + 1/2),

(4.2.53)

where B is the beta function, which has the following asymptotics for large x, when y is fixed:

B(x, y) ∼ Γ(y)x−y.

Substituting (4.2.51) in (4.2.53), as n→ ∞ we obtain:

−1

2π
√
k

∞∑
l=0

dl

∫
Γ0

λn−3/2(λ− k)l−1/2dλ =
−1

2π
√
k

2

i
kn−1 −i

√
k√

1− k2
× Γ(1/2)(n− 1/2)−1/2

= kn−1(nπ)−1/2(1− k2)−1/2 + o(1).

(4.2.54)

Therefore, we get:

ϕ̂n−1(0)

χn−1
= kn−1(nπ)−1/2(1− k2)−1/2. (4.2.55)

Finally, by using (4.2.42) and (4.2.55), we get the asymptotic behaviour of the Toeplitz



CHAPTER 4. ISING CORRELATIONS 112

determinant as the following:

Dn(f(z; t)) = kn(nπ)−1/2(1− k2)−1/4 + o(1), (4.2.56)

where f(z; t) is the Fisher-Hartwig symbol (4.2.15) at z = 1, with α = 0, β = −1, and

o(1) = (
π

n
)3/2

kn−1

4
(1− k2)−3/2.

4.3 Open problem

1. Studying the double-scaling limit for Toeplitz determinants in the low-temperature

regime t > 0 has considered different types of symbols, as it has addressed in [13],

[34], and in our work in Chapter 3. However, the high-temperature regime has not

been considered yet for diagonal correlation functions.

2. Asymptotic of bordered Toeplitz determinants and next-to-diagonal Ising model denoted

by DB
n [f, ψ] , and is defined as follows:

DB
n [f, ψ] = det



f0 f1 f2 · · · f(n−2) ψ(n−1)

f−1 f0 f1 · · · f(n−3) ψn−2

...
...

. . .
...

f1−n f2−n f3−n · · · f−1 ψ0


, n > 1 (4.3.1)

where fn and ψn denote the Fourier coefficients of f and ψ, respectively. In [4],

the authors studied the asymptotics of bordered Toeplitz determinants in the low-

temperature regime t > 0, that is, T < Tc, by using both the operator theoretic

and the Riemann-Hilbert approaches. They considered functions f(z) = z−1η(z) that

possess Fisher-Hartwig singularities and

ψ =
Cvη(z)

Sv(z − c)
, with c =

−Sh
Sv

(4.3.2)

It is of importance to study the asymptotics of bordered Toeplitz determinants also
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in the high-temperature regime. However, in that case, the symbol f(z) has a Fisher

Hartwig singularity at z = 1 with α = 0, β = −1, and the study involves the treatment

of a Riemann Hilbert problem in the degenerate case α± β ∈ Z−.
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results for Toeplitz operators with discontinuous symbol, Journal of Operator Theory,

(1980), pp. 23–39.

[7] E. L. Basor and C. A. Tracy, The Fisher-Hartwig conjecture and generalizations,

Physica A: Statistical Mechanics and its Applications, 177 (1991), pp. 167–173.

[8] H. Bateman, Higher transcendental functions, vol. 1, McGraw-Hill Book Co., Inc., New

York-Toronto-London, 1953.

114



BIBLIOGRAPHY 115
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