
On Source Analysis by Wave Splitting with Applications in

Inverse Scattering of Multiple Obstacles

Fahmi ben Hassen1, Jijun Liu 2 and Roland Potthast 3

November 27, 2006

Abstract

We study wave splitting procedures for acoustic or electromagnetic scatter-
ing problems. The idea of these procedures is to split some scattered field into
a sum of fields coming from different spatial regions such that this information
can be used either for inversion algorithms or for active noise control.

Splitting algorithms can be based on general boundary layer potential
representation or Green’s representation formula. We will prove the unique
decomposition of scattered wave outside the specified reference domain G and
the unique decomposition of far-field pattern with respect to different reference
domain G. Further, we employ the splitting technique for field reconstruction
for a scatterer with two or more separate components, by combining it with the
point source method for wave recovery. Using the decomposition of scattered
wave as well as its far-field pattern, the wave splitting procedure proposed in
this paper gives an efficient way to the computation of scattered wave near the
obstacle, from which the multiple obstacles which cause the far-field pattern
can be reconstructed separately. This considerably extends the range of the
decomposition methods in the area of inverse scattering. Finally, we will
provide numerical examples to prove the feasibility of the splitting method.

Keywords. Inverse scattering, wave splitting, potential theory, near field,
regularization, numerics.

1 Introduction

Inverse problems for acoustic and electromagnetic waves play an important role in
many scientific and engineering applications. Medical imaging for example uses sev-
eral techniques from the area of inverse problems as basic ingredients for medical
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examinations. Nondestructive testing employs inverse problems techniques for qual-
ity control. For a given incident wave, the impenetrable obstacle D will generate a
scattered wave outside D, which is in general governed by the Helmholtz equation
for acoustic waves or Maxwell equations for electromagnetic waves. The scattered
wave and its far-field pattern contain information about the scatterer D such as the
boundary shape and boundary type. The reconstruction of an obstacle D from the
far-field pattern of its scattered wave is one of the central research topics in inverse
scattering theory, see for example [10] and the topical review [13].

There are three categories of shape reconstruction methods from far-field data of
scattered waves. Firstly, there are iterative schemes, compare [5]. The second kind
of methods use decomposition and optimization techniques, which firstly determine
the scattered wave from its far-field pattern on a set outside of the obstacle and then
update this surface such that the total field matches the boundary data by iteration
procedure. This is a classical method with a long history [5, 7, 10]. The third kind
of methods, which have been developed recently, constructs some indicator function
of the boundary from the near field or its far-field pattern, respectively. Then the
boundary shape is constructed from the point set where the indicator blows up in
some way [2, 3, 4, 14, 15]. In most of these methods, the reconstruction of the
scattered wave from its far-field pattern is of great importance.

By expressing the scattered wave outside D in the form of a potential integral
defined on ∂D, the direct scattering problem determines the scattered wave and its
far-field using a density function which satisfies an integral equation on ∂D. This
procedure is also applicable if D contains multiple connected components ([16]).
Different methods for reconstructing the scattered field outside of D have been de-
veloped, compare the literature given in [5]. Here we will employ and further develop
the potential method of Kirsch-Kress [5] and the point source method of Potthast,
Erhard, Liu, Chandler-Wilde, Lines and others (see [1], [10]). The methods recon-
struct the scattered or total fields, respectively, outside of some auxilliary domain
G. Both methods in their standard formulation have problems with reconstruct-
ing multiple obstacles D =

⋃
Dj when the location of the obstacles is not known

a-priori.
Following the potential approach, in principle we can still choose an approximate

domain G satisfying G ⊃ D such that we can compute the scattered wave outside G.
The choice of G can be specified from the knowledge of far-field pattern via range
test method [12], where the solvability of some integral equation is tested (compare
Section 2.4). However, it is a complex algorithmical task to use multiple auxilliary
domains G to reconstruct the field close to the boundary shapes ∂D of the unknown
scatterer D. Also, this leads to severe stability problems, since the ill-posedness of
the equations under consideration depends on the curvature and non-convexity of
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the curves [8, 11].
Motivated by these problems, we present an efficient way to reconstruct the

scattered wave from the far-field pattern caused by multiple obstacles. The basic
idea is to split the far-field pattern into several parts which are essentially related
to each obstacle. Correspondingly, the scattered wave is also decomposed. Please
observe that our splitting avoids any approximation as for example employed for
the Born approximation or physical optics approximation. Using this idea based on
general potential theory or Green representation formula and combining it with the
point source method, we propose a scheme which provides a reconstruction of the
scattered wave at all points outside of some scatterer D with several components.
This splitting method enables the recovery of the scattered wave outside of multiple
obstacles. The method proposed in this paper, except for its intrinsic importance
in wave recovery, is also applicable to shape reconstruction for multiple obstacles.

This work is organized as follows. In Section 2, we firstly give the exact definition
of scattered wave splitting and prove the uniqueness for this splitting for a given
domain G. Then we establish two methods for the wave splitting, which are based on
a single-layer approach and Green’s formula, respectively. The uniqueness for both
approaches is proven. To achieve flexibility in the choice of a reference domain G, we
also prove the uniqueness of far-field pattern decomposition with respect to G. Then
in Section 3, by using the wave splitting technique developed here together with the
point source method, we investigate field and shape reconstructions for an obstacle
D containing multiple disjoint connected components. This important application
of wave splitting provides a novel and efficient way to the reconstruction of multiple
obstacles in the frame work of evaluating the scattered wave. Finally, we show the
numerical feasibility of the scheme by presenting some numerical reconstructions in
Section 4.

2 Scattered wave splitting

To explain the basic idea of scattered wave splitting for multiple obstacles, here
we assume that the obstacle D contains two disjoint connected components D1, D2,
that is, D = D1 ∪D2 such that D1 ∩D2 = ∅ and Dj is connected with boundary of
class C2 for j = 1, 2.

In order to specify the domain where the total scattered wave for the obstacle
D = D1

⋃
D2 is decomposed, we firstly give

Definition 2.1. Assume that two domains G1 and G2 with G1 ∩ G2 = ∅ and
C2−smooth boundary are given such that D1 ⊂ G1 and D2 ⊂ G2. Set G := G1∪G2.



Ben Hassen, Liu and Potthast 4

Denote by Φ(·, ·) the free-space fundamental solution to the Helmholtz equation
∆u+κ2u = 0 in R2 or R3. For G given in Definition 2.1, the single- and double-layer
potentials are defined by

(Sϕ)(x) :=

∫
∂G

Φ(x, y)ϕ(y)ds(y),(1)

(Kϕ)(x) :=

∫
∂G

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y)(2)

for x ∈ Rm and solve the Helmholtz equation in Rm \ ∂G. Moreover we introduce

(K ′ϕ)(x) := 2

∫
∂G

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂G,(3)

(Tϕ)(x) := 2
∂

∂ν(x)

∫
∂G

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂G.(4)

It is well known the above four integrals called potential functions are well-defined
for x ∈ ∂G with density ϕ in suitable Hölder or Sobolev spaces (see [5]).

2.1 Uniqueness of source splitting

This section serves to establish the uniqueness of a general scattered field splitting
for some domain G given by Definition 2.1. Here, we do not need to specify the
concrete form of the potentials under consideration.

Theorem 2.2. Consider domains Gj as given in Definition 2.1. Assume that we
are given a decomposition us = us

1 + us
2 of the scattered field us such that

1. us
j satisfies the radiation condition for j = 1, 2;

2. us
j soles the Helmholtz equation in the exterior of Gj for j = 1, 2;

3. Both (us
j)

+ and
∂(us

j)
+

∂ν
exist in ∂Gj, where

(us
j)

+|∂Gj
:= lim

x∈Rm\Gj , x→∂Gj

us
j(x).

Then the splitting of us is unique, i.e. for every further splitting us = ũs
1 + ũs

2 with
ũs

j meeting conditions 1-3 in this theorem, we obtain us
j(x) = ũs

j(x) for x ∈ Rm \Gj

with j = 1, 2.
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Proof. We subtract the two representations and use the definition

(5) vj(x) := us
j(x)− ũs

j(x), x ∈ Rm \Gj, j = 1, 2

to obtain in Rm \G1 ∪G2 that

(6) v1 + v2 = (us
1 + us

2)− (ũs
1 + ũs

2) = us − us = 0.

Thus, noticing the smoothness of v1 in the neighbor of G2, we know that v1 is a
solution to the Helmholtz equation in G2 with boundary values

(7) v1|∂G2 = −v+
2 |∂G2 ,

∂v1

∂ν
|∂G2 = −∂v

+
2

∂ν
|∂G2 .

We now define the function

(8) w :=

{
v1 in G2

−v2 in Rm \G2.

Then the function w solves the Helmholtz equation in Rm \ ∂G2, both its value and
normal derivative are continuous on ∂G2. Therefore w is analytic in Rm due to the
analytic continuation, since v1, v2 are analytic function in G2,Rm \G2 respectively.
Thus we have constructed an entire radiating solution w to the Helmholtz equation
in Rm, which must vanishes everywhere. We obtain v1 ≡ 0 in G2 and by analytic
continuation it is zero also in the exterior of G1. The same arguments show v2 ≡ 0
outside G2, which ends the proof. �

In the following, we will establish the concrete decomposition scheme for scat-
tered wave in terms of its far-field pattern.

2.2 Far field splitting via single-layer potentials

Here, we will describe the splitting of far field pattern u∞ for scattering of an acoustic
wave ui. Then this splitting generates the desired scattered wave decomposition in
Rm \G.

Let us express the scattered wave by single-layer approach

(9) us(x) := (Sϕ)(x), x ∈ Rm \G.

The far field pattern of Sϕ is given by the operator

(10) (S∞ϕ)(x̂) := γ

∫
∂G

eiκx̂·yϕ(y)ds(y), x̂ ∈ S
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with γ = 1/(4π) in R3 and γ = eiπ/4/
√

8πκ in R2, S is the unit sphere in Rm. Here,
the density ϕ lives on ∂G = ∂G1 ∪ ∂G2. We denote

(11) ϕj(y) := ϕ(y) for y ∈ ∂Gj

and denote the corresponding single-layer potential operators by Sj, i.e.

(12) (Sjϕj)(x) :=

∫
∂Gj

Φ(x, y)ϕj(y)ds(y), x ∈ Rm

and we have

(13) Sϕ = S1ϕ1 + S2ϕ2.

Algorithm 2.3. The splitting of the far field of a scatterer D = D1

⋃
D2 is obtained

from the following three steps.

1. Solve the far-field equation

(14) S∞ϕ = u∞

to generate density function ϕ defined in ∂G, where S∞ is given via (10).

2. Define two functions

(15) us
j(x) := (Sjϕj)(x), x ∈ Rm \Gj, j = 1, 2,

which can be considered as a scattered wave outside Gj, in the sense that it
solves the Helmholtz equation in Rm \Gj and meets the radiation condition.

3. Compute the far field patterns of us
j defined by

(16) u∞j := S∞j ϕj, j = 1, 2.

In this way, the far field pattern u∞ is decomposed as

(17) u∞ = u∞1 + u∞2 .

Correspondingly, the scattered wave us related to u∞ has the splitting

(18) us(x) = us
1(x) + us

2(x), x ∈ Rm \G

from the linear superposition principle and Rellich lemma, where us
j is computed

via (15). Moreover, us
j outside Gj is the scattered wave related to u∞j with j = 1, 2

again from Rellich lemma, noticing us
j(x) defined by (15) is the radiation solution.

For the feasibility of the above scattered wave splitting based on the far-field
pattern decomposition we need to investigate the following questions.
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1. Is (14) uniquely solvable? If so, then the decomposition (17) and the functions
us

1, u
s
2 in (15) are uniquely defined.

2. For given G, is (18) a decomposition of us in the sense of Theorem 2.2? If
this is the case then the single-layer approach is a constructive method for this
unique decomposition of the scattered field.

Theorem 2.4. Assume that G is chosen in the way of Definition 2.1 such that −κ2

is not the interior Dirichlet eigenvalue of ∆ in Gj for j = 1, 2. Then there exists a
unique solution ϕ ∈ L2(∂G) to (14).

Remark. The proof contains two parts. Firstly, we prove that the far field
operator S∞ : L2(∂G) → L2(S) is injective. This proof is completely the same
as that G is a connected domain, compare [5], [7]. However, to understand the
advantage of wave splitting based on the Green formula in the next subsection,
which does not need the assumption on the wave number κ2, we still give the proof
here. Secondly, we give the existence of ϕ in L2(∂G).

Proof. Let S∞ϕ = 0 on S. Then the scattered wave us expressed by (9) has
zero far-field. Therefore it follows from the Rellich lemma that us = (Sϕ)(x) ≡ 0
outside G. By the continuity of single layer potential on ∂G, we know that (Sϕ)(x)
solves the Helmholtz equation in G with boundary condition (Sϕ)(x) = 0 in ∂G.
Since κ2 is not the Dirichlet eigenvalue of −∆ in Gj from the definition of Gj, then
we get (Sϕ)(x) ≡ 0 in Gj. So we get (Sϕ)(x) ≡ 0 in Rm \ (∂G1

⋃
∂G2). Using the

jump relation of (S1ϕ1)(x) and the continuity of (S2ϕ2)(x) in ∂G1, we get ϕ1 = 0.
Similarly, ϕ2 = 0. Therefore S∞ is injective.

For the existence of solution in L2(∂G), we refer to the following Theorem 2.10.
For its applicability we remark that for the domain G chosen by the Definition 2.1
the scattered wave us corresponding to the far field pattern u∞ naturally has an
extension into the exterior of G. �

This result gives an answer to the first equation. Now, we can prove the unique-
ness of the decomposition of scattered wave, which may be stated as

Theorem 2.5. If us has the decomposition (18) outside G in the sense of Theorem
2.2, then us

j can be calculated using the single-layer potential as defined in (15).

Proof. Due to Theorem 2.2, it is enough to prove that us
j with j = 1, 2 defined

in (15) meet the three conditions in Theorem 2.2.
It follows from Theorem 2.4 that us

j is well defined outside Gj and meets the
condition 1 and condition 2 in Theorem 2.2 obviously. On the other hand, it follows
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from the following Theorem 2.10 again that us
j can be extended analytically to

Rm \Gj. Therefore condition 3 is also met. �

This result gives a positive answer to the second question. Since the choice of
G meeting the previous conditions is not unique, we must consider the uniqueness
of far-field decomposition (17) and the scattered wave decomposition for different
choice of G. This uniqueness can be stated as

Theorem 2.6. Denote by u∞ the far-field pattern caused by obstacle D and us the
scattered wave outside D related to u∞. Assume that G̃ := G̃1

⋃
G̃2 different from

G is the other configuration satisfied the same requirement on G given previously.
If we decompose the far-field pattern u∞ as

(19) u∞ = ũ∞1 + ũ∞2

using the same algorithm given above for G̃ and construct ũs
j(x) outside G̃j by the

density function ϕ̃j related to ∂G̃j, then we have for i = 1, 2 that

(20) ũ∞j (x̂) = u∞j (x̂)

and

(21) ũs
j(x) = ũs

j(x), x ∈ Rm \Gj

⋃
G̃j,

provided that (G, G̃) meets the following separation condition

(22) G1

⋃
G̃1

⋂
G2

⋃
G̃2 = ∅.

Proof. We prove this theorem splitting the proof into the following two cases.
First, we treat the case where G′

j contains Gj in its interior for both indices j = 1, 2.
Secondly, we reduce the general case to this special case.

Case 1: Gj

⋂
G̃j = Gj with j = 1, 2. For given G, G̃, it follows from ũ∞1 + ũ∞2 =

u∞ = u∞1 + u∞2 that

(23) (ũ∞1 − u∞1 ) + (ũ∞2 − u∞2 ) = 0.

On the other hand, noticing the correspondence between (ũ∞j , u
∞
j ) and (ũs

j , u
s
j) in

terms of the density (ϕ̃j, ϕj) with j = 1, 2, we know that (ũs
1−us

1)+(ũs
2−us

2) outside
G̃ is the scattered wave corresponding to the far-field pattern (ũ∞1 −u∞1 )+(ũ∞2 −u∞2 ),
since it is the radiating solution to the Helmholtz equation outside G̃. Therefore the
Rellich lemma and (23) yield

(24) [(ũs
1 − us

1) + (ũs
2 − us

2)](x) ≡ 0, x ∈ Rm \ G̃.
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Now applying the same argument as that in the proof of Theorem 2.2 with G
there replaced by G̃, we get that

ũs
j = us

j , x ∈ Rm \ G̃j

for j = 1, 2, which proves (21), noticing in this case Gj

⋃
G̃j = G̃j. Now using the

relation between (ũ∞j , u
∞
j ) and (ũs

j , u
s
j) in terms of the density (ϕ̃j, ϕj) again, we

know (ũ∞j , u
∞
j ) are the far-field pattern of scattered wave (ũs

j , u
s
j). Therefore (21)

leads to (20) immediately.
Notice, in this case, our proof does not need the condition (22), which is guar-

anteed automatically by the definition of G̃.
Case 2: Gj

⋂
G̃j 6= Gj for at least one j = 1, 2. In this case, the separation

condition (22) assures that we can take Ğj with Ğ1

⋂
Ğ2 = ∅ such that (Gj

⋃
G̃j) ⊂

Ğj with j = 1, 2. Now we have the far-field pattern decomposition

u∞ = ŭ∞1 + ŭ∞2

in terms of Ğ := Ğ1

⋃
Ğ2 as well as ŭs

j(x) outside Ğj constructed in terms of ϕ̆j.

Noticing the facts Gj

⋂
Ğj = Gj G̃j

⋂
Ğj = G̃j, using the uniqueness result in Case

1, we get that

us
j(x) = ŭs

j(x), ũ
s
j(x) = ŭs

j(x), x ∈ Rm \ Ğj,

which implies that

(25) us
j(x) = ũs

j(x), x ∈ Rm \ Ğj.

Since both us
j(x) and ũs

j(x) are analytic in Rm \ Gj

⋃
G̃j and Ğj ⊃ Gj

⋃
G̃j, (25)

yields that

us
j(x) = ũs

j(x), x ∈ Rm \Gj

⋃
G̃j

from the unique continuation of analytic function, which proves (21). Also, (21)
leads to (20) immediately. This completes the proof. �

2.3 Far field splitting via Green’s formula

We now establish an alternative splitting via Green’s formula. We need the rep-
resentation formula for both exterior and interior problems as follows. For some
solution u to the Helmholtz equation in a domain Gj we observe that ([5], Theorem
2.1)

(26)

∫
∂Gj

{
u(y)

∂Φ(x, y)

∂ν(y)
− ∂u(y)

∂ν(y)
Φ(x, y)

}
ds(y) =

{
−u(x) x ∈ Gj

0 x 6∈ Gj.
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On the other hand, the radiating solution us to the Helmholtz equation in the
exterior of Gj has the representation ([5], Theorem 2.4)

(27)

∫
∂Gj

{
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us(y)

∂ν(y)
Φ(x, y)

}
ds(y) =

{
0 x ∈ Gj

us(x) x 6∈ Gj.

We will use these formulas to derive a general splitting procedure which does not
need to avoid interior eigenvalues of the domain Gj.

Using the potential operators, Green’s formula for the radiating solution us of
the Helmholtz equation can be written in the form

(28) us = Kus − S
∂us

∂ν
in Rm \G.

Then, the normal derivative ∂us

∂ν
on Λ ⊂ ∂G for us(x) outside G meets

(29)
∂us

∂ν
= Tus −K ′∂u

s

∂ν
in ∂G

due to the jump relation of potential functions. This equation is not adequate to
calculate the normal derivative from its boundary values, since for interior eigen-
values for the negative Lapcacian it lacks uniqueness and thus existence for general
boundary values. For this reason we use the following operator representation of
the the Dirichlet-to-Neumann map B : us|∂G → ∂us

∂ν
|∂G or Steklov-Poincare opera-

tor, respectively. Following [5], page 48, with some parameter η > 0, the operator
is given by

(30) B := (iηI − iηK ′ + T )(I +K − iηS)−1 : C1,β(∂G) → C0,β(∂G),

where one solves the exterior Dirichlet problem for the domain G by a Brackhage-
Werner ansatz, also known as combined single- and double-layer potential, and
calculates the normal derivative of the solution via the classical jump relations. In
the following, we also need the far-field pattern of operator K which is defined as

(31) (K∞ϕ)(x̂) := γ

∫
∂G

∂eiκx̂·y

∂ν(y)
ϕ(y)ds(y), x̂ ∈ S.

We now derive a splitting procedure via Green’s formula.

Algorithm 2.7. A splitting of the far field pattern u∞ or the scattered field us in
the exterior of G = G1 ∪G2 is obtained as follows.
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1. Solve the integral equation

(32) u∞ = (K∞ − S∞B)ϕ

to obtain the boundary values ϕ = us on ∂G via the solution ϕ ∈ C1,β(∂G),
noticing (27).

2. Use (30) to evaluate the Dirichlet-to-Neumann map

(33) ψ := Bϕ

to calculate the normal derivative ψ = ∂us/∂ν on ∂G of the field us outside G
in terms of (29).

3. Compute

(34) u∞1 = K∞
1 ϕ1 − S∞1 ψ1, u∞2 = K∞

1 ϕ2 − S∞2 ψ2,

(35) us
1 = K1ϕ1 − S1ψ1, us

2 = K2ϕ2 − S2ψ2,

respectively to obtain a splitting of (u∞, us), where (Sj, Kj, S
∞
j , K

∞
j ) with j =

1, 2 are defined by the same way as (S,K, S∞, K∞) with ∂G replaced by ∂Gj.

We formulate the unique solvability and validity of Algorithm 2.7 in the following
results.

Theorem 2.8. The equation (32) has a unique solution ϕ in C1,β(∂G) for β ∈ (0, 1).

Proof. Since u∞ is the far-field pattern of scattered wave us outside D, the
existence of ϕ = us|∂G ∈ C1,β(∂G) satisfied (32) is obvious, noticing us(x) is analytic
in Rm \ D. Now let us consider the uniqueness. Assume that ϕ(y) ∈ C1,β(∂G)
satisfies

(K∞ − S∞B)ϕ(x̂) = 0, x̂ ∈ S.

Then us(x) related to the far-field pattern given by (32) is identically zero outside
G from Rellich lemma, that is,

(36) (K − SB)ϕ(x) = 0, x ∈ Rm \G.

By defining vs
i (x) := (Kiϕi − Si(Bϕ)i)(x) for x ∈ Rm with i = 1, 2, the above

equation reads as
vs

1(x) + vs
2(x) ≡ 0, x ∈ Rm \G.
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By the same argument as that in the proof of Theorem 2.2, we get that

vs
j (x) ≡ 0, x ∈ Rm \Gj, j = 1, 2.

On the other hand, vs
1(x) is the radiation solution outside G1, it follows from (27)

that vs
1(x) ≡ 0 in G1. Since both double-layer potential K1ϕ1(x) and single-layer

potential S1Bϕ1(x) solve the Helmholtz equation in Rm \ ∂G1, using the jump rela-
tion of K1 and the continuity of S1 with on ∂G1 in the continuous density setting,
we finally get from vs

1(x) ≡ 0 in Rm \ ∂G1 that ϕ1(y)|∂G1 ≡ 0. Similarly, we get
ϕ2(y)|∂G2 ≡ 0. �

Here we decompose the far-field pattern by Green formula, where us|∂G is con-
sidered as the density. Comparing the decomposition of far-field pattern by general
potential theory method in the previous section, the advantage of wave splitting
based on Green formula is that we get us as well as its normal derivative directly.
This kind of technique has been used in the reconstruction of Neumann data from
the far-field pattern [9], such data are needed in the probe method [3]. Moreover,
the wave splitting based on the Green formula does not need the condition of κ2 not
being the Dirichlet eigenvalue in Gj. But in the splitting based on general potential
theory, we need this assumption, see the proof of Theorem 2.4.

We can also show the uniqueness of scattered wave splitting related to this far-
field decomposition.

Theorem 2.9. For given G, assume that the far field pattern u∞ has the splitting
u∞ = u∞1 +u∞2 in terms of (34). Then us

i (x) defined in terms of (35) is the scattered
wave in Rm \ Gi corresponding to far-field pattern u∞i . Moreover, us = us

1 + us
2 is

the unique scattered wave splitting outside G related to u∞ in the sense of Theorem
2.2.

Proof. Obviously, us
i (x) defined in terms of (35) is the radiating solution to the

Helmholtz equation in Rm \ Gi. On the other hand, it follows from the relation
between the operators (K∞

∂Gi
, S∞∂Gi

) and (K∂Gi
, S∂Gi

) that us
i (x) has the asymptotic

expression with u∞i (x̂) given by (34). Therefore the Rellich lemma says that us
i (x)

must be the scattered wave outside Gi corresponding to far-field pattern u∞i . Finally,
Theorem 2.2 generates the uniqueness of splitting outside G, since us

i (x) constructed
here also satisfies the requirements in Theorem 2.2. �

In this subsection, we can also consider the analogy to Theorem 2.6, that is, the
unique decomposition with respect to G based on the Green formula. It can be set
up by the same way as that in the proof of Theorem 2.6, since (35) also splits the
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scattered wave in terms of the density functions (us
i |∂Gi

,
∂us

i

∂ν
|∂Gi

) corresponding to
the far-field decomposition (34). So we omit this result.

By the above theorem we can calculate us
j outside of the domains Gj. In Gj \Dj

we will show below that the scattered wave us
j can be calculated from u∞j via point

source method. We combine these two methods to calculate the total wave

u = ui + us = ui + us
1 + us

2

around each obstacle Dj, j = 1, 2. Then we can use the zero points set of u to
construct the boundary ∂Dj.

2.4 Determination of splitting domains via the range test

So far we have used the assumption that we know two domains G1 and G2 which
contain the two componentsD1 andD2 of a scattererD with the important condition
G1 ∩ G2 = ∅. Here we will discuss how these domains can be determined from the
knowledge of the far field pattern u∞ from one scattered time-harmonic wave. We
will employ the range test as suggested by Kusiak, Potthast and Sylvester [12].

The range test exploits solvability arguments for the equation (14). Consider the
equation in dependence of the unknown domain G = G1 ∪ G2. Then we have the
following result proven in [12].

Theorem 2.10. If the scattered field us defined by its far field pattern u∞ can be
analytically extended into the set Rm \G, then the far field equation

(37) S∞ϕ = u∞

does have a solution in L2(∂G). In this case, us expressed in terms of the density ϕ
can be extended to Rm \G. If the field cannot be analytically extended into Rm \G,
then the equation (37) does not have a solution.

The solvability of the equation (37) can be numerically tested by calculating the
regularized Tikhonov solution

(38) ϕα := (αI + S∞,∗S∞)−1S∞,∗u∞

and observing the behaviour of the norm ||ϕα||L2(S) for α → 0. The key ingredient
is Theorem 3.7 of [12] adapted to our notation.
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Theorem 2.11. If the scattered field us defined by its far field pattern u∞ can be
analytically extended into the set Rm \G, then

(39) ||ϕα||L2(S) <∞, α→ 0.

On the contrary, if the field cannot be analytically extended into Rm \G, then

(40) ||ϕα||L2(S) →∞, α→ 0.

The range test takes a reference setup G = G1 ∪ G2 which incorporates some
apriory knowledge about the possible location and size of the domains D1 and D2

such that some rotated and translated version of G can contain D1 in G1 and D2

in G2. Then, for every rotation and translation via some parameters ψ, θ and τ we
test the solvability of the equation (37) via the calculation of the norm of (38). We
use the setting for splitting for which the norm is minimal. For more details about
the range test we refer to [13] and the literature cited therein.

3 Application of wave splitting for shape recon-

struction

Based on the wave decomposition, we can reconstruct multiple scatterers by the
following splitting procedure using a potential splitting and the point source method
for field reconstructions. Here, for clarity of the presentation, the algorithm is
explained for two obstacles.

Algorithm 3.1. The reconstruction of D1, D2 by wave splitting:

1. First we specify two domains G1 and G2 such that D1 ⊂ G1 and D2 ⊂ G2,
G1 ∩ G2 = ∅ for unknown obstacles D1, D2. The possibility of this kind of
choice depends on some a priori information about the location of D1, D2 as
well as the extent of separation between D1 and D2.

2. Use the splitting procedure to determine densities ϕ1 and ϕ2 on ∂G1 and ∂G2,
such that the single-layer potentials given by (15) generates a splitting of the
scattered wave us = us

1 + us
2 and calculate the far field patters u∞1 and u∞2 in

terms of ϕ1 and ϕ2. If the splitting is based on Green formula, then find density
(ϕi, ψi) and get the expression (35) as well as the far-field decomposition (34).

3. Use the point source method to reconstruct us
2 from u∞2 in G2\D2. We calculate

an approximation us
2,α using appropriate masking operations which determine

the illuminated area as suggested by Erhard [6].
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4. Calculate an approximation u(α) to the total field u in G2 \ D2 by adding us
1

and the incident field ui

(41) u(α) = ui + S1ϕ1 + us
2,α

in case of splitting by potential theory, or

(42) u(α) = ui +K1ϕ1 − S1ψ1 + us
2,α

with ψ1 = Bϕ1, if the wave splitting is based on the Green formula.

5. Search for the zero curve of uα to calculate an approximation to the boundary
∂D2, provided that the component D2 has the sound-soft type boundary.

6. ∂D1 can be reconstructed analogously.

Obviously the above shape reconstruction scheme can be applied to multiple
obstacle with other kinds of boundary conditions on each component of D.

In the remaining part of this section we will give more details and a convergence
analysis of step 3, that is, reconstruction of us

j , j = 1, 2, in Gj \ Dj from its far-
field pattern by point source method. Notice, the expression (15) (or (35)) gives the
scattered wave us

j(x) only outside Gj. Here we give the basic idea of the point source
method based on potential theory as suggested by Liu, see [8, 11]. This approach to
the point source method extends it to the reconstruction of general radiating fields,
whereas the use of reciprocity relations as employed in [10] limits it to fields arising
from scattering of plane waves.

Since in our boundary reconstruction problem, ∂D2 is unknown, we try to ap-
proximate ∂D2 by the zero-curve of total wave near ∂D2. So in practice, we compute
us

2 outside some chosen domain H2 ⊃ D2. The initial specification of H2 depends on
some a-priori information of D2. With some rough zero-curve of total wave outside
H2, we can shrink H2 continuously to get a better reconstruction of ∂D2.

Algorithm 3.2. The point source method for the recovery of us
2 in the known do-

main G2 \H2 for given H2 uses the following steps.

1. Approximate the point source Φ(·, x) for any fixed x ∈ G2 \H2 by a superpo-
sition of plane waves

(43) Φ(y, x) =

∫
S
eiκy·dgx(d)ds(d), y ∈ ∂H2.
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2. Express the scattered wave us
2(x) outside H2 as well as its far-field pattern in

terms of the density function by

(44) us
2(x) =

∫
∂H2

Φ(y, x)ρ(y)ds(y), x ∈ R2 \H2,

(45) u∞2 (x̂) = γ

∫
∂H2

e−iκx̂·yρ(y)ds(y), x̂ ∈ S.

3. By inserting (43) into (44) and exchanging the order of integral, it follows that

(46) us
2(x) =

1

γ

∫
S
u∞2 (−d)gx(d)ds(d), x ∈ G2 \H2

in terms of (45), which reconstructs us
2(x) from its far-field pattern.

The equation (43) for superposition density may not have an exact solution. So
it must be solved by regularization technique to get an approximate solution gα

x (·)
such that (43) holds approximately. Then (us

2)
α(x) generated from (46) in terms of

gα
x gives an approximation of us

2(x).
In our procedure of generating u∞2 from total far-field u∞ by wave splitting, the

error is unavoidable. Therefore our computation formula in fact is

(47) (us
2)

α,δ(x) :=
1

γ

∫
S
(u∞2 )δ(−d)gα

x (d)ds(d), x ∈ G2 \H2,

using the noisy data (u∞2 )δ. The error between the computational result (us
2)

α,δ(x)
and the exact field us

2(x) may be estimated by the following result [8].

Theorem 3.3. Let (u∞2 )δ(x̂) be the noisy data of far-field pattern u∞2 (x̂) satisfying

(48) ‖(u∞2 )δ(·)− u∞2 (·)‖L2(S) ≤ δ.

Then for any x ∈ R2 \ H(H2), there exists constants C, a, b, c depending on H2, κ
and a choice strategy of α = α(δ) such that

(49) |(us
2)

α(δ),δ(x)− us
2(x)| ≤ Cδ

1
b ln(−a ln(cδ)) e−(− ln δ)β

with the constant C uniformly in any compact set of R2 \ H(H2), where H(H2) is
the convex hull of H2.

We have shown all theoretical analysis on the wave splitting procedure related
to multiple obstacle scattering. This procedure provides a flexible way to the wave
computation and boundary recovery in inverse scattering. We will present some
numerical results in next section to show the validity of this decomposition.
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(a) (b)

Figure 1: (a) Simulation of the scattered field (b)Point source method using some
circular approximation domain without splitting and without modifications which
might take into account the non-convexity of the scatterer. The non-convex part of
the fields and domains cannot be reconstructed since it is outside of the illuminated
area of the method

4 Numerical examples

In this last section we demonstrate the feasibility of the splitting procedure by
an application to the inverse acoustic scattering problem from two obstacles with
Dirichlet boundary condition. For simplicity we restrict our attention to the two-
dimensional case.

We have carried out a simulation of the wave scattering problem via a Brackhage-
Werner potential approach

(50) us(x) =

∫
∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y)− i

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ Rm \ ∂D,

leading to boundary integral equations of the second kind

(51) (I +K − iS)ϕ = −2ui on ∂D,

compare [5] or [10] for a detailed presentation. Employing Nystöm’s method for the
numerical solution of the integral equation and quadrature based on the trapezoidal
rule the density potential can be evaluated on subsets of Rm. Figures 1(a) and
2(a) show a plot of the modulus of the total field u = ui + us in a rectangle Q =
[−10, 10]x[−10, 10]. The wave number has been chosen to κ = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: The images show the simulated field for scattering by two obstacles (a),
the full reconstructed scattered field us via the splitting procedure with a single-
layer approach following Algorithm 2.3 in figure (b), the field us

1 + ui calculated via
the splitting procedure in (c) and the field us

2 + ui in (d). Reconstruction of us
1 + ui

from u∞1 on two illuminated areas around D1 via the point source method is shown
in (e) and (f). In particular, in (e) we obtain a reconstruction in an area where the
point source method in its simple implementation cannot reconstruct the field.



Ben Hassen, Liu and Potthast 19

(a) (a)

Figure 3: Original total field via simulation (a) and total field via splitting procedure
and point source method after reconstruction (b).

First, we would like to demonstrate what can happen when the point source
method is applied to the two obstacles without appropriate modifications taking
into account the strong non-convexity of the scatterer D. We have employed the
illumination technique developed by Erhard [6] to find the illuminated areas of the
method and to set the field in areas with bad reconstruction to zero. An example
is shown in Figure 1. Here, only the outside of the circular or convex hull of the
scatterer is illuminated by the reconstruction scheme. Fields inside of the convex
hull of the scatterer cannot be reconstructed and the algorithm shows this as blue
areas between the domains D1 and D2.

We will demonstrate how the splitting procedure in combination with the point
source method can overcome the above difficulties. In Figure (b) we demonstrate
the scattered field as represented via the splitting procedure. The fields us

1 and us
2

are shown in Figures 2 (c) and (d), their sum adds up to the original field us in the
exterior of the auxilliary domain G = G1 ∪ G2. Here, we employed the single-layer
approach for the splitting procedure following Algorithm 2.3. The field plotted in
Figure 2 (b) is the one given by equation (18).

Next, we employ the point source method applied to the far field patterns u∞1 .
The point source method step by step reconstructs the field on illuminated areas,
which depend on parameters of the method (compare [10] or [6]). We show two
reconstructions of the field us

1 + ui in Figure 2, (e) and (f). Please observe in
particular the image (e), in which the field is reconstructed on the non-convex part
between the scatterers D1 and D2. This was not possible without the splitting
procedure.

Finally, we combine all illuminated partial reconstructions via some simple mask-
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ing operations into a full reconstruction of the total field in Rm\D = Rm\(D1∪D2).
This is shown in Figure 3. From the reconstructed total field we are able to find the
shape of the domains D1 and D2 searching for points where |u(x)| is zero or close
to zero. Since this is along the lines of [10] we omit further details and point to the
literature.
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