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Abstract

This report gives a brief introduction to data assimilation and discusses
how this can be treated as an observer design problem. The particular
observer design investigated here endevours to make the resulting observer
system as robust as possible to perturbations in the model equations.

This observer is tested in the context of data assimilation for a simple
discrete model. Issues investigated include the choice of eigenvalues to be
assigned to the observer, a choice of a suitable observation matrix, and
modifications for the case where observations occur less frequently.

Finally, the choice of the weighting matrix in the Cressman data assim-
ilation scheme is compared to the feedback matrix of the observer system.

This facilitates a theoretical evaluation of the Cressman scheme.
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1 Introduction

1.1 Introduction to data assimilation

In numerical weather prediction, data assimilation is used to integrate observed
data into a forecast model. The crudest method of assimilation is simply to
substitute the observed values in place of the predicted values they represent.
However, if the values at observation points are changed in this way, the grid-point
values are no longer in agreement with each other. Data assimilation schemes
therefore aim to modify the predictions so that the corrected values are consistent
with both the observations and the known dynamics of the system.

Data assimilation has been widely used in various forms in meteorological
and oceanographic modelling since the 1950’s. The various forms use ideas from
different branches of mathematics; notably probability theory, optimization and
control theory. Although the problem may be formulated using different disci-
plines of mathematics, the resulting schemes have many common features and
properties. (See [4] for an overview of different data assimilation techniques, and
an extensive list of references.) In this report we examine the use of observers for
data assimilation. In a complementary report [5] we examine the use of optimal

control theory in data assimilation.

1.2 Data assimilation and observers

In control theory, an observer uses observations to drive a model state closer
to the “true” state as characterised by the observations. Hence, it seems quite
natural to express the data assimilation problem in terms of observers. This has
been widely researched in the context of Kalman filters. The Kalman filter is an
observer that seeks to drive the model state not to the observations exactly, but
to the “most likely state” according to the error covariances of the observations
and of the model. However, the need to recalculate these error covariances for
every model timestep renders the Kalman filter a very expensive method of data
assimilation. Also, the Kalman filter is not always sufficiently robust, and there
are difficulties in extending the method for use with nonlinear models. Apart from
the Kalman filter, data assimilation techniques have rarely evoked the theory of

observers. Even so, many of the data assimilation schemes could be expressed in



terms of observers.

In Section 2, theory for developing a robust dynamic observer for a simple
model is put forward, and an algorithm for implementing the observer is given.
Section 3 describes experiments carried out with such an observer, using the heat
equation with the “theta method” discretisation as a model. Experiment 1 inves-
tigates the best eigenvalue assignment in the development of the observer, aiming
for quick convergence of the observer to the true solution. Experiment 2 looks at
a suitable choice of the observation matrix ' and Experiment 3 investigates the
performance of the observer when the observations are infrequent. In Section 4
the Cressman scheme, a simple “successive correction” method for data assim-
ilation, is compared to the observer method, both theoretically and practically.
Section 5 summarises the conclusions drawn from the study, and gives suggestions

for future work.



2 Eigenvalue assignment

We consider the following discrete linear time invariant system S with state w*

and input u”* at time-level ¢,
S: EwrF = Aw* + Bu” (2.1)
with p observations y* of w* given by
y' = Cw" (2.2)

where A, F€IR™™"  BelR™™  (CelRP*"; and B and C are full column and
row rank, respectively. We assume here that the matrix £ is non-singular. The

results can, however, also be extended to generalized systems where F is singular.

Definition 1 The system S (2.1) with observations (2.2) is completely observ-
able if and only if for any time to and any state w° at time to there exists a finite
time 1y, such that given W and y’ for j = 0,1, .., k, the initial state w° can be

determined.

See [1] Sections 4.2 and 4.7.
Necessary and sufficient conditions for the system to be completely observable

are given by the following theorem, known as the Hautus condition [3]:

Theorem 1 The system S (with E non-singular) is completely observable if and
only if Vu € C
(A—pE)v=0 and Cv=0 & v=0.

This condition implies that if v is an eigenvector of E~' A, then C'v # 0.

2.1 Design of a dynamic observer for &

We suppose that system S is a good representation of reality, but that we do not
know the initial condition w. Starting from a guess w° of the initial condition,
a dynamic observer uses the observations to drive the state W* to the true state
wF as k increases.

We form the observer as a new system S

S EWF = AW* + Bu* + G(y* — CwF) (2.3)



We want to construct the feedback matrix G so that w* — w*

as k — oo,
regardless of the true initial condition w®, which is unknown.

Subtracting (2.3) from (2.1) and using (2.2) we have:

E(Wk-H . Wk+1) — A(Wk . Wk) _ GC(Wk _ VAV]“)7 (2.4)

k k

so defining ¥ = w* — W*, we have the error equation

Ee*! = Aef — GCe". (2.5)

Hence, for €¥ — 0 as k — oo, we require that the eigenvalues of E~1(A — GC)
have modulus less than unity.

If £ is invertible (as assumed) and & is observable, then we can construct
(¢ to do this; in fact we can choose (G to assign any eigenvalues we wish to the
system &’ [3]. Since this “inverse eigenvalue problem” is not uniquely determined
[6], we have a certain amount of freedom to choose the eigenvectors as well. We
can use this freedom to make the system as robust to perturbations as possible.

In [6] it is shown that for a robust system we require cond(X') to be as small as
possible, where X is the modal matrix whose columns are the right eigenvectors
corresponding to our chosen eigenvalues. Our objective, then, is for a suitable

eigenstructure assignment.

2.2 Eigenstructure assignment - theory
Eigenvalue assignment

We suppose that the set of eigenvalues we wish to assign is
A={A 0 ) (2.6)
where
NeC, |Nl<1l, and M EA=AEA for 7=1,...,n. (2.7)

We let D = diag[);] and let X be the modal matrix of right eigenvectors of

E~Y(A — GC) and Y be the modal matrix of E=T(AT — CTGT). Then our
problem is to choose G and X to satisty

(A—GC)X = EXD, (2.8)



or, equivalently, to choose Y and G7 to satisfy
(AT —cTahy = ETY D. (2.9)

For our purposes, we work with equation (2.9).

If we calculate the QR decompostion of CT, we find that
CT =[Q.. Q] : (2.10)

where Q. is n x p, Q. is n X (n — p); [Q., Q.] is orthogonal and R, is p x p upper

triangular, non singular. Substituting this into (2.9) and rearranging gives

QTATY — QTETY D _ R,GTY | 2.11)
QL ATY —QTETY D 0
from which we have
GT = R1QT(ATY — ETY D)Y 1, (2.12)
0=QY(A"Y — ETY D). (2.13)

Equation (2.12) is the equation for GT for a given Y and equation (2.13) gives us
a condition for choosing Y.

From (2.13) we have that for e = 1,....n
QI (AT = NET)yi =0, (2.14)

where y; is the ¢ column of Y and is the left eigenvector corresponding to

eigenvalue \;. Therefore,
yi € Ni = N(QI (AT — \ET), (2.15)

where A represents the right null space. This gives some restriction on the choice
of each column y; of Y, but since N; has dimension p (by observability), there is
still some freedom in choosing the y; if p > 1. We can use this freedom to ensure
that our selected eigenvalues are as insensitive as possible to perturbations in

A, E,C and G and thus that the system is robust.



Eigenvalue assignment for robustness

The sensitivity of eigenvalue A; to perturbations in the components of A, K. C

and (7 is given by
il ) ET il

= Tl (2.16)

where x; are the columns of X, and y! the rows of Y7 (see [6]). If we scale x;
and y; such that
BTy ] =1 (2.17)

and

yibEx| =1, (2.18)

then to minimize ¢; we must minimize ||x;||s. For the optimal conditioning we
must minimize all the ¢; together, and hence we must choose the columns of X

to minimize

v=>c =3 lIxl; = IXIIZ, (2.19)

where ||.||r is the Frobenius norm.

From the scaling equations (2.17) and (2.18) we have
YIEX =1, (2.20)
S0
X =YT'E)™", (2.21)

and hence optimizing the conditioning could equivalently be done by choosing

the rows y! of Y7 so that ||(YTE)~!||F is minimised. We note that

1

- | cos

(2.22)

¢

where « is the angle between y; and Ex;, by the scalar product rule. Therefore
¢; 18 smallest where « is smallest, which will be where y; is parallel to Ex;. To
optimize the conditioning, then, we could choose each y; to be “as parallel as

possible” to Ex;. From (2.20) we have

YIEx; =0 Vj#i, (2.23)

that is, £x; is orthogonal to y; for all 7 # ¢. If y; is to be parallel to Ex;, it
follows that y; should also be orthogonal to y; for : # j. A necessary condition for

9



optimal conditioning is therefore that the vectors y; to be as close to orthogonal
to each other as possible.
To summarise, our aim is to choose a set of vectors y;, the columns of Y so

that for all : = 1,2,..n
a) y; € V; = NV (QT(AT — N ET)) Vi=1,..,n
b) the y; are linearly independent
c) the y; are as close to orthogonal to each other as possible.

Condition b) is included, because the inverse of Y is needed for evaluating G.

The set of vectors y; must then be scaled so that (2.17) and (2.18) hold.

2.3 A method for eigenstructure assignment

The method described here involves choosing a set of vectors y; which sastisfy
conditions a), b) and ¢) of Section 2.2, and follows a method given in [9].

Calculating the Q R decompostion of (A — A\, E)Q. gives

R;
0

(A= NE)Q. =[5, 5] , (2.24)

where [S;, Si] is orthogonal and R; is (n — p) x (n — p) upper triangular and

nonsingular, S; is n x (n —p), S;isn x p. So

ST N
Qe (AT = NET) = (B, 0) ( o7 ) = R S7 (2.25)
and hence by orthogonality of [S;, Si],
QAT — M ET)S; = 0. (2.26)

Therefore, if y; is in the space spanned by the columns of 5;, then
QI(AT = NET)yi =0 (2.27)

and condition a) is satisfied.
We now choose any set of linearly independent left eigenvectors y; satisfying

condition a), and modify these in turn to satisfy condition c). Let

Y. i =Ay1, 0 Vi1, Yid1y s Y }- (2.28)

10



We want y; to be as close to orthogonal as possible to this set. Calculating the
Q) R decompostion gives
. Y
Y—i = [ZZ, Zi] 5 (229)
0

where [Z, z;| is orthogonal, Y; is upper triangular and nonsingular, and z; is an
n X 1 vector. This gives us the vector z; which is orthogonal to Y_;, but z; may
not be in S;, which would violate condition a). Choosing y; to be the orthogonal
projection of z; into .S; ensures that y; is as orthogonal as possible to the set Y_;
whilst satisfying condition a). So, after normalization to ensure (2.17) holds, we

take

Y. = SZSZTZZ/HETSZSZTZZHQ (230)

When all the columns have been modified in this way, the same procedure can then
be repeated to modify the y; again, until ||[(YT E)~!||r reaches a local minimum.
The feedback matrix G can then be calculated from (2.12), using the Y derived.

This method for improving the robustness of the system can not be guaranteed
to converge to the minimum possible value of ||(YT E)~!||, but in practice it has

been found to reduce its initial value significantly.

2.4 An algorithm for a robust observer

1) Calculate the QR decomposition of C' into

" =1Q. Q] ]ZO : (2.31)

2) Foreachi=1,..n,
calculate the QR decomposition of (A — A\, E)Q. into

(A= NE)Q. = [5:, 8] ]zi . (2.32)

3) Choose columns from each of the S; as columns of the first guess Y, in such

a way that Y is invertible.

4) For ¢ = 1,...,n, modify the columns y; of Y as follows:

11



4a) calculate the QR decomposition of Y_; = {y1,..,¥i—1, ¥it1, .-, Yu} into
Y;
0

Y—i = [ZZ',ZZ'] (233)

4b) project the vector z; into space S; to satisfy condition a) and then

normalize:

Y: = SZSZTZZ/HETSZSZTZZHQ (2.34)
5) repeat step 4 until ||(YT E)~!|r reaches a local minimum.

6) using the YV found, let the feedback matrix be G where

GT = R;'QT(ATY — ETYD)Y L. (2.35)

12



3 Implementation of the method

In this section, the theory of Section 2 is tried out for a simple model, which
is introduced in Section 3.1. Experiment 1 described in Section 3.2 investigates
how the choice of the set of eigenvalues A affects the results. In Experiment 2
(Section 3.3), different forms for the observation matrix C' are developed, and the
effect that these different choices have on the results is examined. Finally, Exper-
iment 3 (Section 3.4) looks at how the method may be modified if observations

are not available at every timestep.

3.1 The theta method for the 1D heat equation

The 1D heat equation on = € [0,1] with a point heat source of strength % at

x = i 18,
Fis(e— 1) (3.1)
Wy = OWgy + =0(x — =), :
¢ = ow 0l —
where 6 is the Dirac delta function. For this equation, with initial and boundary
conditions
w(z,0) = f(a), w(0,1) = wy, w(1,1) = w, (3.2)
the familiar theta method discretisation is [8]
Wit —wf = {(1=0)8w) + 068%™+ 5,0t 0<0<1  (33)

with initial and boundary conditions

w? = f(jA2),  wh=w,, w]=uw, (3.4)
where
v w(jAr A, j =01, = < — 0.1, N=
W, =W jar,n v J =Y T Az’ =5 AL

52w? denotes w? | — 2w? + w7, and s; is the gt component of the vector s
which is the approximation to the source term.
Discretisation of the source term

We want the approximation to the source term

s(z) = %5(1; _ i), v e [0,1] (3.5)

to imitate the following two features of s(x);

13



S(36){>0 it oe=1 50

/01 s(u)du = 3 (3.7)

4 =4
S]‘ = { 34z ! J 4 (38)

0 otherwise,

then s; is a good approximation to s(jAz) in (3.6) as Az — 0. Note also that

J 1
E siAr = -, (3.9)
=1 3

where the left hand side is the rectangular rule approximation to the left hand
side of (3.7), given that s; ~ s(jAx) for Ax small. Hence in the limit as Az — 0,
(3.7) is satisfied.

The discrete model

The discretisation can be written in matrix form as follows;
Ew™! = AW" +u (3.10)

where

n

W= (w?vwgv”'vwg—l)Tv (311)

and where the vector u containing the boundary conditions and the source term

has the form

At
0, ..., w)T 3.12
73A$7 ) 7wb) ) ( )

the non-zero elements of u are u; where j =1, 5 = J/4 and j = J — 1). The
J

u = (w,,0,...

(J —1) x (J —1) tridiagonal matrices £/ and A are given by

(1+2p0)  —pb

—uf (14 2u0) —ub
S , (3.13)

14



(L-2u(1—0)  p(1-0)
W1=0)  (1=2u(1-0)) p(1—0)

A= ‘ ) (3.14)
where p = U%.
The theta method is stable Vpu if % <8 <1 and for 0 < p < m if
0<6 <3, see [8].
In the experiments described here, the model (3.10) is implemented using
1 1
Ar=—, At=—, o=0.1, so that p =0.32. (3.15)

16’ 80’
The boundary conditions w, and w; are taken to be zero. The “true” solution

used for generating the observations is obtained by starting the model with initial

conditions

wl=2  j=1,..,J-1. (3.16)

W=1  j=1,.,J-1 (3.17)

at the same time ¢ = (. The observer is expected to converge in time to the
observations. For comparison, the solution of the model equations initiated with
the “wrong” initial conditions and no observer is also computed.

The dimension n of the system is J — 1 = 15. For technical reasons, the
observer algorithm as implemented here does not work for n observations. The
number of observations p is therefore taken in the range 1 to 14 in these ex-
periments, and different values of § € [0,1] are tested. Plots were produced
comparing the observer solution (solid line) to the numerical solution with no
observer (dashed line) and the true solution (plotted 00o). These solutions were
plotted against  and shown for t = 0.25, t = 0.5, = 0,75, and ¢t = 1; ie, at 20,
40, 60 and 80 timesteps. The figures referred to here in the text can be found at
the end of the report.

15



3.2 Experiment 1: Changing the eigenvalues

As discussed in Section 2.1 the observer (2.3) we wish to construct will converge to
the “true” solution provided that the eigenvalues of E~'(A — GC') have modulus
less than unity. Apart from this restriction, we are free to choose this set A of
eigenvalues as we like. The aim of Experiment 1 is to try out different choices of
eigenvalues for the set A, and to see which choice gives the fastest convergence of
the observer solution to the observations.

The choice of the observation matrix €' used in this experiment is rather

arbitrary; if there are p observations, then C' is the p x 15 matrix

100
1100 ..

C = . (3.18)
1110 0

In Experiment 2, however, different observation matrices are developed.

The best choice of eigenvalues investigated in this case was the system eigen-
values (the eigenvalues of E~'A) reduced in modulus by 0.25. The system eigen-
values for various values of 8 are listed in Table 1 of the Appendix. These results
were very pleasing; the observer solution always converged to the true solution
by 60 timesteps, so far as could be judged from looking at the plots. Even at 20
timesteps, the solution was generally quite close to the observations. The results
were good for all values of § and for all values of p, indicating that with this
choice of eigenvalues, the method works well even if just one or two observations
are used. Figure 1 illustrates the quick convergence in the case § = 0 when 5
observations were used. Since this choice of eigenvalues worked well, it was also
used in Experiments 2 and 3.

When the set A was chosen to be the system eigenvalues unreduced in modu-
lus, then reasonable results were attained for larger values of p, but the observer
solution matched the true solution in fewer and fewer places as p decreased.
Other, more arbitrary sets of eigenvalues were also investigated; but these results
were less satisfactory. If the eigenvalues were chosen evenly distributed between
-0.5 and 0 or between -0.5 and 0.5, then the observer solution only converged
within 80 timesteps if enough observations were used; typically 8 or more were

needed. Interestingly, these results were poorer than when the system eigenval-
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ues were reduced in modulus by 0.25, since both sets of eigenvalues overall had
similar modulus. As would be expected, choosing large eigenvalues distributed
between -1 and -0.5 gave worse results still; some 11 or more observations were

needed for reasonable convergence in this case.

3.3 Experiment 2: Changing the observation matrix

The matrix C' can be considered as an interpolation of the model values w*

from the grid points to the observation points. Choosing the matrix C' therefore
determines what linear combination of grid point values should be used as the
model equivalents to each observation. The theory demands that C' should be
full row rank (ie, rank p) for constructing the observer. The matrix C used in
Experiment 1 was chosen arbitrarily rather than using physical considerations.
In Experiment 2, it is supposed that observations are available at anything from
1 to 14 observation points, which do not in general coincide with grid points. The
aim of Experiment 2 is to develop an observation matrix which will represent a
linear interpolation from the grid point positions to the observation positions.
For this, it is at first supposed that the 14 observation positions on the interval
[0,1] were as shown in Table 2 of the Appendix. The matrix C' is then built up
as follows: if observation ¢ (where 1 < ¢ < p) has the position obs; which lies

between grid points z; and x;44, then

C' ] _ xjp1—obs;

0 - Tjp1—xy
Cijn = 2o, (3.19)
C@k = 0 k%j, k%j—l—l

If obs; lies between either the first or n'* grid point and its adjacent boundary
point, then row ¢ of C' has just one non-zero entry, since the boundary conditions
are zero.

For example, with p =5 (' is the 5 x 15 matrix

048 0 0
0.08 092 0 0
C=| o 0o 09 004 0 .. : (3.20)

0 0 0 084 016 0
0 0 0 0 0.08 092 0

17



Figure 2 illustrates the performance of the observer in the case p = 5, § = 0.
The positions of the observations are marked with a + on the z-axis. Comparing
Figures 2 and 1 shows that convergence to the observations is almost as fast as
when the matrix C' of Experiment 1 is used, in which the observation positions
coincide with the grid point positions. This was the case for all values of 8 tested,
and for p < 12. If more than 12 observations were used, however, C' was no longer
of rank p, and the method failed.

Table 3 in the Appendix gives a different set of the observation positions.
The same linear interpolation is used, but (' no longer has the neat structure of
(3.20) since the observations are ordered at random. Figure 3 shows the results
obtained in this case with p =5 and § = 0. The convergence to the observations
is much slower than in Figures 1 and 2. The selection of observations at different
positions is probably the cause of this. In Figure 2 the observation positions are

clustered around the source at x = , but in Figure 3 there are no observations

T
near this point. Again, the convergence speeds up when more observations are
used, but for p > 12 the rows of C' were linearly dependent, and so the method
failed. From the different sets of observation positions tried out, it appears that
this happens when there is a cluster of observations between two or three grid
points so that one of the rows is a linear combination of the others. This would
be less likely to happen if the ' matrix had more than just one or two non-zero
entries per row.

The results of Experiment 2 show how the observer can successfully deal with
observations which do not coincide with the grid points, although the design of
the matrix C' needs improving so that it maintains full row rank even when p is
large. Perhaps using quadratic or higher order interpolation would help here as
then each row would have more than two non-zero entries. These results have
also shown that two or three observations situated near the source point give
much faster convergence than five or more observations away from it. This shows
that a couple of carefully placed observations can be more important than a large

number of observations randomly situated.
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3.4 Experiment 3: Less frequent observations

We now consider the situation where observations are not available at every
timestep. This is an important consideration in the context of data assimila-
tion where in practice there will not in general be a complete set of data at every
model timestep. Experiment 3a examines the behaviour of the observer after a
supply of frequent observations runs out. In Experiments 3b and 3c it is supposed
that observations are available every second, fourth or eighth timestep, and two
modifications to the data assimilation scheme are considered for dealing with this.

The observation positions are as given in Table 2 of the Appendix.

3a) Observations available for the first few timesteps only

It is supposed that observations are available for just 10 or 20 timesteps, but
that after this they run out. The observer is employed while the observations are
available and is then switched off, and the model run is continued without it.
The success of the results here depended on how close the observer solution was
to the true solution when the observer was switched off. Where the observations
were available for the first 20 timesteps, the solution stayed close to the truth
for all values of p, as Figure 4 illustrates in the case p =5, § = 0. Where there
were observations for only 10 timesteps, the observer solution was not so near
to the true solution when the observer was switched off. Nevertheless, in many
cases it grew nearer to the true solution as time went on, since the heat equation
is dissipative and so smooths out small disturbances. Figure 5 gives an example
of a result in which using the observer for just 10 timesteps gave a significantly
better solution than if the observer had not been used in the case when p = 5,
6 = 0. However, in some cases the observer solution was not close to the truth
when the observer was switched off, and these results were poorer, this happened

when p =5 and 6 = 0.5, as Figure 6 shows.

3b) Increasing the timestep

If observations are available at less regular intervals than the timestepping inter-
val, then in some cases the model timestep could be increased so that observations

are available at every timestep. This can only be done if the model stability cri-

teria are not violated; that is, only for % <9< 1lifpu= 2—@5 >

1

m 1mn our
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model.

In this case, the observations are generated from a model run with one value of
i, and the numerical model uses another. So, the observer model not only starts
with the wrong initial conditions, but also contains in itself model error, due to the
incorrect values of . The observer can correct for the wrong initial conditions by
driving the model solution to the true solution, but when the observer is switched
off, the model solution is expected to drift away from the true solution.

As usual, plots were done for ¢t = 0.25,¢ = 0.5, ¢t = 0.75 and £ = 1. However, if
observations were available every other timestep, so that the timestep length was
doubled, then these plots showed the solutions at 10, 20 , 30 and 40 timesteps.
If the observations were available every fourth timestep, the plots showed the
solutions at 5, 10, 15 and 20 timesteps. Experiments 1 and 2 show that the
observer needs enough timesteps to “settle”, so the results at 10 timesteps were
not expected to be very good.

Even so, when observations were available every other timestep the results
were pleasing, (see Figure 7); on the whole the observer solution converged quite
quickly to the true solutions. Generally, the results improved as p increased.
When observations were available only every fourth timestep, the results were
significantly poorer, (see Figure 8), and if the observations were available every
eighth timestep, then satisfactory results were found only for p > 10.

This approach to the problem of infrequent data is rather unsatisfactory be-
cause of its limited practical application, since models generally run with the
largest timestep feasible anyway. It also has the disadvantage that p needs to be
large when the observations occur infrequently. However, the results from this
experiment are interesting in another way. Since the true solution and model
have differing values of p, the model could be seen as having some known error.
Some analysis could be done on these results to investigate the effects of model

error in data assimilation using ovservers.

3c) Switching the observer on only when observations are available

Here it is supposed that observations are available at regular intervals, and that
the observer is switched on when observations were available, and off otherwise.
This means using matrix A. = (A — GC) in place of A whenever observations

become available.
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This was tried for observations available every other timestep and every fourth
timestep. For some values of p the observer solution quickly converged to the
observations, and for others, the observer solution even diverged. At first there
seemed to be no pattern to this, but the following analysis gives an explanation.
The matrix ¢ was chosen to assign an eigenstructure so that the error e* given

by the equation
e’ = 7Y (A - GC)e"™ = (E7'(A - GC))re’ (3.21)

would tend to zero as k — oo. However, if the model alternates between A. and

A at successive timesteps, then the error equation becomes
e = {[ET'AEHA - GC)}re’. (3.22)

Hence in this case the observer matrix G should be chosen so that the eigenvalues
of ETYAE~Y(A — G(C) all have modulus less than one. It was found that in the
cases where the observer solution converged towards the truth, this condition
held, and where it diverged, at least one eigenvalue was greater than one.

These results indicate that with the modifications suggested above, the ob-
server data assimilation scheme could work well with observations at less frequent

intervals.
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4 Data assimilation using successive correction

Some of the earliest attempts at data assimilation in the late 1950s used an ap-
proach known as “successive correction”. Since then, this conceptionally simple
approach has been developed into schemes which are sometimes quite sophisti-
cated. The basic idea is to modify the model solution in the light of the observa-
tions. In its simplest form, this means adding some proportion of the difference
between an observation and its model counterpart to the model solution at all
grid points within some “radius of influence” of the observation. In the Cressman
scheme [2], the proportion to be added to a particular grid point depends on its
distance to the observation. If w;; is the weight or proportion of the correction

to grid point ¢ with respect to observation point j, then

s = Lot it dy <R 1)
0 it d; >R

Here R is the radius of influence, and d;; is the distance of grid point ¢ to observa-
tion j, and p; is the number of nonzero entries in row . In [2] the correction stage
of each model timestep is repeated several times with successively smaller values

of R. Here just one value of R is used since this is only a small scale problem.
The weight w;; forms the 75" element of the Cressman weighting matrix W.
This section discusses how W relates to the observer feedback matrix G, and

compares the performance of the Cressman scheme to the observer for the same

model as used in Section 3.

4.1 Comparison of the observer and successive correc-

tion techniques

Suppose the true state of the atmosphere is described by the discrete linear time

invariant system

S: Ew"t! = Aw* + Bu® (4.2)
and that we have observations y* of the state w* given by
y' = Ow". (4.3)

In a general sucessive correction method, each model timestep involves two stages:

a model update, and then a correction. Writing w**! for the updated model state,
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and W*t! for the corrected model state, we have

Stage 1: model update
Ew" = AWF + Bu”, (4.4)
Stage 2: correction
Wi = WAL LWy - OwR . (4.5)
Substituting (4.2) - (4.4) into (4.5) gives
Wit = 7Y AWY + Bu®) + WO ET (Aw® + Bu* — Aw" — Bu"), (4.6)
and subtracting (4.6) from (4.2) gives

wit — W = p AW - W) - WOETTA(WE — W), (4.7)

k k

Defining e = w* — w*; we have the error equation

et = (I —WC)E™ Ae”. (4.8)

From this, we can see that a necessary condition for the state to converge to
the observations is that (I — W' )E~' A should have eigenvalues of modulus less
than unity. The corresponding error equation obtained in Section 2, which gives

conditions for the choice of G, is
et = 71 (A - GO)et. (4.9)

Comparing the two error equations (4.8) and (4.9) gives a way of comparing
the Cressman scheme with the taditional control theory observer. The main
difference between the two approaches is that W acts on y**! and Cw**!, but ¢&
acts on y* and Cw*. This explains why E~1GC in (4.9) is replaced by WO E~1 A
in (4.8), since E~!A represents a model update from w* to w**!. Writing C in

place of CE~'A, (4.8) can be written

et = BT (A - EW()er. (4.10)

Comparing (4.10) with (4.9) and considering C' as a modified observation matrix,
it can be seen that the role of the feedback matrix GG is taken by EW in the

Cressman scheme.
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4.2 Experiments with the Cressman scheme

The Cressman scheme as described in (4.1) was implemented for the system (4.2)
to compare its performance with the observer G developed in Section 2. In this
experiment, the matrices F, A, B, C'; the input u and the initial condition w® were
chosen as in Section 3.1. The Cressman scheme was tested for different values of
6 and p, and for different values of R, the radius of influence. As before, plots
were produced comparing the “Cressman solution” (solid line) with the original
numerical solution (dashed line) and the “true solution” (plotted ooo0), at 20, 40,
60, and 80 timesteps.

For all values of 8, the success of the scheme for driving the model solution
to the true solution depended strongly on the number of observations used. For
R = 0.3, using just one observation had almost no impact on the solution, and
using 3 observations gave some improvement to the numerical solution (see Figure
9). If 5 or more observations were used, the solution was quite near to the truth
at 80 timesteps (Figure 10), and the more observations that were used, the sooner
the solution converged to the truth (Figure 11). Increasing the radius of influence
also improved the results, although not as much as increasing the number of
observations used.

When p and R were very small, the eigenvalues of (I — W(C)E~'A were the
same as the system eignvalues, that is the eigenvalues of EF~1A. Increasing p
decreased the largest few eigenvalues, but the smallest were left unchanged. This
corresponds to the significant improvement of the results as p increases. Increas-
ing the radius of influence gave a very small decrease in the largest eigenvalue.
However, since the error at timestep & depends on the eigenvalues raised to the
power k, the small difference in the largest eigenvalues becomes significant when
the eigenvalues are raised to the power of 20 or 40. This corresponds to the

improvement seen in the results as R increases.
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5 Conclusions and suggestions for further work

A robust observer has been successfully built for a very simple model in the
context of data assimilation. It was found that a good eigenvalue assignment for
the system with the observer is given by reducing the modulus of the eigenvalues
of the original model system by 0.25. This choice gave fast convergence of the
observer to the true solution in the cases investigated, even if only one or two
observations were used.

The observation matrix C' developed to represent a linear interpolation from
the model states to the observation positions worked well, but if too many obser-
vations were clustered around two or three grid points, then the rows of €' were
no longer linearly independent. This could perhaps be prevented if a higher order
interpolation were used. The results of Experiment 2 also point out that it can
be more important to have a couple of carefully placed observations than a larger
number of observations positioned randomly.

The results from Experiment 3 showed that the observer could also work
well if observations are not available at every timestep, which is a very important
practical property for operational data assimilation. The method of switching the
observer on and off, and choosing suitable eigenvalues so that this would work, is
a promising way to cope with this problem, but needs to be developed. Extending
the model timestep so that it coincides with the frequency of the observations is
not of much practical interest, since generally models already run at the largest
timestep possible. However, the results from this experiment show that even
though the model contains error because it runs with the wrong value of p, the
observer can still be driven to fit the observations.

Checking that the solution stays close to the truth after the observations have
run out is important, since in numerical weather prediction model runs using data
assimilation are required to provide initial conditions for a forecast for which there
are no observations. If the model contains error, though, the model solution would
diverge from the truth after the observer is switched off.

In Section 4, a general successive correction scheme was linked to the ob-
server technique described in Section 2, and a link between the feedback matrix
(G and the Cressman weighting matrix W was established. Error analysis on the

Cressman scheme gave conditions for convergence of the scheme to the observa-
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tions. Reformulating data assimilation schemes in terms of observers introduces
the possibility of using results from control theory to carry out analysis on these
schemes. This could perhaps explain some of the successes and failings of the dif-
ferent schemes. The experiments described using the Cressman scheme showed
the robust observer developed in this project to work better than the Cressman
scheme when there were few observations. This can be linked to the fact that the
error equation for the observer has smaller eigenvalues than that of the Cressman
scheme.

A major probem with the observer developed here is that it is based on assign-
ing the eigenstructure of the system, but finding the eigenvalues and eigenvectors
of a large numerical model is no trivial matter! Hopefully, though, comparing
this method to other data assimilation schemes applied to simple models will
give insights for improvements to those methods. There are other methods for
developing observers, and [7] develops an observer for a nonlinear model using
techniques which appear to bear resemblence to the variational analysis approach
to data assimilation, and to the methods we have investigated in another report
[5] on optimal control theory and data assimilation. It would be interesting to

investigate this approach to building an observer next.
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APPENDIX

Table 1: System eigenvalues

The eigenvalues of E~'A defined in equation (3.10) for § =0, § = 0.5 and § =1

are:

Table 2:

=0

0 =0.5

=1

0.7156

0.9878

0.9879

0.6045

0.9524

0.9026

0.8125

0.8977

0.9535

0.8921

0.8286

0.8421

0.9513

0.7510

0.7786

0.9877

0.6701

0.7168

0.4849

0.5904

0.6600

0.3600

0.5152

0.6098

0.2351

0.4467

0.5666

0.1151

0.2241

0.6305

0.0044

0.2379

0.5011

—0.0925

0.3353

0.4410

—0.1221

0.2934

0.4604

—0.2313

0.3865

0.4482

—0.2677

0.2610

0.4770

First set of observation positions

obsy

0bss

0bs;

0bsy4

obs;

0bsg

obsy;

obsg

0bsg

06810

06811

06812

06813

06814

0.03

0.12

0.19

0.26

0.37

0.42

0.45

0.56

0.57

0.60

0.67

0.71

0.73

0.83

Table 3:

Second set of observation positions

obsy

0bss

0bs;

0bsy4

obs;

0bsg

obsy;

obsg

0bsg

06810

06811

06812

06813

06814

0.70

0.03

0.45

0.92

0.80

0.12

0.15

0.20

0.56

0.90

0.87

0.09

0.63

0.43
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Figure 1: Experiment 1; p=5,60 =10

Figure 2: Experiment 2; p =5, 6 =0,

first set of observation positions (ordered)

Figure 3: Experiment 2; p =5, 6 =0,

second set of observation positions (unordered)

Figure 4: Experiment 3a; p =5, 6 =0,

observations available for the first 20 timesteps

Figure 5: Experiment 3a; p =5, 6§ =0,

observations available for the first 10 timesteps

Figure 6: Experiment 3a; p =5, § = 0.5,

observations available for the first 10 timesteps

Figure 7: Experiment 3b; p =5, 0 =1,

observations available every second timestep

Figure 8: Experiment 3b; p =5, 0 =1,

observations available every fourth timestep
Figure 9: Cressman scheme; p =3, § = 0.5, R =0.3
Figure 10: Cressman scheme; p =5, 60 =0.5, R =0.3

Figure 11: Cressman scheme; p =17, 60 =0.5, R =0.3
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