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Abstract

This report gives a brief introduction to data assimilation and discusses

how this can be treated as an observer design problem� The particular

observer design investigated here endevours to make the resulting observer

system as robust as possible to perturbations in the model equations�

This observer is tested in the context of data assimilation for a simple

discrete model� Issues investigated include the choice of eigenvalues to be

assigned to the observer� a choice of a suitable observation matrix� and

modi�cations for the case where observations occur less frequently�

Finally� the choice of the weighting matrix in the Cressman data assim�

ilation scheme is compared to the feedback matrix of the observer system�

This facilitates a theoretical evaluation of the Cressman scheme�
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� Introduction

��� Introduction to data assimilation

In numerical weather prediction� data assimilation is used to integrate observed

data into a forecast model� The crudest method of assimilation is simply to

substitute the observed values in place of the predicted values they represent�

However� if the values at observation points are changed in this way� the grid
point

values are no longer in agreement with each other� Data assimilation schemes

therefore aim to modify the predictions so that the corrected values are consistent

with both the observations and the known dynamics of the system�

Data assimilation has been widely used in various forms in meteorological

and oceanographic modelling since the �����s� The various forms use ideas from

di�erent branches of mathematics� notably probability theory� optimization and

control theory� Although the problem may be formulated using di�erent disci


plines of mathematics� the resulting schemes have many common features and

properties� �See ��� for an overview of di�erent data assimilation techniques� and

an extensive list of references�� In this report we examine the use of observers for

data assimilation� In a complementary report ��� we examine the use of optimal

control theory in data assimilation�

��� Data assimilation and observers

In control theory� an observer uses observations to drive a model state closer

to the �true� state as characterised by the observations� Hence� it seems quite

natural to express the data assimilation problem in terms of observers� This has

been widely researched in the context of Kalman �lters� The Kalman �lter is an

observer that seeks to drive the model state not to the observations exactly� but

to the �most likely state� according to the error covariances of the observations

and of the model� However� the need to recalculate these error covariances for

every model timestep renders the Kalman �lter a very expensive method of data

assimilation� Also� the Kalman �lter is not always su�ciently robust� and there

are di�culties in extending the method for use with nonlinear models� Apart from

the Kalman �lter� data assimilation techniques have rarely evoked the theory of

observers� Even so� many of the data assimilation schemes could be expressed in

�



terms of observers�

In Section �� theory for developing a robust dynamic observer for a simple

model is put forward� and an algorithm for implementing the observer is given�

Section 
 describes experiments carried out with such an observer� using the heat

equation with the �theta method� discretisation as a model� Experiment � inves


tigates the best eigenvalue assignment in the development of the observer� aiming

for quick convergence of the observer to the true solution� Experiment � looks at

a suitable choice of the observation matrix C and Experiment 
 investigates the

performance of the observer when the observations are infrequent� In Section �

the Cressman scheme� a simple �successive correction� method for data assim


ilation� is compared to the observer method� both theoretically and practically�

Section � summarises the conclusions drawn from the study� and gives suggestions

for future work�

�



� Eigenvalue assignment

We consider the following discrete linear time invariant system S with state wk

and input uk at time
level tk

S � Ewk�� � Awk �Buk �����

with p observations yk of wk given by

yk � Cwk �����

where A�E�IRn�n� B�IRn�m� C�IRp�n� and B and C are full column and

row rank� respectively� We assume here that the matrix E is non�singular� The

results can� however� also be extended to generalized systems where E is singular�

De�nition � The system S ����� with observations ����� is completely observ


able if and only if for any time t� and any state w� at time t� there exists a �nite

time tk such that given uj and yj for j � �� �� ��� k	 the initial state w� can be

determined�

See ��� Sections ��� and ����

Necessary and su�cient conditions for the system to be completely observable

are given by the following theorem� known as the Hautus condition �
��

Theorem � The system S �with E non�singular� is completely observable if and

only if �� � C

�A� �E�v � � and Cv � � � v � ��

This condition implies that if v is an eigenvector of E��A� then Cv �� ��

��� Design of a dynamic observer for S

We suppose that system S is a good representation of reality� but that we do not

know the initial condition w�� Starting from a guess �w� of the initial condition�

a dynamic observer uses the observations to drive the state �wk to the true state

wk as k increases�

We form the observer as a new system S ��

S � � E �wk�� � A �wk �Buk �G�yk � C �wk� ���
�

	



We want to construct the feedback matrix G so that �wk � wk as k � ��

regardless of the true initial condition w�� which is unknown�

Subtracting ���
� from ����� and using ����� we have�

E�wk�� � �wk��� � A�wk � �wk��GC�wk � �wk�� �����

so de�ning ek � wk � �wk� we have the error equation

Eek�� � Aek �GCek� �����

Hence� for ek � � as k � �� we require that the eigenvalues of E���A � GC�

have modulus less than unity�

If E is invertible �as assumed� and S is observable� then we can construct

G to do this� in fact we can choose G to assign any eigenvalues we wish to the

system S � �
�� Since this �inverse eigenvalue problem� is not uniquely determined

�	�� we have a certain amount of freedom to choose the eigenvectors as well� We

can use this freedom to make the system as robust to perturbations as possible�

In �	� it is shown that for a robust system we require cond�X� to be as small as

possible� where X is the modal matrix whose columns are the right eigenvectors

corresponding to our chosen eigenvalues� Our objective� then� is for a suitable

eigenstructure assignment�

��� Eigenstructure assignment � theory

Eigenvalue assignment

We suppose that the set of eigenvalues we wish to assign is

� � f��� ��� ���� �ng� ���	�

where

�i � C� j�ij � �� and �i � �	 �� � � for i � �� ���� n� �����

We let D � diag��i� and let X be the modal matrix of right eigenvectors of

E���A � GC� and Y be the modal matrix of E�T �AT � CTGT �� Then our

problem is to choose G and X to satisfy

�A�GC�X � EXD� ��� �

�



or� equivalently� to choose Y and GT to satisfy

�AT � CTGT �Y � ETY D� �����

For our purposes� we work with equation ������

If we calculate the QR decompostion of CT � we �nd that

CT � � !Qc� Qc�

�
�� Ro

�

�
�� � ������

where !Qc is n
 p� Qc is n
 �n� p�� � !Qc� Qc� is orthogonal and Ro is p
 p upper

triangular� non singular� Substituting this into ����� and rearranging gives

�
B�

!QT
c A

TY � !QT
c E

TY D

QT
c A

TY �QT
c E

TY D

	
CA �

�
B� RoG

TY

�

	
CA � ������

from which we have

GT � R��
o

!QT
c �A

TY � ETY D�Y ��� ������

� � QT
c �A

TY � ETY D�� ����
�

Equation ������ is the equation for GT for a given Y and equation ����
� gives us

a condition for choosing Y �

From ����
� we have that for i � �� ���� n

QT
c �A

T � �iE
T �yi � �� ������

where yi is the ith column of Y and is the left eigenvector corresponding to

eigenvalue �i� Therefore�

yi � Ni � N �QT
c �A

T � �iE
T �� ������

where N represents the right null space� This gives some restriction on the choice

of each column yi of Y � but since Ni has dimension p �by observability�� there is

still some freedom in choosing the yi if p � �� We can use this freedom to ensure

that our selected eigenvalues are as insensitive as possible to perturbations in

A�E�C and G and thus that the system is robust�

 



Eigenvalue assignment for robustness

The sensitivity of eigenvalue �i to perturbations in the components of A�E�C

and G is given by

ci �
kxik�kETyik�
jyT

i Exij
� ����	�

where xi are the columns of X� and yT
i the rows of Y T �see �	��� If we scale xi

and yi such that

kETyik� � � ������

and 


yT
i Exi




 � �� ���� �

then to minimize ci we must minimize kxik�� For the optimal conditioning we

must minimize all the ci together� and hence we must choose the columns of X

to minimize

� �
X
i

c�i �
X
i

kxik
�
� � kXk

�
F � ������

where k�kF is the Frobenius norm�

From the scaling equations ������ and ���� � we have

Y TEX � I� ������

so

X � �Y TE���� ������

and hence optimizing the conditioning could equivalently be done by choosing

the rows yT
i of Y T so that k�Y TE���kF is minimised� We note that

ci �
�

j cos�j
������

where � is the angle between yi and Exi� by the scalar product rule� Therefore

ci is smallest where � is smallest� which will be where yi is parallel to Exi� To

optimize the conditioning� then� we could choose each yi to be �as parallel as

possible� to Exi� From ������ we have

yT
j Exi � � �j �� i� ����
�

that is� Exi is orthogonal to yj for all j �� i� If yi is to be parallel to Exi� it

follows that yi should also be orthogonal to yj for i �� j� A necessary condition for

�



optimal conditioning is therefore that the vectors yj to be as close to orthogonal

to each other as possible�

To summarise� our aim is to choose a set of vectors yi� the columns of Y so

that for all i � �� �� ��n

a� yi � Ni � N �QT
c �A

T � �iE
T �� �i � �� ��� n

b� the yi are linearly independent

c� the yi are as close to orthogonal to each other as possible�

Condition b� is included� because the inverse of Y is needed for evaluating G�

The set of vectors yi must then be scaled so that ������ and ���� � hold�

��� A method for eigenstructure assignment

The method described here involves choosing a set of vectors yi which sastisfy

conditions a�� b� and c� of Section ���� and follows a method given in ����

Calculating the QR decompostion of �A� �iE�Qc gives

�A� �iE�Qc � � !Si� Si�

�
�� Ri

�

�
�� � ������

where � !Si� Si� is orthogonal and Ri is �n � p� 
 �n � p� upper triangular and

nonsingular� !Si is n
 �n� p�� Si is n 
 p� So

QT
c �A

T � �iE
T � � �RT

i � ��

�
B�

!ST
i

ST
i

	
CA � RT

i
!ST
i ������

and hence by orthogonality of � !Si� Si��

QT
c �A

T � �iE
T �Si � �� ����	�

Therefore� if yi is in the space spanned by the columns of Si� then

QT
c �A

T � �iE
T �yi � � ������

and condition a� is satis�ed�

We now choose any set of linearly independent left eigenvectors yi satisfying

condition a�� and modify these in turn to satisfy condition c�� Let

Y�i � fy�� ����yi���yi��� ����yng� ���� �

��



We want yi to be as close to orthogonal as possible to this set� Calculating the

QR decompostion gives

Y�i � � !Zi� zi�

�
��

!Yi

�

�
�� � ������

where � !Zi� zi� is orthogonal� !Yi is upper triangular and nonsingular� and zi is an

n 
 � vector� This gives us the vector zi which is orthogonal to Y�i� but zi may

not be in Si� which would violate condition a�� Choosing yi to be the orthogonal

projection of zi into Si ensures that yi is as orthogonal as possible to the set Y�i

whilst satisfying condition a�� So� after normalization to ensure ������ holds� we

take

yi � SiS
T
i zi	kE

TSiS
T
i zik�� ���
��

When all the columns have been modi�ed in this way� the same procedure can then

be repeated to modify the yi again� until k�Y TE���kF reaches a local minimum�

The feedback matrix G can then be calculated from ������� using the Y derived�

This method for improving the robustness of the system can not be guaranteed

to converge to the minimum possible value of k�Y TE���kF � but in practice it has

been found to reduce its initial value signi�cantly�

��� An algorithm for a robust observer

�� Calculate the QR decomposition of CT into

CT �
h
!Qc� Qc

i
�
�� Ro

�

�
�� � ���
��

�� For each i � �� ��� n�

calculate the QR decomposition of �A� �iE�Qc into

�A� �iE�Qc �
h
!Si� Si

i
�
�� Ri

�

�
�� � ���
��


� Choose columns from each of the Si as columns of the �rst guess Y� in such

a way that Y is invertible�

�� For i � �� ���� n� modify the columns yi of Y as follows�

��



�a� calculate the QR decomposition of Y�i � fy�� ���yi���yi��� ���yng into

Y�i � � !Zi� zi�

�
��

!Yi

�

�
�� � ���

�

�b� project the vector zi into space Si to satisfy condition a� and then

normalize�

yi � SiS
T
i zi	kE

TSiS
T
i zik�� ���
��

�� repeat step � until k�Y TE���kF reaches a local minimum�

	� using the Y found� let the feedback matrix be G where

GT � R��
o

!QT
c �A

TY � ETY D�Y ��� ���
��

�

��



� Implementation of the method

In this section� the theory of Section � is tried out for a simple model� which

is introduced in Section 
��� Experiment � described in Section 
�� investigates

how the choice of the set of eigenvalues � a�ects the results� In Experiment �

�Section 
�
�� di�erent forms for the observation matrix C are developed� and the

e�ect that these di�erent choices have on the results is examined� Finally� Exper


iment 
 �Section 
��� looks at how the method may be modi�ed if observations

are not available at every timestep�

��� The theta method for the �D heat equation

The �D heat equation on x � ��� �� with a point heat source of strength �
�
at

x � �
�
is�

wt � 
wxx �
�



��x�

�

�
�� �
���

where � is the Dirac delta function� For this equation� with initial and boundary

conditions

w�x� �� � f�x�� w��� t� � wa� w��� t� � wb� �
���

the familiar theta method discretisation is � �

wn��
j �wn

j �

"t

"x�

n
��� ����wn

j � ���wn��
j

o
� sj"t � � � � � �
�
�

with initial and boundary conditions

w�
j � f�j"x�� wn

� � wa� wn
J � wb� �
���

where

wn
j 
 w�j"x� n"t�� j � �� �� ��� J �

�

"x
� n � �� �� ��� N �

�

"t
�

��wn
j denotes wn

j�� � �wn
j � wn

j��� and sj is the jth component of the vector s

which is the approximation to the source term�

Discretisation of the source term

We want the approximation to the source term

s�x� �
�



��x�

�

�
�� x � ��� �� �
���

to imitate the following two features of s�x��

�




��

s�x�

��

��

� � if x � �
�

� � if x �� �
�

�
�	�

�� Z �

�
s�u�du �

�



� �
���

If we choose the vector s so that its jth component sj is given by

sj �

��

��

�
��x

if j � J

�

� otherwise�
�
� �

then sj is a good approximation to s�j"x� in �
�	� as "x� �� Note also that

JX
j��

sj"x �
�



� �
���

where the left hand side is the rectangular rule approximation to the left hand

side of �
���� given that sj 
 s�j"x� for "x small� Hence in the limit as "x� ��

�
��� is satis�ed�

The discrete model

The discretisation can be written in matrix form as follows�

Ewn�� � Awn � u �
����

where

wn � �wn
� � w

n
� � ���� w

n
J���

T � �
����

and where the vector u containing the boundary conditions and the source term

has the form

u � �wa� �� ����
"t


"x
� �� ���� wb�

T � �
����

�the non
zero elements of u are uj where j � �� j � J	� and j � J � ��� The

�J � �� 
 �J � �� tridiagonal matrices E and A are given by

E �

�
BBBBBBBB�

�� � ���� ���

��� �� � ���� ���
���

���
���

���
���

���

	
CCCCCCCCA
� �
��
�

��



A �

�
BBBBBBBB�

�� � ���� � ��� ���� ��

��� � �� ��� ���� � ��� ���� ��
���

���
���

���
���

���

	
CCCCCCCCA
� �
����

where � � 
 �t

�x�
�

The theta method is stable �� if �
� � � � � and for � � � � �

�	����
 if

� � � � �
�
� see � ��

In the experiments described here� the model �
���� is implemented using

"x �
�

�	
� "t �

�

 �
� 
 � ���� so that � � ��
�� �
����

The boundary conditions wa and wb are taken to be zero� The �true� solution

used for generating the observations is obtained by starting the model with initial

conditions

w�
j � � j � �� ��� J � �� �
��	�

The observer� however� is initiated with

w�
j � � j � �� ��� J � � �
����

at the same time t � �� The observer is expected to converge in time to the

observations� For comparison� the solution of the model equations initiated with

the �wrong� initial conditions and no observer is also computed�

The dimension n of the system is J � � � ��� For technical reasons� the

observer algorithm as implemented here does not work for n observations� The

number of observations p is therefore taken in the range � to �� in these ex


periments� and di�erent values of � � ��� �� are tested� Plots were produced

comparing the observer solution �solid line� to the numerical solution with no

observer �dashed line� and the true solution �plotted ooo�� These solutions were

plotted against x and shown for t � ����� t � ���� � �� ��� and t � �� ie� at ���

��� 	� and  � timesteps� The �gures referred to here in the text can be found at

the end of the report�

��



��� Experiment �� Changing the eigenvalues

As discussed in Section ��� the observer ���
� we wish to construct will converge to

the �true� solution provided that the eigenvalues of E���A�GC� have modulus

less than unity� Apart from this restriction� we are free to choose this set � of

eigenvalues as we like� The aim of Experiment � is to try out di�erent choices of

eigenvalues for the set �� and to see which choice gives the fastest convergence of

the observer solution to the observations�

The choice of the observation matrix C used in this experiment is rather

arbitrary� if there are p observations� then C is the p
 �� matrix

C �

�
BBBBBBBB�

� � � ���

� � � � ���

� � � � � ���
���

���
���

	
CCCCCCCCA
� �
�� �

In Experiment �� however� di�erent observation matrices are developed�

The best choice of eigenvalues investigated in this case was the system eigen


values �the eigenvalues of E��A� reduced in modulus by ����� The system eigen


values for various values of � are listed in Table � of the Appendix� These results

were very pleasing� the observer solution always converged to the true solution

by 	� timesteps� so far as could be judged from looking at the plots� Even at ��

timesteps� the solution was generally quite close to the observations� The results

were good for all values of � and for all values of p� indicating that with this

choice of eigenvalues� the method works well even if just one or two observations

are used� Figure � illustrates the quick convergence in the case � � � when �

observations were used� Since this choice of eigenvalues worked well� it was also

used in Experiments � and 
�

When the set � was chosen to be the system eigenvalues unreduced in modu


lus� then reasonable results were attained for larger values of p� but the observer

solution matched the true solution in fewer and fewer places as p decreased�

Other� more arbitrary sets of eigenvalues were also investigated� but these results

were less satisfactory� If the eigenvalues were chosen evenly distributed between


��� and � or between 
��� and ���� then the observer solution only converged

within  � timesteps if enough observations were used� typically  or more were

needed� Interestingly� these results were poorer than when the system eigenval


�	



ues were reduced in modulus by ����� since both sets of eigenvalues overall had

similar modulus� As would be expected� choosing large eigenvalues distributed

between 
� and 
��� gave worse results still� some �� or more observations were

needed for reasonable convergence in this case�

��� Experiment �� Changing the observation matrix

The matrix C can be considered as an interpolation of the model values wk

from the grid points to the observation points� Choosing the matrix C therefore

determines what linear combination of grid point values should be used as the

model equivalents to each observation� The theory demands that C should be

full row rank �ie� rank p� for constructing the observer� The matrix C used in

Experiment � was chosen arbitrarily rather than using physical considerations�

In Experiment �� it is supposed that observations are available at anything from

� to �� observation points� which do not in general coincide with grid points� The

aim of Experiment � is to develop an observation matrix which will represent a

linear interpolation from the grid point positions to the observation positions�

For this� it is at �rst supposed that the �� observation positions on the interval

��� �� were as shown in Table � of the Appendix� The matrix C is then built up

as follows� if observation i �where � � i � p� has the position obsi which lies

between grid points xj and xj��� then

Ci�j � xj���obsi

xj���xj
�

Ci�j�� � obsi�xj

xj���xj
�

Ci�k � � k �� j� k �� j � ��

�
����

If obsi lies between either the �rst or nth grid point and its adjacent boundary

point� then row i of C has just one non
zero entry� since the boundary conditions

are zero�

For example� with p � � C is the �
 �� matrix

C �

�
BBBBBBBBBBB�

��� � � ���

��� ���� � � ���

� � ���	 ���� � ���

� � � �� � ���	 � ���

� � � � ��� ���� � ���

	
CCCCCCCCCCCA

� �
����

��



Figure � illustrates the performance of the observer in the case p � �� � � ��

The positions of the observations are marked with a � on the x
axis� Comparing

Figures � and � shows that convergence to the observations is almost as fast as

when the matrix C of Experiment � is used� in which the observation positions

coincide with the grid point positions� This was the case for all values of � tested�

and for p � ��� If more than �� observations were used� however� C was no longer

of rank p� and the method failed�

Table 
 in the Appendix gives a di�erent set of the observation positions�

The same linear interpolation is used� but C no longer has the neat structure of

�
���� since the observations are ordered at random� Figure 
 shows the results

obtained in this case with p � � and � � �� The convergence to the observations

is much slower than in Figures � and �� The selection of observations at di�erent

positions is probably the cause of this� In Figure � the observation positions are

clustered around the source at x � �
�
� but in Figure 
 there are no observations

near this point� Again� the convergence speeds up when more observations are

used� but for p � �� the rows of C were linearly dependent� and so the method

failed� From the di�erent sets of observation positions tried out� it appears that

this happens when there is a cluster of observations between two or three grid

points so that one of the rows is a linear combination of the others� This would

be less likely to happen if the C matrix had more than just one or two non
zero

entries per row�

The results of Experiment � show how the observer can successfully deal with

observations which do not coincide with the grid points� although the design of

the matrix C needs improving so that it maintains full row rank even when p is

large� Perhaps using quadratic or higher order interpolation would help here as

then each row would have more than two non
zero entries� These results have

also shown that two or three observations situated near the source point give

much faster convergence than �ve or more observations away from it� This shows

that a couple of carefully placed observations can be more important than a large

number of observations randomly situated�

� 



��� Experiment �� Less frequent observations

We now consider the situation where observations are not available at every

timestep� This is an important consideration in the context of data assimila


tion where in practice there will not in general be a complete set of data at every

model timestep� Experiment 
a examines the behaviour of the observer after a

supply of frequent observations runs out� In Experiments 
b and 
c it is supposed

that observations are available every second� fourth or eighth timestep� and two

modi�cations to the data assimilation scheme are considered for dealing with this�

The observation positions are as given in Table � of the Appendix�

�a� Observations available for the �rst few timesteps only

It is supposed that observations are available for just �� or �� timesteps� but

that after this they run out� The observer is employed while the observations are

available and is then switched o�� and the model run is continued without it�

The success of the results here depended on how close the observer solution was

to the true solution when the observer was switched o�� Where the observations

were available for the �rst �� timesteps� the solution stayed close to the truth

for all values of p� as Figure � illustrates in the case p � �� � � �� Where there

were observations for only �� timesteps� the observer solution was not so near

to the true solution when the observer was switched o�� Nevertheless� in many

cases it grew nearer to the true solution as time went on� since the heat equation

is dissipative and so smooths out small disturbances� Figure � gives an example

of a result in which using the observer for just �� timesteps gave a signi�cantly

better solution than if the observer had not been used in the case when p � ��

� � �� However� in some cases the observer solution was not close to the truth

when the observer was switched o�� and these results were poorer� this happened

when p � � and � � ���� as Figure 	 shows�

�b� Increasing the timestep

If observations are available at less regular intervals than the timestepping inter


val� then in some cases the model timestep could be increased so that observations

are available at every timestep� This can only be done if the model stability cri


teria are not violated� that is� only for �
� � � � � if � � ��t

�x�
� �

�	����
 in our

��



model�

In this case� the observations are generated from a model run with one value of

�� and the numerical model uses another� So� the observer model not only starts

with the wrong initial conditions� but also contains in itself model error� due to the

incorrect values of �� The observer can correct for the wrong initial conditions by

driving the model solution to the true solution� but when the observer is switched

o�� the model solution is expected to drift away from the true solution�

As usual� plots were done for t � ����� t � ���� t � ���� and t � �� However� if

observations were available every other timestep� so that the timestep length was

doubled� then these plots showed the solutions at ��� �� � 
� and �� timesteps�

If the observations were available every fourth timestep� the plots showed the

solutions at �� ��� �� and �� timesteps� Experiments � and � show that the

observer needs enough timesteps to �settle�� so the results at �� timesteps were

not expected to be very good�

Even so� when observations were available every other timestep the results

were pleasing� �see Figure ��� on the whole the observer solution converged quite

quickly to the true solutions� Generally� the results improved as p increased�

When observations were available only every fourth timestep� the results were

signi�cantly poorer� �see Figure  �� and if the observations were available every

eighth timestep� then satisfactory results were found only for p � ���

This approach to the problem of infrequent data is rather unsatisfactory be


cause of its limited practical application� since models generally run with the

largest timestep feasible anyway� It also has the disadvantage that p needs to be

large when the observations occur infrequently� However� the results from this

experiment are interesting in another way� Since the true solution and model

have di�ering values of �� the model could be seen as having some known error�

Some analysis could be done on these results to investigate the e�ects of model

error in data assimilation using ovservers�

�c� Switching the observer on only when observations are available

Here it is supposed that observations are available at regular intervals� and that

the observer is switched on when observations were available� and o� otherwise�

This means using matrix Ac � �A � GC� in place of A whenever observations

become available�

��



This was tried for observations available every other timestep and every fourth

timestep� For some values of p the observer solution quickly converged to the

observations� and for others� the observer solution even diverged� At �rst there

seemed to be no pattern to this� but the following analysis gives an explanation�

The matrix G was chosen to assign an eigenstructure so that the error ek given

by the equation

ek � E���A�GC�ek�� � �E���A�GC��ke� �
����

would tend to zero as k ��� However� if the model alternates between Ac and

A at successive timesteps� then the error equation becomes

e�k � fE��AE���A�GC�gke�� �
����

Hence in this case the observer matrix G should be chosen so that the eigenvalues

of E��AE���A�GC� all have modulus less than one� It was found that in the

cases where the observer solution converged towards the truth� this condition

held� and where it diverged� at least one eigenvalue was greater than one�

These results indicate that with the modi�cations suggested above� the ob


server data assimilation scheme could work well with observations at less frequent

intervals�

��



� Data assimilation using successive correction

Some of the earliest attempts at data assimilation in the late ����s used an ap


proach known as �successive correction�� Since then� this conceptionally simple

approach has been developed into schemes which are sometimes quite sophisti


cated� The basic idea is to modify the model solution in the light of the observa


tions� In its simplest form� this means adding some proportion of the di�erence

between an observation and its model counterpart to the model solution at all

grid points within some �radius of in#uence� of the observation� In the Cressman

scheme ���� the proportion to be added to a particular grid point depends on its

distance to the observation� If wij is the weight or proportion of the correction

to grid point i with respect to observation point j� then

wij �

��

��

�
�i

R�dij

R�dij
if dij � R

� if dij � R
�����

Here R is the radius of in#uence� and dij is the distance of grid point i to observa


tion j� and 
i is the number of nonzero entries in row i� In ��� the correction stage

of each model timestep is repeated several times with successively smaller values

of R� Here just one value of R is used since this is only a small scale problem�

The weight wij forms the ijth element of the Cressman weighting matrix W �

This section discusses how W relates to the observer feedback matrix G� and

compares the performance of the Cressman scheme to the observer for the same

model as used in Section 
�

��� Comparison of the observer and successive correc�

tion techniques

Suppose the true state of the atmosphere is described by the discrete linear time

invariant system

S � Ewk�� � Awk �Buk �����

and that we have observations yk of the state wk given by

yk � Cwk� ���
�

In a general sucessive correction method� each model timestep involves two stages�

a model update� and then a correction� Writing !wk�� for the updated model state�

��



and �wk�� for the corrected model state� we have

Stage �
 model update

E !wk�� � A �wk �Buk� �����

Stage �
 correction

�wk�� � !wk�� �W �yk�� � C !wk���� �����

Substituting ����� 
 ����� into ����� gives

�wk�� � E���A �wk �Buk� �WCE���Awk �Buk �A �wk �Buk�� ���	�

and subtracting ���	� from ����� gives

wk�� � �wk�� � E��A�wk � �wk��WCE��A�wk � �wk�� �����

De�ning ek � wk � �wk� we have the error equation

ek�� � �I �WC�E��Aek� ��� �

From this� we can see that a necessary condition for the state to converge to

the observations is that �I �WC�E��A should have eigenvalues of modulus less

than unity� The corresponding error equation obtained in Section �� which gives

conditions for the choice of G� is

ek�� � E���A�GC�ek� �����

Comparing the two error equations ��� � and ����� gives a way of comparing

the Cressman scheme with the taditional control theory observer� The main

di�erence between the two approaches is that W acts on yk�� and Cwk��� but G

acts on yk and Cwk� This explains why E��GC in ����� is replaced byWCE��A

in ��� �� since E��A represents a model update from wk to wk��� Writing !C in

place of CE��A� ��� � can be written

ek�� � E���A� EW !C�ek� ������

Comparing ������ with ����� and considering !C as a modi�ed observation matrix�

it can be seen that the role of the feedback matrix G is taken by EW in the

Cressman scheme�

�




��� Experiments with the Cressman scheme

The Cressman scheme as described in ����� was implemented for the system �����

to compare its performance with the observer G developed in Section �� In this

experiment� the matricesE�A�B�C� the input u and the initial conditionw� were

chosen as in Section 
��� The Cressman scheme was tested for di�erent values of

� and p� and for di�erent values of R� the radius of in#uence� As before� plots

were produced comparing the �Cressman solution� �solid line� with the original

numerical solution �dashed line� and the �true solution� �plotted ooo�� at ��� ���

	�� and  � timesteps�

For all values of �� the success of the scheme for driving the model solution

to the true solution depended strongly on the number of observations used� For

R � ��
� using just one observation had almost no impact on the solution� and

using 
 observations gave some improvement to the numerical solution �see Figure

��� If � or more observations were used� the solution was quite near to the truth

at  � timesteps �Figure ���� and the more observations that were used� the sooner

the solution converged to the truth �Figure ���� Increasing the radius of in#uence

also improved the results� although not as much as increasing the number of

observations used�

When p and R were very small� the eigenvalues of �I �WC�E��A were the

same as the system eignvalues� that is the eigenvalues of E��A� Increasing p

decreased the largest few eigenvalues� but the smallest were left unchanged� This

corresponds to the signi�cant improvement of the results as p increases� Increas


ing the radius of in#uence gave a very small decrease in the largest eigenvalue�

However� since the error at timestep k depends on the eigenvalues raised to the

power k� the small di�erence in the largest eigenvalues becomes signi�cant when

the eigenvalues are raised to the power of �� or ��� This corresponds to the

improvement seen in the results as R increases�

��



� Conclusions and suggestions for further work

A robust observer has been successfully built for a very simple model in the

context of data assimilation� It was found that a good eigenvalue assignment for

the system with the observer is given by reducing the modulus of the eigenvalues

of the original model system by ����� This choice gave fast convergence of the

observer to the true solution in the cases investigated� even if only one or two

observations were used�

The observation matrix C developed to represent a linear interpolation from

the model states to the observation positions worked well� but if too many obser


vations were clustered around two or three grid points� then the rows of C were

no longer linearly independent� This could perhaps be prevented if a higher order

interpolation were used� The results of Experiment � also point out that it can

be more important to have a couple of carefully placed observations than a larger

number of observations positioned randomly�

The results from Experiment 
 showed that the observer could also work

well if observations are not available at every timestep� which is a very important

practical property for operational data assimilation� The method of switching the

observer on and o�� and choosing suitable eigenvalues so that this would work� is

a promising way to cope with this problem� but needs to be developed� Extending

the model timestep so that it coincides with the frequency of the observations is

not of much practical interest� since generally models already run at the largest

timestep possible� However� the results from this experiment show that even

though the model contains error because it runs with the wrong value of �� the

observer can still be driven to �t the observations�

Checking that the solution stays close to the truth after the observations have

run out is important� since in numerical weather prediction model runs using data

assimilation are required to provide initial conditions for a forecast for which there

are no observations� If the model contains error� though� the model solution would

diverge from the truth after the observer is switched o��

In Section �� a general successive correction scheme was linked to the ob


server technique described in Section �� and a link between the feedback matrix

G and the Cressman weighting matrix W was established� Error analysis on the

Cressman scheme gave conditions for convergence of the scheme to the observa


��



tions� Reformulating data assimilation schemes in terms of observers introduces

the possibility of using results from control theory to carry out analysis on these

schemes� This could perhaps explain some of the successes and failings of the dif


ferent schemes� The experiments described using the Cressman scheme showed

the robust observer developed in this project to work better than the Cressman

scheme when there were few observations� This can be linked to the fact that the

error equation for the observer has smaller eigenvalues than that of the Cressman

scheme�

A major probem with the observer developed here is that it is based on assign


ing the eigenstructure of the system� but �nding the eigenvalues and eigenvectors

of a large numerical model is no trivial matter$ Hopefully� though� comparing

this method to other data assimilation schemes applied to simple models will

give insights for improvements to those methods� There are other methods for

developing observers� and ��� develops an observer for a nonlinear model using

techniques which appear to bear resemblence to the variational analysis approach

to data assimilation� and to the methods we have investigated in another report

��� on optimal control theory and data assimilation� It would be interesting to

investigate this approach to building an observer next�

�	
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APPENDIX

Table �� System eigenvalues

The eigenvalues of E��A de�ned in equation �
���� for � � �� � � ��� and � � �

are�

� � � � � ��� � � �

�����	 ��� � ��� ��

��	��� ������ �����	

�� ��� �� ��� ����
�

�� ��� �� � 	 �� ���

�����
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��
	�� ������ ��	�� 

���
�� ����	� ���			

������ ������ ��	
��

������ ���
�� ������

������� ��

�
 ������

������� ����
� ���	��

����
�
 ��
 	� ���� �

����	�� ���	�� ������

Table �� First set of observation positions

obs� obs� obs� obs� obs� obs� obs
 obs� obs� obs�� obs�� obs�� obs�� obs��

���
 ���� ���� ���	 ��
� ���� ���� ���	 ���� ��	� ��	� ���� ���
 �� 


Table �� Second set of observation positions

obs� obs� obs� obs� obs� obs� obs
 obs� obs� obs�� obs�� obs�� obs�� obs��

���� ���
 ���� ���� �� � ���� ���� ���� ���	 ���� �� � ���� ��	
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