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Abstract

The goal of this paper is to propose a new sampling algorithm denoted as or-
thogonality sampling for the detection of the location and shape of objects from the
far field pattern of scattered waves. We will describe and analyse the method both
for the reconstruction of an unknown number of small scatterers as well as for the
classical shape reconstruction problem in acoustics. The basic and new feature of
the algorithm is its flexibility and stability with respect to data settings and data
error.

The basic idea of the method is to sample the space under consideration by
calculating scalar products of the measured far field pattern u∞(x̂), x̂ ∈ S with a test
function eiκx̂·y for all y in a subset Q of the space Rm, m = 2, 3. The methods can
reconstruct the location and shape of objects from measurements of the scattered
field for one or several directions of incidence and one or many frequencies or wave
numbers, respectively. We prove that the method reconstructs the reduced scattered
field from the far field pattern and investigate the stability of the reconstructions.
We will also provide a numerical proof of concept which shows that the method
works well for a number of different situations and settings.

1 Introduction

Inverse scattering problems are of importance for many applications, for example for
medical imaging, nondestructive testing, remote exploration, geophysical prospecting or
radar. Usually, a wave is sent into a region of space which is to be investigated. Then,
due to the structure of the unknown area or the existence of obstacles a scattered wave
is generated which is measured far away from the objects under consideration. The
task of inverse scattering theory is to reconstruct properties of the unknown scatterers
from these remote measurements. Inverse scattering has developed into an important
part of applied mathematics with a growing number of interesting and promising new
mathematical techniques.
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Inverse scattering theory has a long history with classical contributions for example
by Lax and Phillips [8]. An introduction into the theory of acoustic and electromagnetic
inverse scattering can be found in the work of Colton and Kress [3]. More recently, new
classes of methods have been introduced with sampling and probe methods, see [1], [5],
[9], [10]. Their main idea is to formulate an indicator function µ defined either in the
space Rm or on a set of test domains. This function characterizes the unknown scatterers,
their physical properties or their shape. Here, we will base our method on the evaluation
of the scalar product

µ(ỹ) := |
∫

S
eiκx̂·ỹu∞(x̂)ds(x̂)|, ỹ ∈ Rm (1)

with m = 2, 3 and the unit sphere S in two or three dimensions, respectively. The
functional (1) tests the orthogonality relation between the exponential and the far field
pattern, from which the name orthogonality sampling is derived.

Let us briefly describe the orthogonality sampling idea in comparison to a range of
well-established sampling and probe methods. Important sampling schemes have been
introduced by Colton and Kirsch with the linear sampling method [1], by Kirsch with the
factorization method [5], Ikehata and the author with the probe method or the singular
sources method [10] (which have been shown to be equivalent) and by Luke and the author
with the no reponse test [9]. Other schemes have been suggested by Sylvester, Kusiak
and the author with the range test or by Ikehata with the enclosure method, compare the
survey [9]. Each of these methods exploits different properties of the scattering map or
particular scattered fields which are then reconstructed from the measurements.

First, all of the above methods have been introduced in the case of a fixed frequency
or wave number, respectively. The methods of Colton-Kirsch and of Kirsch are based on
the far field operator

(Fg)(x̂) :=

∫
S
u∞(x̂, θ)g(θ)ds(θ), x̂ ∈ S (2)

where u∞(x̂, θ) denotes the far field pattern for scattering of a plane wave ui(y, θ) := eiκy·θ

with y ∈ Rm and θ ∈ S, where m = 2, 3 and S denotes the unit sphere in two or
three dimensions, respectively. This means that these methods generically need to know
measurements of the far field pattern at least on an open subset of the unit sphere for many
incident plane waves (or more general for many linearly independent incident fields). The
same setup is the basis for the probe method and the singular sources method of Ikehata
and the author. We remark that the knowledge of the far field pattern of a time-harmonic
wave for many directions of incidence builds a complete set of data in the sense that for
any given incident field we can construct the far field pattern from the above measured
data.

The no response test, the range test and the enclosure method need less data for
reconstruction. These methods can be formulated based on the knowledge of the far
field pattern for scattering of one incident time-harmonic wave only. This situation is
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of particular interest for applications, since often it is not possible to measure for many
incident waves with different directions of incidence. We remark that the geometrical setup
for these methods is considerably more involved than for the linear sampling method or
factorization method, since the indicator function is defined on a set of test domains, not
directly in the real space. The methods employ domain sampling, not point sampling.
The orthogonality sampling method proposed in this work will work for one direction of
incidence, but employ a point-sampling principle.

Often, in applications measurements are taken in the time-domain, i.e. a time-
dependent pulse is generated for which the time-dependent far field pattern is recorded.
Via the Fourier transform it is then possible to extract the measured time-harmonic far
field pattern for all frequencies which are part of the pulse. Here we will assume that
a pulse contains the frequencies in an interval [κ0, κ1] ⊂ R+. Orthogonality sampling
will be formulated for the case where the far field pattern is given for either one fixed
frequency or for the multi-frequency case where the far field pattern is known for all wave
numbers κ ∈ [κ0, κ1]. We will also demonstrate results for the fixed frequency case where
the far field pattern is measured for several incident plane waves, which we refer to as
multi-direction data.

In Section 2 we will introduce the basic notation and background for the analysis.
We also describe the method which has been used to generate the forward data for the
numerical reconstructions. In Section 3 we introduce the one-wave mono-frequency version
of the orthogonality sampling. Here, we show that the method basically reconstructs a
reduced scattered field based on a superposition of Bessel functions. We provide a proof via
integral equation methods. We also provide some stability analysis for the reconstruction
of the reduced scattered field. Section 4 introduces a multi-frequency version of the
method. Section 5 introduces a version of the method for multiple directions and for the
full multi-direction multi-frequency case. Finally, we provide a numerical study of the
new scheme which proves the feasibility and stability of the method. In particular, we
will show reconstructions both of an unknown number of scatterers and for the shape of
some single scatterer.

2 The forward problem for multiple objects

The goal of this section is to define and solve the forward problem for scattering of a
time-harmonic incident wave or of a time-dependent pulse by some obstacle. Here, for
simplicity we will restrict our attention to the case of the Dirichlet boundary condition.

We consider the scattering of some time-harmonic acoustic wave ui by an impenetrable
scatterer D with Dirichlet (sound-soft) boundary condition in two or three dimensions.
The scattered field is denoted by us and the total field u = ui + us is a solution to the
Helmholtz equation

4u+ κ2u = 0 (3)
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Figure 1: Total field u = ui + us for scattering of a plane wave with wave number κ = 1
and direction of incidence θ = (cos(π/3), sin(π/3)). Here the scatterer consists of eight
objects which are clustered in two groups.

in Rm \D with m = 2 or m = 3, where κ denotes the wave number. The scattered field
is assumed to satisfy the Sommerfeld radiation condition

r
m−1

2

(∂us
∂r
− iκus

)
→ 0, r = |x| → ∞, (4)

uniformly in all directions x̂ = x/|x|. Further, we assume that the total field u satisfies
the Dirichlet boundary condition

u = 0 on ∂D. (5)

It is well known (c.f. [3]) that a radiating scattered field us has the asymptotic behavior

us(x) =
eiκ|x|

|x|m−1
2

{
u∞(x̂) +O

(
1

|x|

)}
, |x| → ∞, (6)

where u∞ is the far field pattern of us. By S we denote the boundary of the unit disk
or unit ball, respectively. The incident plane wave ui(x, d) := eiκx·d for d ∈ S induces a
scattered field us(·, d) with far field pattern by u∞(·, d). If the incident field is given by a
point source

Φ(x, y) =


i

4
H

(1)
0 (κ|x− y|), m = 2,

1

4π

eiκ|x−y|

|x− y|
, m = 3,

with the Hankel function of the first kind and order zero H
(1)
0 , we denote the scattered

field by Φs(·, y) and its far field pattern by Φ∞(·, y), y ∈ Rm \D.
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For every domain G with D ⊂ G we have Green’s formula

us(x) =

∫
∂G

(
Φ(x, y)

∂us

∂ν
(y)− ∂Φ(x, y)

∂ν(y)
us(y)

)
ds(y), x ∈ Rm \G, (7)

u∞(x̂) = γ

∫
∂G

(
e−iκx̂·y

∂us

∂ν
(y)− ∂e−iκx̂·y

∂ν(y)
us(y)

)
ds(y), x̂ ∈ S, (8)

with the constant

γ :=


eiπ/4√
8πκ

, m = 2,

1

4π
, m = 3,

(9)

where (8) is known as farfield representation. In fact, the formula holds for every domain
G for which us can be analytically extended into Rm \G. For the single-layer and double-
layer potentials we use the notation

(S̃ϕ)(x) :=

∫
∂G

Φ(x, y)ϕ(y)ds(y), (10)

(K̃ϕ)(x) :=

∫
∂G

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), (11)

for x ∈ Rm. Green’s formula for the field us in G can be written in the form

us = S̃
∂us

∂ν
− K̃us in G. (12)

We also need the boundary integral operators

(Sϕ)(x) := 2

∫
∂G

Φ(x, y)ϕ(y)ds(y), (13)

(Kϕ)(x) := 2

∫
∂G

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), (14)

for x ∈ ∂G.
It is well known that the combined single- and double-layer potential (first introduced

by Brackhage-Werner, compare [3])

Pϕ := K̃ϕ− iηS̃ϕ (15)

for the domain G = D with continuous or L2-density ϕ solves the scattering problem (3)
- (5) if the density ϕ is a solution to the boundary integral equation

(I +K − iηS)ϕ = −2ui. (16)

The boundary integral equation has a unique solution in C(∂D). This approach works
both for the case of one single scatterer D or when D consists of several separate compo-
nents as shown in figure 1. We will use this approach for generation of our simulated far
field patterns.



Orthogonality Sampling for Object Visualization 6

Figure 2: Behaviour of the functional µ(ỹ, κ) for κ = 1 (left) and κ = 3 (right). The
functional is the sum of two functionals of the form as shown in Figure 3. Here the
approximate location of the two scatterers can clearly be detected. For low frequency
the precision is not very high due to the superposition effects from the two point-spread
functions of Figure 3.

For the analysis of the inverse problems, we will also work with a simpler representation
of the scattered field by a single-layer potential. By Green’s second theorem we obtain

0 =

∫
∂D

(
Φ(x, y)

∂ui

∂ν
(y)− ∂Φ(x, y)

∂ν(y)
ui(y)

)
ds(y), (17)

for any x ∈ Rm \D. Adding (7) and (17) we obtain

us(x) =

∫
∂D

Φ(x, y)
∂u

∂ν
(y) ds(y), x ∈ Rm \G, (18)

where we used u(x) = ui(x) + us(x) = 0 for x ∈ ∂D according to the Dirichlet boundary
condition. This yields

u∞(x̂) = γ

∫
∂D

e−iκx̂·y
∂u

∂ν
(y) ds(y), x̂ ∈ S (19)

for the far field pattern with the constant γ given by (9).

3 One-wave fixed frequency sampling

We use equation (19) as a starting point to motivate a sampling scheme for one wave with
fixed frequency. Assume that a scatterer D is of a size or smaller than the wavelength
λ = 2π/κ. Let y0 be a point in D, for example its geometric center. In this case we can
approximate the far field pattern arising from D by

u∞(x̂) = γ

∫
∂D

e−iκx̂·y
∂u

∂ν
(y) ds(y), (20)

= γe−iκx̂·y0
∫
∂D

e−iκx̂·(y−y0)∂u

∂ν
(y) ds(y), (21)
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for x̂ ∈ S. If κ(y − y0) ≈ 0 is small we can approximate the exponential term by e0 = 1
and obtain

u∞(x̂) = γe−iκx̂·y0
∫
∂D

∂u

∂ν
(y) ds(y),

= CDe
−iκx̂·y0 , x̂ ∈ S, (22)

with

CD = γ

∫
∂D

∂u

∂ν
(y) ds(y). (23)

The full far field pattern for scattering by multiple small scatterers

D = D1 ∪ ... ∪DN (24)

with centers y1, ..., yN will be the sum

u∞(x̂) =
N∑
j=1

CDj
e−iκx̂·yj , x̂ ∈ S. (25)

We abbreviate Cj := CDj
for j = 1, ..., N . As a next step towards our sampling algorithm

we multiply (25) by the factor

f(x̂, ỹ) := eiκx̂·ỹ, x̂ ∈ S, ỹ ∈ Rm (26)

and integrate over S. This yields

µ(ỹ, κ) :=
∣∣∣ ∫

S
eiκx̂·ỹu∞(x̂) ds(x̂)

∣∣∣
=

∣∣∣ N∑
j=1

Cj(κ)

∫
S
e−iκx̂·(yj−ỹ) ds(x̂)

∣∣∣ (27)

for ỹ ∈ Rm and κ > 0. The functional µ(ỹ, κ) is the modulus of a linear combination

µ(ỹ, κ) =
∣∣∣ N∑
j=1

Cj(κ) µj(ỹ, κ)
∣∣∣ (28)

of the functionals

µj(ỹ, κ) :=

∫
S
e−iκx̂·(yj−ỹ)ds(x̂), ỹ ∈ Rm. (29)

Before we go into a deeper analysis of the behaviour of this functional we formulate the
sampling algorithm for one fixed frequency and one time-harmonic wave.
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Algorithm 3.1 (One-Wave-Fixed-Frequency Orthogonality Sampling) For fixed
wave number κ orthogonality sampling calculates

µ(ỹ, κ) =
∣∣∣ ∫

S
eiκx̂·ỹu∞(x̂) ds(x̂)

∣∣∣ (30)

on a grid G of points ỹ ∈ Rm from the knowledge of the far field pattern u∞ on S. Then,
it searches the location of the unknown obstacles as the local maxima of the functional
µ(·, κ).

Remark. The name orthogonality sampling has risen in discussions of the algorithm
since the functional basically tests the orthogonality

〈eiκx̂·ỹ, u∞〉L2(S), ỹ ∈ Rm. (31)

The multi-frequency case will be discussed in the following section.

Figure 3: Behaviour of the functional µj(ỹ, κ) for κ = 1. The maximum is reached at the
point ỹ = ỹj, here at the point ỹ1 = (1, 0) for j = 1. This function is also denoted as
point spread function with center ỹ1.

For our analysis we first study the functional µj(ỹ, κ), ỹ ∈ Rm defined by (29).

1. For ỹ = yj we have exp(iκx̂ · 0) = 1 for all x̂ ∈ S. This yields

µj(ỹj, κ) =

{
2π m = 2,
4π m = 3.

(32)

2. For the general case we can use the Funk-Hecke Formula [3]∫
S
e−iκz·x̂Yn(x̂) ds(x̂) = λnjn(κr)Yn(ẑ), (33)
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where r = |z| with the spherical harmonics Yn of order n, the spherical Bessel
function jn and

λn =

{
2π m = 2
4π
in

m = 3
(34)

A graph of the functional is shown in Figure 3. We are now prepared to formulate the
following result for the mono-frequency case. We consider the following result as a first
step towards a convergence analysis of the sampling method. It clarifies the identity of
the indicator function.

Theorem 3.2 (Reconstruction of reduced scattered fields) For scattering by
an obstacle D with boundary ∂D by (31) we reconstruct the field

usred(ỹ) := γλn

∫
∂D

j0(κ|ỹ − y|)
∂u(y)

∂ν(y)
ds(y), ỹ ∈ Rm. (35)

Here we call the field (35) the reduced scattered field for scattering by D. For scattering
by N small scatterers with centers yj, j = 1, ..., n the orthogonality sampling algorithm
(31) reconstructs the function

usred(ỹ) := γλn

N∑
j=1

Cj(κ)j0(κ|ỹ − yj|), ỹ ∈ Rm. (36)

The expression (36) is an approximation for this reduced scattered field for small scatterers.

Proof. Consider the orthogonality sampling functional (31) applied to the far field
pattern u∞. We use the representations (25) or (19), respectively. Then, we employ
the Funk-Hecke formula (33) applied to either (25) or (19) and exchange the order of
integration to arrive at (36) or (35), respectively. 2

The function reconstructed by the orthogonality sampling algorithm visualizes the
location and shape of an object. Figure 2 shows a plot of this function for two small
objects for wave number κ = 1 (left) and wave number κ = 3 (right). From the numerical
results we clearly see that the maxima of the function can be used to locate the objects
under consideration, in particular for the higher wave number κ = 3. The above result
provides some insight into the role of the indicator function, but it is not a convergence
proof. It is an open problem to analyse the relation between the reduced scattered field
and the boundary of the unknown scatterer. Here, we will end this part of the analysis
with a stability statement.

Theorem 3.3 (Stability of Orthogonality Sampling) The reconstruction of the
reduced scattered field usred from the far field pattern u∞ for scattering of a time-harmonic
field ui is linear and bounded from L2(S) into BC(Rm), m = 2, 3 with a norm given by
the square root of the area of the unit circle or unit sphere, respectively.
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Proof. Clearly, the functional (31) is a linear mapping on L2(S). Denote the surface
area of S by |S|. Using the Cauchy-Schwarz inequality we estimate∣∣∣∣∣∣µ(·, κ)

∣∣∣∣∣∣
BC(Rm)

≤ |S|1/2 ||u∞||L2(S), (37)

which yields the statement of the theorem. 2

4 A one-wave multi-frequency sampling algorithm

The goal of this section is to extend the above sampling scheme to a multi-frequency
situation. We will see that the results are significantly improved when several frequencies
are taken into account.

We start with equation (19), where we now assume that u∞ = u∞(x̂, κ) depends on
the wave number κ and is given for κ1, ..., κM with some M ∈ N. We recall the definition

µ(ỹ, κ) :=
∣∣∣ ∫

S
eiκx̂·ỹu∞(x̂, κ)ds(x̂)

∣∣∣ (38)

for one frequency. Now, we sum over all frequencies, i.e. we define our multi-frequency
functional by

µ[MF ](ỹ) :=

∫
R

∣∣∣ ∫
S
eiκx̂·ỹu∞(x̂, κ)ds(x̂)

∣∣∣ dκ, (39)

for ỹ ∈ Rm. Here, it is important to use the modulus in (39) before integrating the different
frequencies. We have also tested to sum the reduced fields for different frequencies without
taking the modulus and then study the modulus of the sum, which did not yield any
reasonable reconstructions!

Figure 4: Behaviour of the multi-frequency functional µ[MF ](ỹ) for two scatterers, where
the incident wave is coming from the right-hand side. Here we used 20 equally distributed
frequencies between κ = 0.1 and κ = 6.
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For the particular situation for small obstacles from (25) we obtain the representation

µ(ỹ) =
N∑
j=1

∫
R
Cj(κ)

∣∣∣ ∫
S
e−iκx̂·(yj−ỹ)ds(x̂)

∣∣∣ dκ
=

N∑
j=1

∫
R
Cj(κ)µj(ỹ, κ) dκ (40)

Please note that this is not the Fourier transform of a function as it is usually employed for
the Born approximation, where the dependency on the frequency and multiple scattering
is neglected. A numerical study for the function (39) is carried out in Section 6.

5 The multi-direction multi-frequency setting

Finally, we have tested the sampling for one frequency and multiple incident directions
as well as for the multi-direction multi-frequency case. The functionals for this are a
generalization of the above one-wave single-frequency and one-wave multi-frequency cases.
However, we would like to remark that it is very important for the visualization results
where we take the modulus. We also tried to sum the functionals without taking the
modulus of the reduced field, which did not yield any reasonable reconstructions. We
define

µ[MD](ỹ, κ) :=

∫
S

∣∣∣ ∫
S
eiκx̂·ỹu∞(x̂, θ, κ)ds(x̂)

∣∣∣ ds(θ) (41)

for ỹ ∈ Rm and fixed κ ∈ R+ for the fixed frequency case and

µ[MDMF ](ỹ) :=

∫ κ1

κ0

∫
S

∣∣∣ ∫
S
eiκx̂·ỹu∞(x̂, θ, κ)ds(x̂)

∣∣∣ ds(θ)dκ (42)

as the functional for multi-direction multi-frequency (MDMF) sampling.

Remark. The above functionals are a generalized ’orthogonality’ tests. We have tested
several other settings, but there are many possible versions of the functionals to investigate
and analyse. In this pilot paper we restrict our further task to showing numerical evidence
that the above functionals are of large interest for shape reconstruction. So far the
theoretical justification of the method for the multi-direction or multi-frequency case
is open.

A numerical study for the indicator functions (41) and (42) is carried out in Section 6.
We will show numerical evidence that the functional provides very good reconstructions
of multiple scatterers with Dirichlet boundary condition if the range of frequencies and
directions of incidence are chosen sufficiently large. Here, we note the stability of both
functionals in the following theorem.

Theorem 5.1 The construction of the functionsls µ[MD] and µ[MDMF ] of the or-
thogonality sampling method (41) and (42) for multiple incident directions or multiple
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frequencies from the far field pattern u∞ for scattering of a time-harmonic field ui is
bounded from L2(S) into BC(Rm), m = 2, 3.

Proof. A proof is analogous to Theorem 3.3. 2

6 Numerical Results

The task of this part is to describe the numerical realization of the methods. We first
discuss the simulation of the far field pattern. Then, we will provide a numerical study
of the above functionals which visualize the scatterers under consideration.

For the calculation of the far field patterns as well as for simulations of the reduced
scattered field (35) we have used the Nyström method as described in Colton and Kress [3].
For multiple scatterers we have not implemented the split of the weak singularity in the
integrals, but ignored the singularity. This leads to very flexible code, for which scattering
by various objects can be easily implemented, though having low order convergence.
An example for a simulated total field for scattering by eight separate scatterers which
basically consist out of two groups is shown in Figure 1.

Figure 5: We compare the reduced field calculated via (35) with its reconstruction via
orthogonality sampling (31). Here the wave number is κ = 5 and we consider a far field
pattern for one plane wave with direction of incidence d = (−1, 0). The true scatterer is
indicated by the black dotted curve.

We have calculated the far field pattern in M equally distributed points

x̂j = j · 2π

M
, j = 0, ...,M − 1, (43)

via the discretized formula of the analogon to equation (8) for the Brackhage-Werner
ansatz (15) with a density ϕ solving (16).

The combined potential (15) does not directly provide the normal derivative ∂u/∂ν.
One can either calculate this normal derivative by appropriate boundary integral operators
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or by solving a different more adequate integral equation. Here, we used the integral
equation

S
∂u

∂ν
= −ui (44)

on ∂D for the calculation of ∂u/∂ν, which is uniquely solvable for the case where the
wave number κ is not an interior eigenvalue to the negative Laplacian. For our numerical
simulations the numerical results with this approach have been quite satisfactory. The
reduced field (35) could then been calculated by evaluation of the integral under consider-
ation. A comparison between the reduced field calculated via (35) and its reconstruction
via orthogonality sampling can be found in Figure 5.

We now show results for one-wave multi-frequency reconstructions via orthogonoality
sampling. We will show results for some generic settings:

a) for several small scatterers

b) for a kite shaped scatterer

Results for the case a) of several small scatterers are shown in figures 4 and 6. The
location of an unknown number of scatterers can be clearly seen in the graphics. It is an
expected phenomenon that scatterers which are in the shadow of other scatterers cannot
be seen when data for one direction of incidence only is used. In the two images of figure
6 we can find only the three out of 5 objects which are enlighted by the incoming plane
wave, depending on the direction of incidence. The reconstruction of the shape of a kite
is shown in figure 8. The method finds the enlighted side of the object very well. It does
not find the shadow regions.

Figure 6: We show results of one-wave multi-frequency sampling, here with 20 wave
numbers κ between κ0 = 0.1 and κ1 = 10. For the left image we used an incident wave
with direction of incidence d = (0, 1), for the right image we employed d = (1, 0). The
true scatterer is indicated by the black dotted curve.

Next, we would like to consider the fixed-frequency case where we use multiple direc-
tions of incidence. This case compares to the setting of the linear sampling method, the
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Figure 7: Now for the kite shaped scatterer we show results of one-wave multi-frequency
sampling, here with 30 wave numbers κ between κ0 = 0.1 and κ1 = 10. The first
image has been generated with direction of incidence d = (−1, 0), the second with d =
(cos(π/3), sin(π/3)). The true scatterer is indicated by the black dotted curve. The data
include 2-3% stochastical error.

factorization method and the singular sources and probe methods. We will prove the the
orthogonality sampling can generate images comparable to those of the linear sampling
or factorization method, but with a well-posed sampling functional.

Finally, we show results for multi-direction multi-frequency (MDMF). We have gen-
erated far field data where several objects have been present. Then, we calculated the
functional in a neighbourhood of each of the objects in a higher resolution, which is shown
in figures 9, 10. This proves that detailed reconstruction of objects can be achieved even
when other objects are present in space. In general, we have added 2-3% stochastical
error to the data before carrying out the reconstructions.
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Figure 9: For multi-direction multi-frequency we show results of the orthogonality sam-
pling functional for the scatterer with eight separate components. The data include 2-3%
stochastical error.

Figure 10: For multi-direction multi-frequency we show results of the orthogonality sam-
pling functional. The reconstructions for the shape of the different scatterers have been
cut out of larger images, where several scatterers have been included. The true scatterer
is indicated by the black dotted curve. The data include 2-3% stochastical error.


