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Abstract

Satellite sea surface temperature (SST) observations available from infrared
and microwave radiometers derive a skin and sub-skin temperature measurement
from very near the ocean surface. These measurements, particularly those taken
during the day under clear calm conditions, are often seen to have a diurnal
warming signal. These diurnal SST signals can result in errors and aliasing when
observations collected at different times of the day and from a variety of observa-
tion sources are merged together to obtain “foundation” or bulk SST observation
products. A similar problem occurs when SST observations are assimilated into
ocean models which typically do not resolve a diurnal cycle. In this paper a novel
data assimilation method is developed and implemented that explicitly utilises
diurnal signal information in SST observations. The technique assimilates SST
observations taken over the day into a diurnal cycle model by making correc-
tions, within uncertainty bounds, to the surface boundary forcing of the model.
In particular, the surface wind speeds and the fractional cloud cover parameter,
which are typically poorly known over the oceans, are tuned in the process. This
method is shown to improve the estimate of diurnal SST variability and it has
the potential to reduce uncertainties in estimates of foundation or bulk SST. As
such the procedure can be viewed as a dynamic observation operator.

1 Introduction

Satellites measure SST either in the infrared (IR) or the microwave (MW) part of
the electromagnetic spectrum. IR instruments derive a skin temperature and MW
instruments the sub-skin temperature. Both these near surface observations can be
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susceptible to diurnal warming signals [7]. Therefore the timing of the observations
and the conditions in which the measurements are taken is very important. However,
current ocean models are not able to resolve the near surface thermal micro-structure
or adequately represent features of diurnal variability and therefore daytime SST ob-
servations are typically left out of model assimilation systems.

In the assimilation process the innovation vector H(x) − y uses an observation
operator H to transform model variables x onto an observed quantity y, so that a like-
for-like comparison can be made. Typically x is the model temperature at the minimum
depth, e.g. 5 m or deeper, in an ocean model that is run without diurnal forcing. This
needs to be transformed in space and time to give a temperature at the near-surface,
as measured by the satellite, which should have the diurnal signal represented when
necessary. The observation operator clearly cannot be invariant as the transformation
will depend on the particular local conditions at a given time. Developing such an
operator is not an easy task; several attempts at parameterising the likely warming
(e.g. [25], [10], [7], and [21] ) have experienced difficulties in representing the full range
of outcomes in this highly complex and non-linear system. A prognostic skin SST
scheme has been tried with the ECMWF atmospheric model [26]; however, its effect
on weather forecasting and four-dimensional data assimilation have yet to be fully
examined.

In a previous paper [16] results are presented which show some degree of success in
modelling the diurnal variability. This is achieved using a one-dimensional model called
GOTM [24] which was modified specifically to improve diurnal cycle representation.
This included improving near surface vertical resolution and incorporating state-of-
the-art air-sea flux and ocean radiant heating parameterisations. The use of GOTM
in this way can be viewed as providing a dynamic observation operator H, because by
modelling the diurnal cycle and providing good near surface resolution we are able to
quantify the transformation from a GCM’s foundation temperature to skin or sub-skin
temperature measured from space. However, the diurnal variability in GOTM relies on
good forcing fields. The forcing error can be reduced by assimilating the observations
directly into GOTM at the correct time and near-surface depth.

The extent of diurnal warming is predominately dependent on two key factors:
sea surface wind speeds and the strength of the insolation, whose variance at a given
location and time is largely determined by the cloud cover. As explained in [17] strong
insolation during daytime, under clear skies, causes a warm stable stratified layer to
appear, but this near surface warming can easily be broken down in the presence of
wind driven mixing. The uncertainties in these forcing variables (cloud cover and wind
speed) thus contribute to the uncertainty in the modelled diurnal warming estimates.
Unfortunately in Numerical Weather Prediction (NWP) there is not a single, simple
law which governs the formation of cloud and thus it is very difficult to parameterise
and is a major source of uncertainty in model predictions. For example, Groisman
et al [8] explicitly highlight cloud cover ‘as one of the major trouble spots’ of cloud
parameterisation. Assumptions with respect to distributions of cloud cover throughout
the atmosphere can significantly affect the energy budget [9].

Surface wind speeds over the oceans are also very difficult to assess in weather
forecasting, particularly at low (< 3 ms−1) and high (> 20 ms−1) values where observa-
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tional comparisons are difficult and errors vary for different regions and time scales [2].
In diurnal cycle modelling the high values are not of concern as no diurnal signal forms
at high wind speeds; however, the diurnal warming is very sensitive to slight changes
in wind speeds at the low values [22]. The wind speed, w, is important because wind
stress increases roughly as w2.7 and mixed layer deepening with w4 [14]. Therefore
even slight biases in NWP sea surface winds speeds can lead to systematic errors in
ocean circulation models that are forced by these winds [2]. Wind speeds of less than
5 ms−1 account for nearly 40% of global hourly averaged winds [19]. Weak winds are
concentrated in the tropics and sub- tropics where the majority of ocean to atmosphere
heat flux occurs, and shifts in their patterns may affect the global heat budgets [19].

The aim of this paper is to use sea surface temperature (SST) observations over
the day to provide additional information on the modelled upper layer temperatures.
To bring the model projection closer to the observations, the forcing data during each
day will need to be adjusted. Since the magnitude of any diurnal warming is primar-
ily sensitive to wind speed and the cloud cover, the method developed here seeks to
adjust forcing due to these factors, within feasible error bounds, in order to better fit
the modelled SST to the observations recorded over each day. The modelled SST at
observation depth, θzobs , is represented as a non linear function of wind speed, w, and
cloud cover, n,

θzobs = θzobs (w, n) . (1)

The problem can then be stated as finding values of n and w such that

∣

∣θzobs − θobs
∣

∣ (2)

is minimised.
The paper proceeds as follows: in Section 2 an outline of the model and data

used are given; this is then followed in Section 3 by a detailed description of the data
assimilation method. In Section 4 results from employing this assimilation technique
are presented, and finally conclusions are given in Section 5.

2 Model and Data

The model used in this study is that developed in a previous paper [16]. This is a
one-dimensional mixed layer model, called GOTM that was optimised for the purposes
of diurnal cycle modelling. The model is initialised with daily temperature and salinity
profiles from the United Kingdom Meteorological Office (UKMO) 1◦ Forecasting Ocean
Assimilation Model (FOAM) [1]. The mixed layer temperatures are then modified
nightly by the UKMO Ocean Sea Temperature and Ice Analysis (OSTIA) product [20]
which is representative of the foundation temperature and thus directly comparable to
the surface of a GCM model such as FOAM. The FOAM-OSTIA innovation is applied
throughout the diagnosed mixed layer depth to provide a more accurate night time
temperature profile within the well mixed upper ocean. The model is then forced
with six hourly meteorology from the European Centre for Medium-range Weather
Forecasting (ECMWF).
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Care is taken to convert the six hourly integrated solar flux from ECMWF to a
finer time resolution that is critical for reproducing the diurnal cycle. This is achieved
by integrating the Reed formula [18] over a six hour window, giving

∫

T+6

T

I0dt =

∫

T+6

T

I↓ (1 − 0.62n + 0.0019β) (1 − α) dt, (3)

where I0 is the total surface solar radiation and I↓ is the surface insolation under clear
skies, the fractional cloud cover value is denoted by n, albedo by α, β is the solar noon
angle and T are the six hourly meteorological analysis times. The left hand side of
Equation (3) is set equal to the integrated ECMWF flux value, and Equation (3) can
then be rearranged to find an effective mean cloud parameter over this window,

n =
(1 + 0.0019β)

∫

T+6

T
I↓(1 − α)dt −

∫

T+6

T
I0dt

0.62
∫

T+6

T
I↓(1 − α)dt

. (4)

If it is night, so that
∫

T+6

T
I↓(1 − α)dt = 0, then persistence nk = nk−1 (k denotes

each 6hr analysis time) is assumed. A check is also made to enforce the physical cloud
limits 0 ≤ n ≤ 1. The net surface SWR, I0, used in the model run is calculated at
every time step using the Reed formula with the six hourly derived cloud values. Thus
a much finer timescale is achieved, while the six hourly integrated ECMWF values are
retained.

The penetration of the solar flux into the water column is calculated using the
Ohlmann and Siegel parameterisation [13] and utilises SeaWiFS chlorophyll data. The
air-sea fluxes are calculated using the TOGA-COARE algorithm [6] and [5]; this in-
cludes a cool-skin parameterisation [4]. The input data for this algorithm are the
surface meteorology (air and dew point temperature, air pressure, and u and v wind
speeds) together with the modelled SST.

Satellite derived SST observations are used both in the assimilation and to validate
model output. These observations include a combination of infrared (SEVIRI) and
microwave (AMSR-E and TMI) SSTs from the Global Ocean Data Assimilation Exper-
iment (GODAE) High Resolution Sea Surface Temperature Pilot Project (GHRSST-
PP), Level-2 Pre-processed (L2P) format data products. The data used for this study
have the GHRSST estimated bias correction applied (a correction for long-term mean
biases in the sensor) and have proximity confidence values labelled ‘acceptable’, ‘ex-
cellent’, and ‘diurnal’. This choice selects observations uncontaminated by cloud (for
infrared) or rain (for microwave), but retains observations that potentially have a diur-
nal signal. For more information on the data processing specifications adopted for the
GHRSST products see [3]. The infrared retrieved SSTs are recognised as representing
a skin SST and thus are compared to modelled temperatures which include a param-
eterised cool skin [4], whereas the microwave retrieved SSTs are representative of a
temperature just below the cool skin effect and thus do not use this parameterisation.
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3 Method

This section describes a method for tuning the cloud cover and the surface wind speed
parameters, as they appear in the flux forcing algorithms for the GOTM model. It is
assumed that these two parameters are likely to be the most poorly known from NWP
or reanalysis model output. The parameters are used to help GOTM fit available
satellite measurements including the diurnal cycle component.

3.1 The Algorithm

If we first consider the modelled SST, θ, as a function of the fractional cloud cover, n,
and wind speed forcing, w =

√
u2 + v2,

θ = θ(n, w). (5)

Parameters εA and εB are introduced where

n = nb + εA, (6)

w = (1 + εB)wb, (7)

= (1 + εB)
√

u2
b
+ v2

b
. (8)

These adjustment parameters will be assumed to remain fixed over each 24 hour time
window, although the background data: ub, vb, and nb, from ECMWF change every
six hours. The cloud correction is seen to be an absolute error, whereas the wind
correction is a fractional error. This avoids corrections to wind direction and allows
the strict limits on cloud cover, 0 ≤ n ≤ 1, to be satisfied. The SST can now be viewed
as a function of the parameters

θ = θ (εA, εB) . (9)

We now define a cost function J = J (εA, εB) as;

J =

N
∑

i=1

(

H (θmodel
i

) − θobs
i

)

, (10)

where N is the number of observations over the 24 hour window and H is an operator
that picks the modelled sub-skin temperature for comparison with MW observations
and the modelled skin temperature for IR observations. Notice that the cost function is
not quadratic. If the initial J0 = J(0, 0) < 0 then on average the SST observations are
warmer than the model and therefore, to increase the size of the diurnal cycle, cloud
cover and/or wind speeds need to be reduced (εA, εB < 0). On the other hand if J0 > 0
then the modelled SST is greater than the observations and the diurnal cycle needs to
be reduced, which can be achieved by increasing cloud cover and/or wind speed (εA,
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εB > 0). The data assimilation problem can now be stated as follows;
An ‘optimal’ parameter pair (ε∗

A
, ε∗

B
) is sought such that for all feasible (εA, εB)

|J(ε∗A, ε∗B)| ≤ |J(εA, εB)| . (11)

It is possible that an increase in cloud cover and a decrease in wind speeds and
vice versa could provide the desired effect. In this scenario wind speed and cloud cover
changes would partially cancel each other. However because the whole parameter space
is not sampled and additional information, such as independent observations of cloud
or wind, are not available, this possibility is excluded. The feasible parameter range
for tuning is defined in two quadrants:

0 < εA ≤ 1 − nb,

0 < εB < 3,
(12)

if J0 > 0 and
−nb ≤ εA < 0,
−1 < εB < 0,

(13)

if J0 < 0.
The parameter tuning range is limited on physical grounds. The range for εA is

limited by the maximum and minimum possible n throughout the 24 hour period. An
upper bound on εB of 3 allows a 300% increase in the wind speed as an outside limit in
cases of low wind speed. For higher background wind speeds the SST will not in any
case be sensitive to variations in εB and thus for these situations the resulting large
values of εB are excluded.

To solve this data assimilation problem we make the assumption that J varies
linearly with respect to the parameters (εA, εB) within the feasible limits. A sequential
process of optimising the parameters in turn is implemented. The εB parameter is
found to be most sensitive and thus is tuned first. A control run followed by a run
in which the εB parameter is perturbed is performed in order to gain a sensitivity
estimate. This sensitivity estimate is then used to determine an ‘optimal’ parameter
ε∗
B
. This is then followed by a similar procedure for finding ε∗

A
, and could be continued

in a cycle by re-evaluating the optimal parameters in turn until convergence. However,
in the interests of saving time this sequence is truncated after the first cycle. This
method successfully manages to reduce J bringing it close to zero most of the time and
a more sophisticated method is unlikely to yield better results. Further details of this
procedure are provided in [15].

The SEVIRI observations are IR measurements and therefore are unable to pene-
trate through clouds. This additional information is used in the assimilation routine.
The proximity confidence values chosen for this study suggest SEVIRI data are far
from any clouds. Therefore if an IR observation is available the cloud cover value at
this time is set to be zero, i.e. clear sky, and thereafter it is only the wind parameter
that is tuned.

However, as IR radiometers are unable to view through cloud there are many oc-
casions where IR SST observations are absent (roughly half the globe is thought to be
covered by cloud at any one time [12]). Thus the assimilation algorithm also uses MW
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observations (from AMSR-E and TMI). If both types (IR and MW) of observations
are available then only the wind parameter is tuned, but if only MW observations are
available then both wind and cloud parameters are tuned.

4 Assimilation Results

This assimilation algorithm was tested in an area of the south Atlantic, (−45 ◦N to
−25 ◦N in latitude and 300 ◦E to 330 ◦E in longitude), known from modelled diurnal
warming maps [16] to experience large diurnal variability. The experimental period
was from 1st–7th January 2006, covering seven consecutive 24 hour assimilation cycles.

Where evaluating model-observation differences using IR measurements, the com-
parison is to the parameterised modelled skin temperature [4]. For the MW measure-
ments the comparison is with the top modelled SST, at a depth of 0.015 m, without
any cool skin effect. Statistical results are presented in Table 1, the total number of
observations used in the comparisons are 6095. The control simulation makes no cor-
rections to the forcing data. The cloud check runs reduce cloud cover to zero in the
presence of IR observations. The wind correction performs the cloud check followed by
an adjustment to the wind speeds at all observation locations. Finally, the wind then
cloud correction runs makes an additional adjustment to cloud cover values (where
there are MW observations only).

Mean STD RMS
control 0.07 0.79 0.79
cloud check 0.06 0.78 0.78
wind correction 0.10 0.52 0.53
wind then cloud correction 0.07 0.49 0.49

Table 1: Results showing the mean, STD, and RMS of θmodel − θobs , in ◦C for the area
−45 ◦N to −25 ◦N and 300 ◦E to 330 ◦E during 1st–7th January 2006.

The cloud check has only a very slight influence on the statistics; this may indicate
that initial ECMWF cloud estimates were already zero, or low where IR observations
are made, and therefore few corrections were necessary. If the SST observations are then
used to adjust the wind forcing the standard deviation (STD) and root mean square
(RMS) error are significantly reduced, with the RMS differences falling to 0.53 ◦C. This
is further reduced when a correction is made to cloud cover values on occasions when
only MW observations are present. The resulting model-observation differences after
assimilation may now be approaching the expected error accuracy of the observations
( 0.5 C) with the STD below those recorded in [23].

Figure 1 shows an example of the results of a wind then cloud correction assimilation
run. It can be seen where GOTMs mixed layer temperatures are corrected nightly by
OSTIA during the initialisation procedure. At this location no observations occurred
during the first day (1st January 2006). During the last two days a diurnal signal
is reasonably resolved by multiple satellite observations. The model control appears

7



to underestimate the warming on these occasions. However, earlier in the week the
modelled diurnal warming estimates are larger than the observations suggest. The
data assimilation method reduces the cloud, if necessary, in the presence of SEVIRI
observations, followed by a correction to the wind speed forcing and then the cloud
fractions (when SEVIRI observations are not present). The assimilation is able to
reduce the modelled warming for days 2 through to 5, and increase the diurnal warming
on days 6 and 7, thus fitting the observations much more closely. On days 2 and 5
the assimilation has not been able to reduce the warming as much as the observations
would suggest. In these cases the system does not fully adhere to the assumptions of
the assimilation routine either because the estimated sensitivity over the parameter
range is inaccurate or the required change in forcing is outside the stated restrictions.
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25.5

26

26.5

27
1st − 7th January 2006 (−30oN, 315oE)

Time, Days
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o C

 

 
AMSRE
SEVIRI
TMI
OSTIA
CONTROL
ASSIM

Figure 1: A graph comparing the model SST before and after assimilation with the in-
dividual satellite observations and OSTIA at (−30 ◦N , 315 ◦E ) for the 1st–7th January
2006.

In FIGURES 2 – 5 results from neighbouring locations are shown. The consistency
of the changes in modelled SST induced by the assimilation at these nearby locations
suggest that the SST corrections are sensible. The changes produced by the assimilation
run are calculated independently at each location. In Figure 2 (−29 ◦N, 315 ◦E) the
results are almost identical except the warming on day 3 is not reduced as much as
previously. Further south in Figure 3 (−29 ◦N, 315 ◦E) only one observation is present
on day 2 and this causes a larger diurnal cycle, against the trend at nearby locations.
On day 7 at (−29 ◦N, 315 ◦E) and Fig 5 (−30 ◦N, 314 ◦E) the observations suggest the
diurnal warming is close to that estimated by the control, unlike the other locations
where the control is deemed an under estimation. At (−30 ◦N, 314 ◦E) in Figure 5 on
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day 5 OSTIA shows a warm bias compared to the observations and this is likely the
cause of the assimilation run to fail at this point.

The assimilation is less robust if a correction to the diurnal cycle is based on a
single observation, particularly if it occurs early in the morning. This can be seen in
Figure 3 where on day 2 a slight correction early in the warming phase leads to a larger
diurnal cycle that can not be attested by further observations and on day 4 where as a
result of a possible erroneously cool observation strong winds are used to eliminate any
diurnal cycle. These examples illustrate how the scheme could be further improved in
the future by incorporating more observations and building on the knowledge gained
to form a careful treatment of observational error, both systematic and random, within
the assimilation cycle.
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Figure 2: A graph comparing the model SST before and after assimilation with the in-
dividual satellite observations and OSTIA at (−29 ◦N , 315 ◦E ) for the 1st–7th January
2006.

4.1 Spatial Patterns

The estimates of the diurnal warming of SSTs can also be viewed spatially over the
whole area. These results are shown in Figure 6 where the magnitude of the diurnal
warming is defined as the difference between the maximum and minimum temperature
over the day at the shallowest modelled depth of 1.5 cm. A diurnal warming signal
of zero is given if the SST at the start is also the maximum/minimum over the day;
this eliminates the misinterpretation of any cooling/warming trend. In Figure 6 the
plots in the left column show the diurnal warming before assimilation and the plots
in the middle and right columns are the diurnal warming maps after assimilation.
The assimilation only works at locations where observations are present and these
are shown in the centre column. The progress down the column displays how the
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Figure 3: A graph comparing the model SST before and after assimilation with the in-
dividual satellite observations and OSTIA at (−31 ◦N , 315 ◦E ) for the 1st–7th January
2006.
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Figure 4: A graph comparing the model SST before and after assimilation with the in-
dividual satellite observations and OSTIA at (−30 ◦N , 316 ◦E ) for the 1st–7th January
2006.

diurnal warming pattern evolves over time, day by day. The white triangle in the top
left hand corner is the coast of South America and the white patches in the centre
column are areas where no satellite observations were available, and on these occasions
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Figure 5: A graph comparing the model SST before and after assimilation with the in-
dividual satellite observations and OSTIA at (−30 ◦N , 314 ◦E ) for the 1st–7th January
2006.

the initial model estimates remained unchanged.. Generally speaking the assimilation
seems to have slightly weakened the diurnal signal in areas of very strong modelled
diurnal warming. Areas where the assimilation has increased warming can also be seen,
particularly on the 6th and 7th of January 2006. The patch of warming occurring on the
6th January 2006 appears less intense and more spread out after the assimilation. On
the 7th January the modelled estimates before assimilation show two separate patches
of strong diurnal warming. After assimilation the warming in the north-eastern corner
again appears less intense and is spread towards the coast. The other patch of strong
warming has moved further to the south-west.

The changes to the forcing can be viewed in FIGURES 7 and 8. The daily averaged
wind stress is changed by adjustments to the wind speeds in the assimilation and the
daily peak SWR will be affected by adjustments to cloud cover in the assimilation.
What is immediately noticeable is the rather noisier fields after assimilation. This is
in part a consequence of the scattered distribution of available observations in space
and time and of using independent 1-D models to calculate adjustments, while the
initial fields are provided from a global 3-D atmospheric model. These adjustments
or corrections could be smoothed horizontally and the information spread from areas
high in observations to areas with low observation densities. However, the corrections
have an association with fine scale, non-linear wind structure and patchy cloud cover
to which the diurnal variability can be extremely sensitive, and thus smoothing would
not necessarily be appropriate.
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Figure 6: The maps in the left column show modelled diurnal warming estimates before
data assimilation and the those in the middle and right columns are the diurnal warming
estimates after assimilation, with the graphs in the middle column only showing values
where satellite SST observations were available. The graphs down the columns represent
successive days from 1st to the 7th January 2006.
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Figure 7: The maps in the left column show the daily mean wind stress before data
assimilation and the those in the right column are after assimilation (values in Nm−2).
The graphs down the columns represent successive days from 1st to the 7th January
2006.
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Figure 8: The maps in the left column show daily peak SWR before data assimilation
and the those in the right column are after assimilation (values in Wm−2). The graphs
down the columns represent successive days from 1st to the 7th January 2006.
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4.2 Comparing Different Satellite Observations

Further analyses were also performed to assess the errors associated with individual
observation types relative to the control run and these are presented in Table 2.

No. Obs. Mean STD RMS
GOTM-SEVIRI 2343 −0.25 0.57 0.62
GOTM-AMSRE 2220 0.20 0.77 0.80
GOTM-TMI 1532 0.37 0.91 0.98

Table 2: Results showing the number of observations, the mean, STD, and RMS of
θcontrol − θobs , in ◦C , for individual satellite types for the area −45 ◦N to −25 ◦N and
300 ◦E to 330 ◦E during 1st–7th January 2006.

A similar number of SEVIRI and AMSRE observations are available over the time
period in this area, with slightly fewer TMI observations. The model-observation
match-ups reveal differences between the three satellite instruments. The SEVIRI
observations are shown to be on average warmer than the parameterised skin temper-
ature. Whereas the AMSRE and TMI observations are cooler on average than the
modelled SST. This suggests that the observations have some systematic errors in this
area at this time, with SEVIRI SST systematically too warm and/or AMSRE and TMI
observations systematically too cool. The model could also have a warm bias and be
estimating too great a cool skin correction. This seems unlikely as the parameterised
cool skin correction for this period was on average 0.15 ◦C, i.e. smaller than the SEVIRI
only mean difference. The model simulations are dependent on the OSTIA SST at the
start of each day; therefore any errors in OSTIA will also be apparent (see Section 4.4).
The STD and RMS are significantly lower when comparing SEVIRI observations with
either AMSRE or TMI. The largest errors are found with the TMI observations, where
the RMS error approaches 1 ◦C.

4.3 Day-Night Comparisons

Differences in night time (between the restricted hours of 22:00–04:00 local time) and
daytime (between the hours 10:00–16:00 local time) match-ups were also compared.
The total number of observation comparisons were 3243 during the daytime hours and
1488 during the night time hours. The model was initialised to OSTIA between the
stated night time hours. The results shown in Table 3 indicate much larger mean differ-
ences during daytime. It looks likely that on average the model is over estimating the
diurnal warming signal by exaggerating the daytime warming and night time cooling.
An alternative explanation could be that the retrieval algorithms, which are empiri-
cally tuned against buoy observations (these buoy measurements record a temperature
at a deeper depth, typically around a metre), have inadvertently suppressed the true
warming signal. However, by comparing the results before and after assimilation in
Table 3 it can be seen that the assimilation is very effective at reducing the tendency
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for a heighten diurnal cycle and draws the model closer to the observations. The STD
and RMS differences remain similar for both day and night.

Mean STD RMS
Before Assimilation
daytime 0.29 0.88 0.93
night time -0.15 0.57 0.59
After Assimilation
daytime 0.14 0.51 0.53
night time 0.00 0.50 0.50

Table 3: Results showing the mean, STD, and RMS of θmodel − θobs , before and after
the assimilation, in ◦C , during daytime (10–16) and night time (22–04) local time for
the area −45 ◦N to −25 ◦N and 300 ◦E to 330 ◦E during 1st–7th January 2006.

4.4 Comparisons to OSTIA

To help determine to what extent the biases are due to model or observations the
individual satellite observations were also compared to the OSTIA values. The results
of the mean, STD, and RMS of OSTIA minus the observations are presented in Table 4.

Mean STD RMS
SEVIRI only −0.22 0.51 0.56
AMSRE only −0.08 0.69 0.70
TMI only −0.20 0.84 0.87
all obs −0.17 0.67 0.69
daytime SEVIRI only −0.51 0.56 0.76
daytime AMSRE only −0.29 0.71 0.77
daytime TMI only −0.22 0.86 0.89
daytime all obs −0.31 0.76 0.82
night time SEVIRI only 0.06 0.37 0.38
night time AMSRE only 0.19 0.56 0.59
night time TMI only – – –
night time all obs 0.14 0.51 0.53

Table 4: Results showing the mean, STD, and RMS of θOSTIA − θobs , in ◦C , including
daytime (10–16) and night time (22–04) local time for the area −45 ◦N to −25 ◦N and
300 ◦E to 330 ◦E during 1st–7th January 2006.

The results shown in Table 4 reveal that SEVIRI has the largest bias but smallest
RMS difference of the three instruments when compared to OSTIA. The biases are all
negative for daytime observations and all positive for night time observations. Note
that no night time TMI observations occurred during this period. The daytime biases
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are found to be larger than night time biases and when comparing all observations,
a bias of −0.17 ◦C is found. This indicates that the satellite observations on average
are warmer than OSTIA, as would be expected because OSTIA is largely restricted
to night-time. The sharp difference in day and night time mean values demonstrates
the presence of diurnal signals in the daytime observations. OSTIA is the mean value
of these observations, as well as others, and so the expectation is that the bias would
be small. In this match-up all observations are included whereas OSTIA is formed
by eliminating daytime observations taken with wind speeds less than 6 ms−1. These
additional observations are therefore contributing to the slight cool bias in OSTIA.
Comparing results in Tables 4, 3, and 1 indicates that the modelled control simulation
has a smaller mean error than OSTIA, but produces slightly larger STD and RMS
errors than OSTIA. However, after data assimilation of the L2P satellite data, the
analysis is a much better representation of the observed SSTs, with reduced mean,
RMS, and STD. For example, the persistence assumption of OSTIA reveals an overall
mean error of −0.17 ◦C, a STD of 0.67 ◦C, and an RMS error of 0.69 ◦C, whereas
assimilating observations into the diurnal cycle model reduced the overall mean error
to 0.07 ◦C and the STD and RMS error to 0.49 ◦C. This is an improvement of 59% in
the mean error, 27% in the STD, and 29% in the RMS error.

4.5 Using Satellite Wind Measurements

The AMSRE and TMI instruments also measure wind speeds and these data are pro-
vided with the GHRSST-PP L2P products. These observations when available may
provide an improvement on the ECMWF forecast winds. Therefore model simulations
were performed in which the instantaneous satellite wind speeds were used whenever
they were available to adjust the six hourly ECMWF wind values. The model requires
the wind components u and v thus the ECMWF values were adjusted by a factor, γ,
such that wsat =

√

γu2 + γv2, where wsat is calculated as the mean value of satellite
wind observations occurring during the six hourly window. However, this model (con-
trol) simulation resulted in a worse mean model-observations SST difference of 0.17 ◦C
and a similar RMS difference of 0.78 ◦C when compared to results using ECMWF winds
only (see control in Table 1).

The availability of these satellite wind measurements also allows for a comparison
to be made between the original ECMWF wind values and the corrected wind values
after the assimilation. These results are presented in Table 5.

The results in Table 5 reveal that the satellite measured winds, particularly from
TMI, are slightly stronger than those forecast by ECMWF. The RMS differences be-
tween the ECMWF winds and all the satellite derived winds is 1.73 ms−1. After the
ECMWF winds have been corrected in the assimilation process the RMS is approx-
imately increased by 1 ms−1 in all cases. However, the resulting error is just outside
the quoted mission accuracy of the AMSRE product (1 ms−1) [11], although validation
against buoy and scatterometer data at very low wind speeds is particularly diffi-
cult [11]. This suggests further work maybe required before the potential of having
concurrent observations of SST and wind speed can be fully utilized in aiding our
understanding of the diurnal cycle.
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No. Obs. Mean RMS STD
ECMWF-AMSRE 2009 (1635) −0.07 (−0.12) 1.76 (1.72) 1.76 (1.71)
ASSIM-AMSRE 1635 −0.23 2.74 2.73
ECMWF-TMI 1278 (1212) −0.49 (−0.49) 1.68 (1.60) 1.61 (1.52)
ASSIM-TMI 1212 −0.45 2.57 2.53
ECMWF-ALL 3287 (2847) −0.23 (−0.28) 1.73 (1.67) 1.71 (1.64)
assim-ALL 2847 −0.33 2.67 2.65

Table 5: Results comparing the ECMWF forecast wind speeds before and after assimila-
tion to the AMSRE and TMI wind measurements showing the number of observations,
the mean, the RMS, and STD differences in ms−2. For the area −45 ◦N to −25 ◦N
and 300 ◦E to 330 ◦E during 1st–7th January 2006. The numbers in parenthesis are
calculations only at the locations and times when wind speeds are corrected in the as-
similation.

5 Conclusion

In this paper a data assimilation method has been developed that assimilates satellite
derived SST observations into a diurnal cycle model. It is proposed how model errors
in diurnal warming estimates are primarily caused by uncertainties in NWP forcing
data. The diurnal variability of SSTs can be viewed as a function of wind speeds
and fractional cloud cover. Observations from SEVIRI, AMSRE, and TMI occurring
throughout the day are compared to their modelled equivalent. The resulting differ-
ences are then reduced by making corrections to the forcing wind speeds and cloud
cover. This tuning of the forcing is shown to result in modelled SST estimates that
resemble available observations much more closely. The assimilation method could be
viewed as smoothing and interpolating the satellite SST observations in an intelligent
manner. The method is shown, for example, to fit the observations better than OSTIA,
which uses a daily persistence assumption.

Most SST assimilation schemes do not use vertical correlation scales when inserting
SST observations and subsequently are unable to provide adjustments to the sub-
surface thermodynamic structure; this reduces the effectiveness of an assimilation.
However, by correcting wind speed and cloud cover values, within uncertainty bounds,
the method presented here attempts to preserve the balance of thermal and dynamical
fields within the diurnal thermocline.

This assimilation method could be implemented on a much wider scale to build
up a detailed real time picture of diurnal warming across the world’s oceans. The
distribution and magnitude of diurnal signals are still relatively unknown and this
technique of merging observations with a diurnal cycle model could be used to improve
this situation. Another application could be to use this technique to calculate foun-
dation temperatures of increased accuracy. For example, the method could be used
to re-calculate the OSTIA product. This could be achieved by assimilating all of the
observations (i.e. including daytime observations recorded in low wind speeds) into the
diurnal cycle model in order to accurately calculate the foundation temperature. In
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using a model with the fine scale temporal and near surface spatial resolution we would
be able to identify the temperature from which the diurnal cycle develops. It is also
shown how there is scope to improve on the techniques developed here; by improving
our understanding of errors associated with the different satellite data types and model
estimates.
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