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A Comparison of Potential Vorticity-Based

and Vorticity-Based Control Variables

Abstract

In most operational weather forecasting centres variational data

assimilation is performed using a different set of variables from the

actual model variables. The transformation of variables simplifies the

problem by assuming that the errors in the transformed variables are

uncorrelated. The validity of this hypothesis is key to the accuracy

of the data assimilation. Recently a potential vorticity (PV) based

set of variables has been proposed. These new variables are thought

to exploit more accurately important dynamical properties of the at-

mosphere. Here we present new results, obtained with a simplified

1-D shallow water model, comparing the PV-based variables to the

vorticity-based variables currently used at operational weather fore-

casting centres, including the Met Office. The validity of the funda-

mental assumption that the errors in the transformed variables are

uncorrelated is tested in a variety of dynamical regimes. The results

show that the errors in the PV-based variables are uncorrelated across

all regimes tested. This is not the case, however, for the vorticity-

based variables. This suggests that the PV-based control variables

imply a better representation of the background errors than the cur-

rent vorticity-based variables.
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1 Introduction

Data assimilation is a process for finding initial conditions for numerical

weather prediction (NWP) models. By combining observational data, statis-

tical data, knowledge of atmospheric dynamics and a previous short forecast

the best estimate, or analysis, of the state of the atmosphere is found. Due

to the chaotic nature of the governing equations any errors in the initial con-

ditions may grow rapidly in the forecast and thus data assimilation forms a

vital part of NWP. The assimilation problem is huge, with typically 107 vari-

ables, and special methods need to be found to make the problem practical

to solve.

At the Met Office the data assimilation is performed using a different set

of variables to the model variables. These variables are the control variables

and the choice of these is key to the data assimilation system performance.

The transformation of variables simplifies the problem by assuming that the

errors in the new variables are uncorrelated. One way that is thought to

do this accurately is by using balanced control variables. Here an attempt

is made to separate the balanced and unbalanced modes as it is thought

there is little or no interaction between these flows and so their errors are

uncorrelated. The use of control variables in this way was first introduced

in [8]. Here balance between mass and momentum is implicitly introduced

by combining the balanced parts of mass and momentum fields in a single

variable.

The current control variables used at the Met Office are vorticity-based

and do not represent the separation of balanced and unbalanced modes in all

flow regimes. Recently a new set of control variables has been proposed [2]

that should be valid across all regimes. The new variables use a conserved

quantity, the potential vorticity (PV), to capture the balanced mode. In [14]

the PV-based approach is developed for the 2D shallow water equations on

a sphere and the potential benefits are demonstrated theoretically and ex-

perimentally. These initial results are encouraging. In this study we analyse

the vorticity-based and PV-based variables in the context of a simplified
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1D shallow water equation model and investigate the validity of the funda-

mental assumption that the errors in the control variables are uncorrelated

in various flow regimes.

We start by introducing the theoretical aspects of control variable trans-

forms as they apply to four dimensional variational data assimilation (4D-

VAR). We then derive the vorticity-based and PV-based transforms for the

simplified shallow water equation model. In this simplified context the im-

plications of each transform are examined. We first derive the background

error covariance matrices implied by each control variable transform. This

highlights a key difference between the transforms; whilst the vorticity-based

transform implies static background error statistics the implied background

error statistics of the PV-based transform are state-dependent. Next we test

the validity of the fundamental assumption that the errors in the control vari-

ables are uncorrelated. We test whether the assumption holds as we change

the dynamical regime. We also propose an approximate form of the PV-based

transform and examine the consequences of this approximation on the error

correlations between the approximated variables. From these results we are

able to draw conclusions regarding the effectiveness of each transform.

2 Control Variable Transforms in 4D-VAR

The 4D-VAR data assimilation system allows observations to be distributed

in time as well as space [6]. The goal is to find the model state x0 at time

t = t0 that minimises the cost function,

J [x0] =
1

2
(x0−xb)TB−1(x0−xb)+

1

2

n∑

i=0

(Hi[xi]−yoi )
TR−1

i (Hi[xi]−yoi ), (1)

with

xi = M(ti, t0,x0),

where M(ti, t0,x0) is the non-linear model evolved to time ti, i = 1, . . . , n,

xb is the background field found from a previous short forecast, yoi are the

observations at time t = ti and Hi is the observation operator that maps
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model space to observational space. The background error covariance matrix

is defined by B, typically of size O(107 × 107), and Ri is the observation

error covariance matrix, generally of size O(106 × 106). This is a non-linear

least squares minimisation problem and is usually solved incrementally as

discussed in [1].

Incremental 4D-VAR minimises a series of approximate convex quadratic

cost functions for an increment x′
0

J̃ (k)[x′
0
(k)

] =
1

2
(x′

0
(k) − x′b)TB−1(x′

0
(k) − x′b)

+
1

2

n∑

i=0

(Hix
′
i
(k) − di)

TR−1
i (Hix

′
i
(k) − di), (2)

where k is the iteration count and Hi is the linearised observation operator.

Here x′
i
(k) = M(ti, t0,x

(k))x′
0
(k), where M(ti, t0,x

(k)) ≡ Mi denotes the linear

evolution operator from t0 to ti of the tangent linear model (TLM). The TLM

is a linearisation of the non-linear model about the current guess trajectory.

The background increment, x′b, is given by x′b = xb−x
(k)
0 and the innovation

vector, di, by di = yoi −Hi[x
(k)
i ].

Further simplification is now needed to handle the background error co-

variance matrix, B, which cannot be stored in memory. This is done by

transforming from model variables to new control variables to perform the

data assimilation. The errors in these control variables are considered to

be uncorrelated with each other and thus the background error covariance

matrix becomes block diagonal and the size of the data assimilation problem

is greatly reduced. The block components of the transformed matrix specify

the auto-correlations of each variable. Effectively the problem of modelling

and storing the matrix B is now shifted to defining the transform between

state space and control space.

The transform from control variable increments, z′, to model variable

increments, x′, is known as the U -transform,

x′ = Uz′, (3)
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and its inverse,

z′ = Tx′, (4)

is known as the T -transform. Here z′ are the control variable increments

and x′ the model variable increments. Substituting into the incremental cost

function (2) we obtain,

J̃ (k)[z′0
(k)] = 1

2
(z′0

(k) − z′
b)TUTB−1U(z′0

(k) − z′
b)

+1
2

∑n
i=0(Hi(MiUz′0

(k)) − di)
TR−1

i (Hi(MiUz′0
(k)) − di), (5)

where U is the U -transform on iteration k and (MiUz′0
(k)) represents the

control variable increment at the initial time transformed to model space

and evolved by the TLM to time ti. It is necessary to transform z′0
(k) in the

observation term of (5) as the linearised observation operator Hi and the

linear model operator Mi act on model variables and not control variables.

If we now choose U such that

UTB−1U = Λ−1,

where Λ is a block diagonal matrix specifying the auto-correlations of each

control variable, we imply that

B = UΛUT .

We then obtain a much simpler form of (2),

J̃ (k)[z′0
(k)] = 1

2
(z′0

(k) − z′
b)TΛ−1(z′0

(k) − z′
b)

+1
2

∑n
i=0(Hi(MiUz′0

(k)) − di)
TR−1

i (Hi(MiUz′0
(k)) − di). (6)

We remark that on each outer iteration of the incremental method, the

linearized operators Mi,Hi, the transform U and, implicitly, the covariance

B = UΛUT are all updated using the current estimate of the state trajectory.

A good choice of control variables is essential as it is assumed that the

errors between these variables are uncorrelated. In fact the importance of

the background error covariance matrix is highlighted when only a single
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observation is assimilated. Even in this simple scenario it can be shown that

the analysis increment

xa − xb ∝ B(:, j) = (UΛUT )(:, j),

where xa is the model state at time t = 0 that minimises the cost function

(1), B(:, j) is the jth column of the background error covariance matrix B

and a single observation is located at a point j.

In order to identify possible control variables, we use dynamical proper-

ties of the system. Two types of atmospheric motion can be identified as

normal modes of the primitive equations used in numerical weather predic-

tion (NWP), linearised about a simple basic state [3]. One of these motions

is slow and corresponds to a Rossby wave, whilst the others are fast and

correspond to inertial-gravity waves. The slow mode is referred to as bal-

anced, and the fast as unbalanced. This is because in the linear analysis the

slow mode satisfies a linear balance condition. For the most part it is the

balanced motion that is of meteorological significance. It is thought that

a good choice of control variables will involve capturing the balanced and

unbalanced modes in separate control variables since we assume that there

is little or no interaction between these flows. In the linear case the modes

evolve independently and therefore there is no interaction. In the non-linear

case the degree of this interaction will depend in some sense on the degree of

non-linearity.

In the following section we present the current vorticity-based control

variables and an alternative version of control variables based on the potential

vorticity (PV). We define the variables for a simplified form of the 1D shallow

water equations (SWEs).

The vorticity-based control variables used in the Met Office data assim-

ilation system are the streamfunction, velocity potential and ’unbalanced

pressure’. Here an attempt has been made to capture the balanced part of

the flow entirely by the streamfunction. A potential limitation is that the

streamfunction is not the appropriate balanced variable in all flow regimes.

However, the PV-based variables use a linearised form of the PV and a linear
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balance relationship to define balanced and unbalanced components of the

streamfunction. This change of variables should represent balance well in all

regimes.

3 Model Equations

We consider the 1D SWEs given by

∂u

∂t
+ (Uc + u)

∂u

∂x
− fv = −g∂(h+ H̃)

∂x
(7)

∂v

∂t
+ (Uc + u)

∂v

∂x
+ fu = 0 (8)

∂h

∂t
+
∂h(Uc + u)

∂x
= 0, (9)

where u denotes the departure of the velocity in the x-direction from a known

constant forcing mean flow, Uc . This is a special case of the Shallow Water

Equations. The model assumes that velocities u and v and the depth h do

not vary in the y-direction. Here H̃ = H̃(x) is the height of the orography, f

is the Coriolis parameter and g is the gravitational force. The model domain

is periodic in the x-direction.

This simple model is chosen since it retains key properties of the model

equations used at the Met Office and other operational centres. We have a

non-trivial first-order balance relationship

fv − g
∂(h+ H̃)

∂x
= 0. (10)

This relationship is found through an asymptotic expansion in small Rossby

number [9]. The Rossby number, Ro, is a dimensionless parameter

Ro =
U

fL
, (11)

where U and L are characteristic velocity and length scales. It is used to

measure the significance of rotation in the flow [9] and is the ratio of the

inertial time scale, τ1 = f−1 to the advective time scale τ2 = L/U [3].
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The balance equation is a fundamental component of both the vorticity

and the PV-based transforms and is applied to increments in a linearised

form. We let u(x, t) = ū(x, t)+u′(x, t), v(x, t) = v̄(x, t)+v′(x, t) and h(x, t) =

h̄(x, t) + h′(x, t), where ū(x, t), v̄(x, t) and h̄(x, t) are reference states. If we

assume that the reference states satisfy the balance equation (10) to first

order accuracy, then we obtain a corresponding first-order linear balance

equation for the increments, given by

fv′ − g
∂h′

∂x
= 0. (12)

The quantity

q =
1

h

(
f +

∂v

∂x

)
, (13)

or the potential vorticity (PV), is conserved in the simplified SWEs. It can

also be shown that the simplified SWEs, linearised about a simple reference

state, have three normal modes: one slow and two fast. The slow, or balanced

mode satisfies linear balance and is characterised by a linearised form of

the PV. The remaining two fast modes can be related to the geostrophic

departure, aζ
′, defined by

aζ
′ = f

∂v′

∂x
− g

∂2h′

∂x2
, (14)

and the divergence

D′ =
∂u′

∂x
, (15)

where we recall that, in the system defined by (7)–(9), the model variables

do not vary in the y-direction.

Another important dimensionless parameter used to characterise the flow

regime is the Burger number,

Bu =

√
gH

fL
, (16)

where H is a characteristic depth scale. The Burger number is a measure of

the relative importance of rotation and stratification in the flow. It is the
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ratio of the Rossby number and the Froude number,

Fr =
U√
gH

. (17)

The Froude number is the ratio of the advective velocity to the gravity wave

speed, cg =
√
gH. In most deep atmospheric motions Fr is small, i.e. the

advective velocity is much less than the gravity wave speed.

We now derive the vorticity-based and PV-based transforms for the sim-

plified SWE model.

3.1 Vorticity-Based Transform

The vorticity-based control variables are the streamfunction ψ′, velocity po-

tential χ′ and ’unbalanced pressure’ or, in the case of the SWEs, the residual

unbalanced height h′res. Here the rotational wind is assumed to be totally

balanced. The Helmholtz decomposition is used to separate velocities into

rotational and divergent parts. In 1D the Helmholtz decomposition reduces

to the equations

ζ ′ =
∂v′

∂x
=
∂2ψ′

∂x2
, (18)

and

D′ =
∂u′

∂x
=
∂2χ′

∂x2
. (19)

The velocities u′ and v′ are given by

u′ =
∂χ′

∂x
, (20)

and

v′ =
∂ψ′

∂x
. (21)

The linearised balance relationship used in the vorticity-based transform, in

terms of the increments ψ′ and h′, is found by differentiating (12) with respect

to x and regarding all of v′ as ’balanced’. Thus we obtain

f
∂2ψ′

∂x2
− g

∂2h′b
∂x2

= 0, (22)
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where the subscript b refers to the ’balanced’ part of the height variable. The

streamfunction is assumed to hold all the balanced flow.

Using the vorticity equation (18) and the linear balance equation (22) the

T -transform

z′ = Tx′

with

x′ =




u′

v′

h′


 ,

and

z′ =




ψ′

h′res

χ′




in the context of our Shallow Water model is given by solving a sequence of

equations. The method proceeds as follows:

Step 1 Solve
∂2ψ′

∂x2
=
∂v′

∂x
(23)

for ψ′ subject to periodic boundary conditions. The solution is unique

up to an additive constant.

Step 2 Calculate the residual height h′res by

h′res = h′ − h′b = h′ − f

g
ψ′, (24)

where

h′ = h′b + h′res.

The variable h′b in equation (24) is found by integrating (22), the linear

balance equation, twice to give

h′b =
f

g
ψ′ + c1x+ c2,

where c1 and c2 are constants of integration. Both ψ′ and h′b are periodic

in x so c1 = 0 and we choose to define the constant c2 by c2 = 0. This

choice implies that the mean of h′ is stored in the residual height h′res.
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Step 3 Solve
∂2χ′

∂x2
= D′ (25)

for χ′ subject to periodic boundary conditions. The solution is unique

up to an additive constant.

Step 4 Store mean values of u′ and v′. These are otherwise lost through differ-

entiation.

Equations (23) for ψ′ and (25) for χ′ are solved with periodic boundary

conditions. The solutions are unique up to an additive constant provided the

right hand side has a zero mean value. In both cases the right hand sides are

derivatives of periodic functions and therefore will always have a zero mean

value. The solutions are therefore unique up to a constant and we choose this

constant such that the mean value < ψ′ > of ψ′ is zero and the mean value

< χ′ > of χ′ is also zero, where < · > indicates the mean of the variable.

In solving (23) for ψ′ and (25) for χ′ we lose a degree of freedom by virtue

of the fact that we choose ψ′ and χ′ to have zero mean values. However, this

available degree of freedom is used to retain the mean values < v′ > of v′ and

< u′ > of u′ that are lost through differentiation. The mean values < v′ >

and < u′ > are therefore also control variables. The model variables and the

vorticity-based control variables now have equal degrees of freedom.

So we see that the T -transform solves a sequence of equations producing

the control variable increments given model variable increments. We now

present the inverse transform, the U -transform.

Using equations (20), (21) and (22) we are able to derive the U -transform

x′ = Uz′

for the simplified SWEs. Given the vorticity-based control variable incre-

ments the U -transform proceeds as follows:

Step 1 Find the velocity v′ from ψ′ and < v′ >, the mean value of v′

v′ =
∂ψ′

∂x
+ < v′ > . (26)
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Step 2 Find the balanced height increment h′b from ψ′ and calculate the full

height increment h′

h′ = h′b + h′res =
f

g
ψ′ + h′res. (27)

Step 3 Find the velocity u′ from χ′ and < u′ >, the mean value of u′, using

u′ =
∂χ′

∂x
+ < u′ > . (28)

Again a sequence of equations is solved to reconstruct the original model

variables from the control variables.

It is worth noting at this point that the consideration of the mean values

< u′ > and < v′ > is more natural in the implementation of the transforms at

the Met Office. In the Met Office data assimilation system the transforms are

performed in spectral space and only applied to wavenumbers one and above.

The zero wavenumbers contain the mean values and are not transformed.

3.2 PV-Based Transform

We start by defining our variables. Again the Helmholtz decomposition is

used to separate velocities into rotational and divergent parts. In 1D the

Helmholtz decomposition reduces to equations (18) to (21). Additionally we

let h′ = h′b + h′u and v′ = v′b + v′u imply ψ′ = ψ′
b + ψ′

u, where the subscripts

refer to the balanced and unbalanced parts of the variable. So we have

v′b =
∂ψ′

b

∂x
(29)

and

v′u =
∂ψ′

u

∂x
. (30)

Splitting the velocity v′ in this manner allows for balanced and unbalanced

components of the rotational wind. Therefore not all the rotational wind is

assumed balanced, unlike the case with the vorticity-based variables.

We define the reference PV for our simplified model as in [13], giving

q̄ =
1

h̄

(
f +

∂v̄

∂x

)
, (31)
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where the reference states v̄, h̄ and q̄ are either the first guess, or background

states, on the first outer loop of the incremental 4D-VAR, or updates to the

background on subsequent outer loops.

For the PV-based transform we define the balanced variables v′b and h′b

such that they satisfy the linear balance equation

fv′b − g
∂h′b
∂x

= 0 (32)

and the linearised PV equation. To derive the linearised PV equation we

follow [13] and start by linearising (31) around a varying reference state

q(x, t) = q̄(x, t) + q′(x, t)

v(x, t) = v̄(x, t) + v′(x, t)

h(x, t) = h̄(x, t) + h′(x, t),

where the overbar denotes the reference state and the prime is a perturbation

to it. This gives

q =
1

h

(
f +

∂v

∂x

)
=

1

h̄+ h′

(
f +

∂v̄

∂x
+
∂v′

∂x

)
.

Therefore, neglecting products of the perturbations, we have to first order

accuracy

q̄h̄+ q′h̄+ q̄h′ = f +
∂v̄

∂x
+
∂v′

∂x
,

and then, using equation (31), we obtain

q′h̄ =
∂v′

∂x
− q̄h′. (33)

Since we assume that the balanced variables v′b and h′b satisfy the linearised

PV equation (33) for q′, we have

∂v′b
∂x

− q̄h′b = q′h̄. (34)

There are also corresponding equations for the unbalanced variables. We

define the unbalanced variables v′u = v′ − v′b and h′u = h′ − h′b such that they

satisfy the departure from linear balance equation

fv′u − g
∂h′u
∂x

= fv′ − g
∂h′

∂x
, (35)
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and
∂v′u
∂x

− q̄h′u = 0, (36)

i.e. the unbalanced variables do not contribute to the PV increment.

Re-writing these equations using the balanced and unbalanced stream-

functions ψ′
b and ψ′

u gives the following four equations

f
∂2ψ′

b

∂x2
− g

∂2h′b
∂x2

= 0, (37)

∂2ψ′
b

∂x2
− q̄h′b = q′h̄, (38)

f
∂2ψ′

u

∂x2
− g

∂2h′u
∂x2

= aζ
′, (39)

∂2ψ′
u

∂x2
− q̄h′u = 0, (40)

where aζ
′ is defined by (14). These equations, with appropriate boundary

conditions specified later in this report, define four variables ψ′
b, ψ

′
u, h

′
b and h′u.

We can now derive the PV-based transform in the context of the model (7)

to (9) using equations (37) to (40) and the divergence equation (19). We have

five variables ψ′
b, ψ

′
u, h

′
b, h

′
u and χ′. From these we must choose the appropriate

number of analysis variables. There must be two unbalanced variables and

one balanced variable. However, our choice of variables must result in a well

conditioned U -transform. With this in mind we choose ψ′
b as our balanced

variable, since this avoids dividing through by f. This would be an issue

when the equations are solved on a sphere, as f goes to zero on the equator.

One of our unbalanced variables must be χ′ and our remaining unbalanced

variable we choose to be the unbalanced height, h′u. Whilst theoretically it is

an equivalent choice to use ψ′
u instead of h′u, it is found that this choice can

affect the numerical efficiency of the transform [2].

Using equations (37) to (40) and (19) the T -transform

z′ = Tx′
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with

x′ =




u′

v′

h′


 ,

and

z′ =




ψ′
b

h′u

χ′




is given by solving the following sequence of equations:

Step 1 Solve
∂2ψ′

b

∂x2
− f q̄

g
ψ′
b = q′h̄ (41)

for ψ′
b subject to periodic boundary conditions. The right hand side is

known from the model variable increment fields. The equation has a

unique solution provided q̄ > 0.

Step 2 Solve

f q̄h′u − g
∂2h′u
∂x2

= aζ
′ (42)

for h′u subject to periodic boundary conditions. As before the right

hand side is known from the model variable increment fields and the

equation has a unique solution provided q̄ > 0.

Step 3 Solve
∂2χ′

∂x2
= D′ (43)

for χ′ subject to periodic boundary conditions. The solution is unique

up to an additive constant.

Step 4 Store mean values of u′ and v′. These are otherwise lost through differ-

entiation.

Equation (41) is found by substituting h′b = f
g
ψ′
b from (37), the linear

balance equation, into equation (38). Here we have integrated (37) twice

with both constants of integration defined to be zero, as was done for the
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Met Office variables. Equation (42) is found by substituting ∇2ψ′
u from

equation (40) into equation (39).

Equation (43) is solved with periodic boundary conditions for χ′ and has

a unique solution up to an additive constant provided the right hand side has

a zero mean value. The right hand side is a derivative of a periodic function

and therefore will always have a zero mean value. The solution is therefore

unique up to a constant and we choose this constant such that the mean

value < χ′ > is zero. We therefore lose a degree of freedom in χ′. However,

we use this available degree of freedom to retain the mean value < u′ >

that is lost through differentiation. We also note that a degree of freedom

in ψ′ = ψ′
b + ψ′

u is lost since the unbalanced streamfunction ψ′
u is found by

solving (40) i.e.
∂2ψ′

u

∂x2
= q̄h′u (44)

subject to periodic boundary conditions. The right hand side is known and

must have a mean value of zero for the equation to have a solution. Provided

that this is true the solution ψ′
u is unique up to an additive constant, chosen

to be zero. Thus, we again lose a degree of freedom. However, this available

degree of freedom is used to store the mean value < v′ > . The degrees of

freedom in both the control variables and the model variables are now equal.

Again, as with the vorticity-based variables, the mean values < u′ > and

< v′ > are also control variables.

We note from equation (42) that if we first apply the T -transform to our

model variable increments we will always produce h′u such that the mean of

q̄h′u is zero. However, the T -transform is not applied before the U -transform

in the incremental 4D-VAR algorithm since the inner minimisation is per-

formed in control space. This issue is addressed later in this section. However,

first we present the inverse transform, the U -transform, in the context of our

simplified SWEs.

Using equations (20), (29), (30), (37) and (40) we are able to derive the

U -transform

x′ = Uz′
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for the simplified SWEs. Given the PV-based control variable increments

the U -transform proceeds as follows:

Step 1 Find the balanced velocity increment v′b from ψ′
b using

v′b =
∂ψ′

b

∂x
. (45)

Step 2 Find the unbalanced velocity increment v′u from ψ′
u using

v′u =
∂ψ′

u

∂x
, (46)

where ψ′
u is found by solving

∂2ψ′
u

∂x2
= q̄h′u,

subject to periodic boundary conditions. The right hand side is known

and must have a mean value of zero for the equation to have a solution.

Provided that this is true, the solution ψ′
u is unique up to an additive

constant.

Step 3 Reconstruct the full velocity increment

v′ = v′b + v′u+ < v′ >, (47)

where < v′ > is the mean value of v′.

Step 4 Find the balanced height increment h′b from ψ′
b and reconstruct the full

height increment

h′ = h′b + h′u =
f

g
ψ′
b + h′u. (48)

Step 5 Find the velocity u′ from χ′ and < u′ > using

u′ =
∂χ′

∂x
+ < u′ > . (49)

So the U -transform solves a series of equations reconstructing model variable

increments from the control variable increments. We must now consider
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the practical implementation of the U -transform in the incremental 4D-VAR

algorithm.

In equation (46) the unbalanced streamfunction ψ′
u is found by solving

(44). The right hand side of (44) is known and must have a mean value of

zero for the equation to have a solution. In the optimisation algorithm we

minimise the cost function in control space and therefore the condition that

the mean of q̄h′u is zero may not be satisfied unless explicitly enforced. It is

not straightforward to do this, since q̄ is varying in x and is modified on every

outer iteration. However, it is possible to adjust the mean of h′u, < h′u >,

on each inner iteration so that < q̄h′u > is zero. This can be achieved since

we are always able to subtract a constant from h′u such that < q̄h′u > is

zero. Note that it is not a simple case of setting < h′u >= 0; < h′u > will

be non-zero and change on each inner iteration. The constant then must be

added to h′b to preserve the degrees of freedom in h′. The mean of the full

height increment is therefore split between h′b and h′u.

The problem could be avoided by choosing to approximate q̄ by a con-

stant. An approximation of this sort was made in [2]. In the simplified SWEs

context this would mean that we are simply able to explicitly set < h′u >= 0

and so q̄h′u will always have a zero mean value. We then store the mean of the

full height increment solely in h′b. This approximation is also desirable from

an operational perspective since the transform would be less computationally

demanding. In the following section we consider the possible implications of

making this approximation in the PV-based transform. We note that ap-

proximating q̄ to any constant would achieve this type of simplification. We

therefore choose to approximate q̄ = f/ < h̄ >, where < h̄ > is the mean of

the linearisation state fluid depth.
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4 Analysis of Vorticity and PV-Based Trans-

forms

In [13], [14] it was found that for the simplified SWEs the relative contribu-

tions to the scaled PV increment, given (from equation (33)) by

q′

q̄
=

∂v′

∂x

f + ∂v̄
∂x

− h′

h̄
,

change with the Burger number. In a high Burger regime the scaled PV

increment is dominated by absolute vorticity increments and in a low Burger

regime the height increments dominate. This suggests that the vorticity-

based variables will capture the balanced motion well in a high Burger regime

but will fail to do so in the low Burger case. This is because all the rotational

wind is assumed to be balanced. On the other hand the PV-based variables

allow an unbalanced rotational wind and should therefore represent the bal-

anced and unbalanced motion well in both Burger regimes.

In the following experiments we attempt to verify this hypothesis. We

examine the error correlations between the control variables in both high

and low Burger regimes using some basic statistical experiments. However,

we start by first deriving the background error statistics implied by each

transform. This highlights a key difference between the vorticity and the

PV-based transforms.

4.1 Implied Background Error Covariance Statistics

Using the above transforms we are able to derive the implied background

error statistics using

B = UΛUT .

In the following analysis, for ease of notation, we do not consider the mean

values of the increments u′ and v′.
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For the vorticity-based variables using U as defined by (26) to (28) we

have 


u′

v′

h′


 =




∂
∂x

0 0

0 ∂
∂x

0

0 f
g

1







χ′

ψ′

h′res




and therefore

BV =




(
∂
∂x

)
Λχ

(
∂
∂x

)T
0 0

0
(
∂
∂x

)
Λψ

(
∂
∂x

)T (
∂
∂x

)
Λψ

f
g

0
((

∂
∂x

)
Λψ

f
g

)T (
f
g

)2
Λψ + Λhr



,

where Λχ,Λψ and Λhr
are the auto-correlation matrices for χ′, ψ′ and h′res

respectively.

For PV-based control variables U is given by (45) to (47). This implies




u′

v′

h′


 =




∂
∂x

0 0

0 ∂
∂x

Q

0 f
g

1







χ′

ψ′
b

h′u


 ,

where ∇2 ≡ ∂2

∂x2 , and the implied background error covariance matrix is

therefore

BPV =




(
∂
∂x

)
Λχ

(
∂
∂x

)T
0 0

0
(
∂
∂x

)
Λψb

(
∂
∂x

)T
+ QΛhu

QT
(
∂
∂x

)
Λψb

f
g

+ QΛhu

0
((

∂
∂x

)
Λψb

f
g

+ QΛhu

)T (
f
g

)2
Λψb

+ Λhu



,

where the operator Q is given by

Q =

(
∂

∂x

(
∇−2q̄ ·

))
,

and Λχ,Λψb
and Λhu

are the auto-correlation matrices for χ′, ψ′
b and h′u

respectively.

A comparison of BV and BPV shows that the differences between the

implied background error statistics are the covariances COV (v′, h′),
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COV (h′, h′) and COV (v′, v′). The statistical model is much more compli-

cated for the PV-based variables and, whilst BV is static, the PV-based im-

plied background error statistics include the linearised PV q̄. Thus the PV-

based transforms have introduced state-dependence into the implied back-

ground error statistics.

4.2 The Correlation of Control Variables

We now test the assumption that the errors in the vorticity and PV-based

control variables are uncorrelated. If the control variables are indeed rep-

resenting the balanced and unbalanced flows, then we should see very little

correlation between the balanced and unbalanced variables. However, if the

vorticity-based variables are not representing the balanced flow well in the

low Burger regime we would expect to see a correlation between ψ′ and h′res.

We are also in a position to consider the consequences of using an ap-

proximate q̄ = f/ < h̄ > in the PV-based transforms. This can be achieved

by looking at the correlation of the approximated PV-based variables.

We start by briefly introducing the two-time-level semi-implicit, semi-

Lagrangian (SISL) scheme used to solve the simplified SWEs.

4.2.1 The Discrete Model Equations

The simplified SWEs, equations (7) to (9), are written in terms of their full

Lagrangian derivatives as follows,

Du

Dt
+ φx + gH̃x − fv = 0, (50)

Dv

Dt
+ fu = 0, (51)

D lnφ

Dt
+ ux = 0, (52)

where
D

Dt
≡ ∂

∂t
+ (Uc + u)

∂

∂x
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and

φ = gh.

This form of the equations is chosen as it is a more convenient when applying

the SISL scheme [11].

Applying the SISL scheme as in [5] to the equations (50)–(52) gives the

following time-discrete equations

un+1
a − und

∆t
+ α1

[
φx + gH̃x − fv

]n+1

a
+ (1 − α1)

[
φx + gH̃x − fv

]n
d

= 0, (53)

vn+1
a − vnd

∆t
+ α2 [fu]n+1

a + (1 − α2) [fu]nd = 0, (54)

lnφn+1
a − lnφnd

∆t
+ α3 [ux]

n+1
a + (1 − α3) [ux]

n
d = 0, (55)

where the subscript x denotes the derivative with respect to x, and the

superscript denotes the value at time level n. The constants α1, α2, α3 are

chosen to meet the stability requirements of the scheme. The advection

terms are time differences along trajectories and all other terms are time

averages along trajectories. The Coriolis terms are treated in this way as

this avoids the introduction of instability due to using extrapolated values to

evaluate the Coriolis terms [11]. The subscripts a and d represent the arrival

and departure points.

Equations (53)–(55) are solved on a staggered grid, which is a 1D analogue

of the Arakawa B-grid. The grid has φ on xi points and u and v on xi+1/2

points. Firstly the departure points are found iteratively as in [11]. We can

assume that we know all values at all grid points at time n and therefore by

interpolating to the departure points we may find all the terms at tn in the

equations (53)–(55). We then write these equations with all known terms on

the right hand side. We may then eliminate un+1
a and vn+1

a by substitution

and solve an elliptic equation for φn+1
a as in [5]. Now that we have φn+1

a we

can substitute back to find un+1
a and vn+1

a , hence completing one time step.

For the following experiments the model domain has N = 500 grid points

with grid spacing ∆x = 12.5m. The time step ∆t = 2.5s and the Coriolis
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parameter f = 0.01s−1. The orography is given by

H̃(x) = Hc

(
1 − x2

a2

)
for − a ≤ x ≤ a (56)

= 0 otherwise (57)

with a = 40∆x, Hc = 7.6m in the high Burger regime and Hc = 0.019m

in the low Burger regime. For the high Burger experiments the mean depth

< h >≈ 40m and for the low Burger experiments < h >≈ 0.1m.

4.2.2 Correlation Experiment: Method

It is assumed in the data assimilation that the errors in the control variables

are uncorrelated. We now investigate the truth of this assumption. We look

at correlations of the errors in the vorticity and PV-based control variables

where we fix the Burger number to be either high or low and vary the Rossby

number. We also try to assess the effect of using an approximate q̄ = f/< h̄ >

on the correlation between errors in the PV-based control variables.

We start by assuming that background errors are similar to forecast errors.

This assumption is made since the background field in operational centres is

a previous short forecast.

There are many ways to obtain forecast error statistical data. A pop-

ular example is the NMC method, as described in [8]. The NMC method

assumes that the spatial correlations of background errors are similar to the

correlations of differences between 24 hour and 48 hour forecasts valid at

the same time. Forecast times are taken 24 hours apart to remove the di-

urnal signal, which would otherwise dominate the statistics. This method is

fairly complicated and time consuming to implement. Therefore for initial

analysis we choose to use a much simpler approach based on the Canadian

Meteorological Centre’s ’quick-covs’ method [10]. Here we generate a single

long forecast using our model. We then take forecast differences at regular

time intervals apart. This is done until we have a data set of multiple time

differences. Using these differences we may look at the correlations of the

difference fields. We can examine the correlation between errors in control
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variables by transforming the forecast time-differences using the relevant T -

transform; either equations (23) to (25) for the vorticity-based transforms or

equations (41) to (43) for the PV-based transforms.

We then look at the covariance COV (ψ′, h′) and COV (ψ, h + H̃) for

model fields, where the primes indicate difference fields, and ψ and h + H̃

are full forecast fields with h + H̃ being the total height of the free surface.

We are primarily concerned with covariance of these specific variables since

they are related through the balance equations (10) and (12). The covari-

ance COV (ψ′, h′) tells us about the balance in the time-difference fields and

COV (ψ, h+ H̃) tells about the balance in the full fields. The aim of the con-

trol variable transform is to decorrelate these variables. We therefore also

look at the covariance COV (ψ′, h′res) and COV (ψ′
b, h

′
u) to test this assump-

tion, where COV (ψ′, h′res) and COV (ψ′
b, h

′
u) are the covariances of errors in

the vorticity and PV-based variables respectively. We also then compare

COV (ψ′
b, h

′
u) with COV (ψ′

b, h
′
u) when the approximate PV q̄ = f/ < h > is

used in the PV-based transform.

Covariances are calculated by treating each component of each vector as

equivalent to one realisation of a single random variable. We thus obtain a

set of N ×M realisations of each random variable, where N is the number of

points in the domain and M is the number of time differences; for example,

we have

ψ =
{
ψ1

1, . . . , ψ
1
N , ψ

2
1, . . . , ψ

2
N , . . . . . . , ψ

M
1 , . . . , ψ

M
N

}
, (58)

where the subscript indicates the grid point and the superscript the forecast

difference field.

The error covariances are then computed from

COV (ψ′, h′) =< (ψ′− < ψ′ >)(h′− < h′ >) >=< ψ′h′ > − < ψ′ >< h′ >,

(59)

where < h′ >, < ψ′ > are the mean values of h′ and ψ′ given by

< h′ >=
h′1 + . . .+ h′N×M

N ×M
, (60)
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and

< ψ′ >=
ψ′

1 + . . .+ ψ′
N×M

N ×M
; (61)

also

< ψ′h′ >=
(ψ′

1h
′
1 + . . .+ ψ′

N×Mh
′
N×M)

N ×M
. (62)

We then calculate the correlation coefficient

ρψh =
COV (ψ′, h′)

σψ′σh′
, (63)

where the σ represents the standard deviations of ψ′ and h′, and

σh′ =
√

(< (h′− < h′ >)2 >) =
√

(< h′2 > − < h′ >2) (64)

with

< h
′2 >=

h
′2
1 + . . .+ h

′2
N×M

N ×M
. (65)

The standard deviation of ψ′ is calculated in the same way. The correlation

coefficient varies

−1 ≤ ρψh ≤ 1,

with ρψh close to 1 or −1 indicating strong positive or negative correlation

between ψ′ and h′. A value of ρψh close to 0 indicates that the variables are

uncorrelated. This is repeated for each pair of variables and gives correlation

coefficients for each forecast time difference and for the full fields.

4.2.3 Correlation Experiment: Time-difference interval

The method is very sensitive to the length of the time-difference interval

used, as is the NMC method. In the NMC method, the interval is taken to

be one day in order to remove the diurnal signal. The ’quick-covs’ method

used in [10] takes 6 hour difference fields since the background state is a 6

hour forecast. The difference fields are then adjusted to remove the diurnal

signal. In our model the dominant signal is different. The dominant signal in

our model is artificially produced due to the periodic boundary conditions.
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In the high Burger case the fast gravity waves cover the length of the do-

main in time N∆x√
gH
s. We choose to remove this signal from the time-difference

fields by choosing a time interval of N∆x√
gH
s.

In the low Burger number experiments the dominant gravity wave is

actually stationary and tied to the orography, as we discuss in Section 4.2.5.

We are therefore free to choose the sampling period in this case, and choose

the same period as used in the high Burger case.

4.2.4 Correlation Experiment: High Burger Regime

The results for the high Burger regime are presented in figure 1, where the

correlation coefficient is plotted against the Rossby number for each pair of

variables. Figure 1 shows a strong correlation between model variables in

the full fields (ψ, h + H̃) and the difference fields (ψ′, h′). This correlation

increases as the Rossby number decreases and the flow becomes increasingly

balanced.

The correlation for the vorticity-based variables (ψ′, h′res) and PV-based

variables (ψ′
b, h

′
u) is much less and very similar for Ro < 0.5. However, as the

Rossby number increases above Ro = 0.5 we notice that the correlation of the

PV-based variables also increases slightly whilst the vorticity-based variables

correlations stay relatively constant. This increase in the correlation of the

PV-variables can be attributed to the fact that as Ro increases the flow is

becoming increasingly non-linear. Thus the linear approximations used in

the PV-based transform are becoming less accurate. However, this increase

is slight and the PV-based variables are still significantly more uncorrelated

than the model variables.

In figure 1 the correlation between PV-based variables when we use an

approximate q̄ = f/ < h̄ > is almost identical to the correlation when the

full PV is used.
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Figure 1: Plot of correlation coefficient against Rossby number for Bu =

4.0. The solid line is the correlation for full model field ψ and h + H̃, the

dashed line for model field time differences ψ′ and h′. Vorticity-based control

variable correlations ψ′ with h′res are indicated with the crosses and PV-

based variables ψ′
b with h′u using the full q̄ are circles and the approximate

q̄ = f/ < h̄ >, squares.
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Figure 2: Plot of correlation coefficient against Rossby number for Bu =

0.2. The solid line is the correlation for full model field ψ and h + H̃, the

dashed line for model field time differences ψ′ and h′. Vorticity-based control

variable correlations ψ′ with h′res are indicated with the crosses and PV-

based variables ψ′
b with h′u using the full q̄ are circles and the approximate

q̄ = f/ < h̄ >, squares.

4.2.5 Correlation Experiment: Low Burger Regime

The low Burger regime experiment results are presented in figure 2 where

again the correlation coefficient is plotted against the Rossby number. We see

in figure 2 that the PV-based variables are still uncorrelated. The vorticity-

based variables, however, show a strong negative correlation. Both these

correlations seem to be independent of Rossby number.

As the Rossby number decreases the correlations between the full fields

increase as in the high Burger experiment. However, this time the correlation

of the variables (ψ′, h′) remains relatively unaffected by changes in the Rossby

number. This behaviour is caused by a stationary wave in the forecast fields
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Figure 3: Plots show stationary wave in v for times one inertial period apart.

that is tied to the orography. The wave is not seen in the time-difference fields

but does have a signal in the full field correlations. This can be seen in figure

3 where the full v-field is plotted at several different times in the forecast run.

The stationary wave becomes increasingly balanced as the Rossby number

decreases.

As in the high Burger experiment, the correlation of the errors in the

PV-based variables where we use an approximate PV is in good agreement

with the correlation when the full PV is used. This can be seen in figure 2

where the correlations are almost indistinguishable.

These results give strong evidence that the PV-based variables are able

to separate the flow accurately into balanced and unbalanced parts and fur-

ther that this separation is uncorrelated. This suggests that the PV-based

variables should be a much better choice of control variables than the current

vorticity-based variables in a low Burger regime. Making the approximation

q̄ = f/ < h̄ > has very little effect on the correlation of the errors in the

PV-based variables.
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5 Summary and Conclusions

Control variable transforms in data assimilation have a dual function. Firstly

they are a necessity due to the size of the background error covariance matrix.

Secondly, they are used to introduce important physical relationships into

the data assimilation. We show how the control variable transform is used

in 4D-VAR and that the key assumption is that the errors in the control

variables are uncorrelated. This simplifies the data assimilation problem but

also implicitly models the background errors as

B = UΛUT .

We then derive two sets of control variables for a simplified SWE model,

the vorticity-based and the PV-based versions, which attempt to exploit

properties of balance. We are then able to derive, in this simple case, the

implied background statistics for each transform. This highlights several

key differences in the two transforms. Most importantly that the implied

background statistics for the vorticity-based transforms are static whilst the

PV-based transforms are state-dependent as they involve the linearised form

of the PV.

We then test the assumption that the errors in the control variables are

uncorrelated. We are able to validate our hypothesis that the PV-based

variables capture the balanced motion in both high and low Burger regimes,

whilst the vorticity-based transforms fail in the low Burger regime. This

suggests that the PV-based control variables are a much better choice than

the vorticity-based variables.

We also consider a possible approximation to the linearisation state PV,

which forms part of the PV-based transform. By approximating

q̄ = f/ < h̄ >

we are able to simplify the implementation of the transform. We demonstrate

that making this approximation has little or no effect on the correlations of

the PV-based variables.
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These results suggest that the PV-based variables are superior to the

vorticity-based variables in several vital areas: the PV-based variables imply

a state-dependent matrix B and the assumption that the errors in the PV-

based variables are uncorrelated is valid in all regimes tested.

The obvious next step is to compare control variables in assimilation

experiments. This would involve identical twin 4D-VAR experiments using

single and incomplete sets of observations. The success of the experiment

should be assessed against how well the balanced flow is represented in the

analysis. To do this we can look at the PV in each analysis and compare this

to the true PV. This work is currently being carried out as part of a PhD

research project and will be published in a subsequent report.
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