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Abstract

A moving mesh method is outlined based on the use of monitor
functions. The method is developed from a weak conservation prin-
ciple. From this principle a conservation law for the mesh position is
derived. Using the Helmholtz decomposition theorem, this conserva-
tion law can be converted into an elliptic equation for a mesh velocity
potential.

The moving mesh method is discretised using standard finite ele-
ments. Once the mesh velocities are obtained an Arbitrary Lagrangian
Eulerian (ALE) [3] fluid solver is used to update the solution on the
adaptive mesh.

Results are shown for the compressible Euler equations of gas dy-
namics in one and two spatial dimensions. Two monitor functions are
used, the fluid density (which corresponds to a Lagrangian descrip-
tion), and a function which includes the density gradient. A variety
of test problems are considered.
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1 INTRODUCTION

In this paper an adaptive method is presented for the solution of multi-
dimensional hyperbolic conservation laws of the form

Ut +∇ · F (U) = 0 in Ω(t)× [0, T ]. (1)

Here U ≡ U(x, t) is some m-vector of conserved variables and x and t are
spatial and temporal variables respectively. The system (1) is solved in some
spatial region Ω(t) having a boundary ∂Ω(t) which may or may not be moving
in time.

2 FORMULATION OF THE MOVING MESH

METHOD

Let M(x, t) > 0 be a user-defined monitor function which reflects the char-
acteristics of the solution to (1). The mesh positions are chosen to satisfy

∫

Ω(t)

M dΩ = constant in time, (2)

for all Ω(t). In practice M will depend on the solution of the PDE (1) and
its partial derivatives. Differentiating (2) with respect to time gives

d

dt

∫

Ω(t)

M dΩ = 0, (3)

which is a Lagrangian description of a pseudo-fluid which has a pseudo-
density function M and moves with a pseudo-velocity ẋ, say. Using the
Reynold’s Transport Theorem on (3) gives

∫

Ω(t)

∇ · (M ẋ) dΩ = −
∫

Ω(t)

Mt dΩ, (4)

which is a conservation law for the pseudo-fluid. The velocity ẋ is not
uniquely determined by equation (4). Therefore an additional condition on
the velocity field is required. Following Cao, Huang and Russell in [2], the
Helmholtz decomposition theorem is used to prescribe the curl condition

curl ẋ = curl q, (5)

where q is some given vector field. The curl condition shows that there exists
a potential function ψ such that
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ẋ = q +∇ψ. (6)

Using (6) in equation (4) results in an elliptic equation for the velocity po-
tential ψ of the pseudo-fluid.

∫

Ω(t)

∇ · (M ∇ψ) dΩ = −
∫

Ω(t)

Mt dΩ−
∫

Ω(t)

∇ · (M q) dΩ (7)

A boundary condition involving either ψ or ∂ψ
∂n

on the boundary of the domain
∂Ω is also required. One such condition which may be prescribed is ẋ · n = 0
or ∂ψ

∂n
= −q · n, that is none of the pseudo-fluid should leave the domain.

Since M > 0 and Mt is prescribed in terms of the solution of the underlying
PDE (1), equation (7) has a unique solution ψ from which ẋ can be obtained
using (6). The velocity of the pseudo-fluid ẋ is induced by the choice of the
monitor function M and the velocity field q. It is this velocity ẋ that will
become the ALE velocity.

3 WEAK FORMS AND A FINITE ELEMENT

METHOD

The velocity potential equation (7) obtained in the previous section now
needs to be solved numerically for ψ and hence the velocity of the pseudo-
fluid ẋ. This velocity will then be used as the ALE velocity in an ALE fluid
solver. The velocity potential equation will be solved using finite elements, as
this method is very flexible in multidimensions [1]. A weak form of equation
(7) will be needed so that we can apply a FE discretisation. A distributed
generalisation of equation (2) is

∫

Ω(t)

w M dΩ = constant in time, (8)

where w is a test function, which is once differentiable. Upon differentiating
(8) with respect to time and using equation (6), we have

∫

Ω(t)

w∇ · (M ∇ψ) dΩ = −
∫

Ω(t)

w Mt dΩ−
∫

Ω(t)

w∇ · (M v) dΩ. (9)

The test function w is chosen to be moving with the velocity ẋ and hence
Dw
Dt

= ∂w
∂t

+ ẋ · ∇w = 0, which has been used in the derivation of (9). Now
that a weak form of the velocity potential equation has been derived, we can
apply standard finite elements.
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We denote the finite element approximations to U , ẋ, v and ψ by Ũ , Ẋ,
V and Ψ respectively. The domain Ω(t) is partitioned into nonoverlapping
computational cells and a patch of such cells surrounding the ith node will
be denoted by Ωi(t). The test function w becomes one of the finite element
basis functions wi which form a partition of unity. All the finite element ap-
proximations are expanded in terms of these basis functions. In all the work
presented we will take the basis functions to be piecewise linear functions, so
hat functions in 1D and pyramid functions defined on triangular elements in
2D. Therefore the velocity potential equation (9) becomes

∫

Ωi(t)

wi∇ · (M ∇Ψ) dΩ = −
∫

Ωi(t)

wi Mt dΩ−
∫

Ωi(t)

wi∇ · (M V) dΩ. (10)

The velocity potential equation (10) leads to a weighted stiffness matrix
system for Ψ. The velocity is then recovered from the velocity potential
using the weak form

∫

Ωi(t)

wi Ẋ dΩ =

∫

Ωi(t)

wi∇Ψ dΩ, (11)

which is equivalent to

min
Ẋi

||Ẋ−∇Ψ||2L2
. (12)

Equation (12) leads a set of mass matrix systems, one for each component
of the velocity field Ẋ. Once the velocity has been found we can use it in an
ALE fluid solver and time-step the mesh.

4 NUMERICAL RESULTS

In this section, numerical results are presented for the solution of the two-
dimensional compressible Euler equations. The Euler equations, along with
the ideal gas equation of state, are solved on a moving adaptive mesh gener-
ated by the method outlined in the previous sections. In all the results shown
the ratio of specific heats was taken to be γ = 1.4. Once a mesh velocity has
been generated, by solving (10) and calculating the velocity through (12), the
Euler equations need to be solved on a moving mesh. This is done by solving
the ALE form of the Euler equations, which are the equations transformed
into a moving frame of reference. In one spatial dimension this is done with
the ALE form of the Roe Riemann solver [4, 5] and in two dimensions by
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Figure 1: Lagrangian Solution to the 1D Sod shock tube problem at t =
0.2 using a Roe Riemann-solver with a superbee limiter on a moving mesh
obtained from M = ρ. (CFL = 0.5, N = 100). Trajectories of the mesh
points.
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Figure 2: ALE Solution to the 1D Sod shock tube problem at t = 0.2 using
a Roe Riemann-solver with a superbee limiter on a moving mesh obtained
from M = 1+α|ρx|, α = β

max
x
|ρx| . (CFL = 0.5, N = 100, β = 2). Trajectories

of the mesh points.

the HLLC Riemann solver [7]. It should also be noted that in all the results
shown we have taken the velocity field q to be zero.
Two test cases are considered. In 1D we solved the Sod shock tube prob-
lem [6]. The problem consists of two regions of gas initially separated by a
membrane at x = 1

2
. The gas to the left of the membrane is more dense and

at a higher pressure compared to the one on the right. Also, the gases are
initially at rest. The membrane is then removed and the problem is to find
the subsequent motion of the gases.
This problem was solved using two different monitor functions. The first
used was M = ρ, where ρ is the density of the gas. This monitor function
leads to Lagrangian mesh movement. Results for this monitor function are
shown in figure 1. We also solved this problem using the monitor function
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Figure 3: Density solution to the diverging cylindrical shock tube problem at
t = 0.2 using a first order in space HLLC Riemann-solver on a moving mesh
obtained from M = ρ. Mesh with 10201 nodes and 20000 triangles obtained
at t = 0.2.

M = 1 + α|ρx|, with a suitable scaling α. This monitor function was chosen
so as to move mesh points into regions of the flow where there are large
variations in the fluid density. Results for this problem are shown in figure 2.
The trajectories clearly show how the mesh follows the velocity of the fluid in
figure 1 and responds to the characteristics in figure 2. The results obtained
from the moving mesh algorithm were compared to the exact solution, which
was computed with an exact Riemann solver.
In 2D we solved a cylindrical shock problem. The problem consists of two

regions of gas separated by a membrane at x2 + y2 =
(

1
2

)2
. The gas at the

centre of the region has a higher density and is at a higher pressure compared
to the one outside the membrane.
This problem was also solved using two different monitor functions. The
first monitor function was again chosen to used was M = ρ. Results for this
monitor function can be seen in figure 3. The second monitor function used
was M = 1 + α|∇ρ|2, where α was suitably chosen. Results for this monitor
function can be seen in figure 4. The problem was solved numerically in 2D for
each of these monitor functions and compared with a 1D radial computation
of the problem computed on a very fine mesh. Although the density profiles
are not strongly affected the mesh is clearly moving in a rational way. It
is expected that considerable improvement will occur when a second order
solver is implemented.
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Figure 4: Density solution to the diverging cylindrical shock problem at
t = 0.2 using a first order in space HLLC Riemann-solver on a moving mesh
obtained from M = 1 + α|∇ρ|2. Mesh with 10201 nodes and 20000 triangles
obtained at t = 0.2.

5 CONCLUSIONS

A method for generating mesh velocities using monitor functions has been
presented which can then be used in ALE fluid solvers. We have used the
method outlined in sections 2 and 3 to produce an adaptive mesh for the solu-
tion of the Euler equations of gas dynamics in one and two spatial dimensions.
Two test problems have been solved using different monitor functions leading
to different types of mesh movement.
In future work we aim to use improved initial meshes for the problem, instead
of equi-spaced meshes. We also need to increase the order of the HLLC
Riemann solver in 2D in order to better resolve the density profile, which
will in turn sharpen the adaptivity. Other monitor functions will be tried
and work will also be done on investigating the influence of the rotational
vector field q in (6) and how to choose it for a given problem.
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