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Abstract

In this work we consider steady state solutions of the Saint�Venant equations�
We approach these solutions by adding a small arti�cial viscosity term to the
steady Saint�Venant equations and then considering the limit as this term goes
to zero� We show that for a uniform rectangular channel� and under certain
assumptions� that this limiting process gives a unique physical solution to the
problem� We show that in these cases the limiting process also gives us a well�
behaved numerical scheme for the computation of this solution� Numerical results
are given for a set of test problems and compared with the analytic solutions�
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� Background

��� The Steady Saint	Venant Equations

The �ow of water in an open channel can be modelled by the Saint�Venant equa�
tions� This model approximates the actual �ow by a one�dimensional �ow� A
system of two conservation laws is derived using principles of mass and momen�
tum balance� For these equations to be valid various assumptions about the
channel and the �ow are required� but we will not consider the question of valid�
ity here� A derivation of the Saint�Venant equations can be found in Cunge et
al�	
�

In this work we investigate steady state solutions of the Saint�Venant equa�
tions and in particular numerical methods for their computation� By steady state
solutions we mean solutions that are constant in time� We are interested in such
solutions from a practical point of view since steady �ow often occurs in nature�

A steady form of the Saint�Venant equations� which we refer to as the steady
Saint�Venant equation� is found by assuming that all the variables are time in�
variant in the unsteady equations� We state the steady Saint�Venant equation
below�

Let the x�axis be horizontal and in a direction along the channel length�
Figure � shows a typical channel cross�section normal to the x�axis� Let y�x�
be the depth of the �ow at this section� which is the height of the free surface
�assumed to be a horizontal line� above the lowest point in the section� and Q�x�
be the discharge� the rate at which a volume of water �ows through the section�
We also need the following functions which come from the shape of the section


��x� ��� Width of the section at height � above the lowest point in the section�

A�x� y�� Cross�sectional area of the �ow passing through the section� for depth
y� and given by

A�x� y� �
Z y

�
��x� ��d�� �����

P �x� y�� Perimeter length of the �ow in contact with the channel�

Figure � shows a side view of the channel with the channel bottom a distance
z�x� below the x�axis� Let S��x� � dz

dx
be the slope of the channel bed� The

height of the free surface above the x�axis is given by y�x�� z�x��
The steady form of the conservation of mass equation is then

Q�x�� � Q�x��� �����

for any x�� x� along the channel� This equation is trivial and tells us that the
discharge is constant throughout the length of the channel� In future we will take
this constant value as a known parameter Q�

The corresponding �conservation of momentum� equation is

F �x�� y�x���� F �x�� y�x��� �
Z x�

x�
d�x� y�x��dx� ���	�

for any x�� x� along the channel� Here F is a quantity called the Speci�c Force
given by

F �x� y� �
Q�

A�x� y�
� g

Z y

�
�y � ����x� ��d�� �����

�
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Figure �
 Cross�section of channel� normal to x�axis

where g is the acceleration due to gravity� This quantity has units of force per
unit mass and has two components� The �rst term is the momentum �ux due to
the �ow of water and the second is due to hydrostatic pressure forces� The source
term d�x� y� is given by

d�x� y� � gA�x� y� �S��x�� Sf �x� y�� � g
Z y

�
�y � ��

�

�x
��x� ��d�� �����

The friction slope� Sf � models the e�ects of channel friction and turbulence� There
are several common forms for this term� we shall use the form due to Manning
�see Chow ��
�� which is given by

Sf�x� y� � QjQjn�
�P �x� y�
���

�A�x� y�
����
� �����

where n is the Manning roughness coe�cient which controls the roughness of the
channel�

From now on we shall make the assumption that Q � � without loss of
generality� since if Q � � we can simply reverse the x�direction� Also the case
Q � � is trivial�

At any point along the channel where the depth y behaves smoothly� and
as long as the channel geometry is smooth enough� we can take the limit as
x� � x� � x in equation ���	� to obtain the di�erential equation

d

dx
F �x� y� � d�x� y�� �����

It is clear that if a stretch of channel has a discontinuous �ow then this di�erential
equation does not describe the �ow globally� The integral form �equation ��	��
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Figure �
 Side view of channel

however� allows discontinuities� namely hydraulic jumps� From ���	� any hy�
draulic jump must satisfy the jump condition

F �x�� yL� � F �x�� yR�� �����

where x � x� is the position of the jump and yL� yR are the depths on the left
and right of the jump respectively� Combining the di�erential equation ����� and
the jump condition ������ we can construct a family of general solutions to the
integral form ���	�� although� not all of these solutions will be physically allowed�
The unphysical solutions are those where the �ow gains energy across a hydraulic
jump rather than dissipating energy� This is not allowed because it violates a
fundamental law of thermodynamics�

The most common form of equation ����� is with the left�hand side di�eren�
tiated out to give a di�erential equation in standard form

dy

dx
�

���x� y�

���x� y�
� �����

where

���x� y� � S��x�� Sf �x� y� �
Q�

g�A�x� y�
�

Z y

�

�

�x
��x� ��d��

and
���x� y� � � � �Fr�x� y�


��

The Froude Number� Fr� given by

Fr�x� y� �

vuut Q���x� y�

g�A�x� y�
�
� ������

is an important parameter� because it indicates the state of the �ow at a given
section for a given discharge and depth� For Fr � � gravitational forces dominate

�



inertial forces and the �ow is said to be subcritical� For Fr � � the inertial
forces dominate gravitational forces and the �ow is said to be supercritical� The
behaviour for these two types of �ow is signi�cantly di�erent� For Fr � � the
�ow is said to be critical� Note that �� � � as Fr � �� so that j dy

dx
j becomes

unbounded as the �ow approaches criticality� Because of the assumptions about
the smoothness of the �ow the di�erential equation will break down at this point�

�



��
 Solution Pro�les for a Rectangular Channel

Although the solutions to equation ����� for a general channel shape are di�cult
to obtain� for certain channel geometries we can get a very good idea of how the
solutions behave� Suppose that we restrict attention to a uniform rectangular
channel given by ��x� �� � B� A�x� y� � By� P �x� y� � �y �B� where B � � is a
constant� We will also assume that the bed slope� S�� is constant� Equation �����
then becomes the autonomous equation

dy

dx
�

���y�

���y�
� ������

where

���y� � S� �Q�n�
��y �B����

�By�����
�

and

���y� � � �

�
yc
y

��

�

Here

yc �
�

s
Q�

gB�
�

is the critical depth� For y � yc the �ow is supercritical and we have �� � �� For
y � yc the �ow is subcritical and we have �� � ��

For S� � � we can also �nd a unique root� yn� to �� � �� This depth is called
the normal depth� We also have that �� � � for y � yn and �� � � for y � yn�
For the case S� � � we have �� � � for all y� In this case the normal depth
strictly doesn�t exist� but for convenience it can be given a value of ��� The
following properties of ��	�� are then easy to show
��������

������� as y� yc� provided yn �� yc� ������

��������
����� �� as y � yn� provided yn �� yc� ����	�

��
��
� S�� as y ��� ������

Equation ������ implies that for large y the free surface becomes horizontal� since
the distance of the free surface above the x�axis is given by y�x�� z�x� and

d

dx
�y�x�� z�x�� �

��
��
� S� � � as y���

For any y we can also obtain the sign of ��	�� and hence decide whether the
depth is increasing or decreasing� To do this we divide the positive y�axis into
three regions as follows


Region y interval Sign of ��	��

� y � maxfyn� ycg �
� minfyn� ycg � y � maxfyn� ycg �
	 � � y � minfyn� ycg �

Note that for S� � �� region � doesn�t exist since yn � ���

�



The main question now is how do we determine the relative positions of yn
and yc� It turns out that this can be done by classifying the slope� S�� as follows
�see Chow��
�� Let us de�ne the critical slope S�c by

S�c � Q�n�
��yc �B����

�Byc�����
� ��

then
S� � � �� ADVERSE SLOPE and yn � ���

� � S� � S�c �� MILD SLOPE and yn � yc�
S� � S�c �� CRITICAL SLOPE and yn � yc�
S� � S�c �� STEEP SLOPE and yn � yc�

Now� using all the previous information we can determine the behaviour of the
solution for each region and for each di�erent slope� Figures 	� � and � show
how the solutions behave for mild� steep and adverse slopes� We label each of
the possible types of �ow pro�le by an expression such as S�� where S stands for
steep slope and � stands for region ��

Channel Bed

M1

M2

M3

Region 1

Region 2

Region 3

x

yc

yn

Horizontal

Figure 	
 Flow pro�les for a mild channel
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 Flow pro�les for a steep channel
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Figure �
 Flow pro�les for an adverse channel
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� Regularisation of the Problem

Suppose that we have a stretch of channel in the interval ��� L
 where L � ��
A steady solution of the Saint�Venant equations in this channel is given by a
function y that satis�es

F �x�� y�x���� F �x�� y�x��� �
Z x�

x�
d�x� y�x��dx� ������

for any x��x� � ��� L
� We may also require the depth to have certain values at the
boundaries� It is much easier to work with the interval ��� �
 so we put  x � x	L
and  y� x� � y�x� to arrive at

F � x�L�  y� x���� F � x�L�  y� x��� � L
Z �x�

�x�
d� xL�  y� x��d x� ������

for any  x�� x� � ��� �
� Where  y is smooth it satis�es the di�erential equation

d

d x
F � xL�  y� x�� � Ld� xL�  y� x��� ������

In future we will drop the tildes�
A common technique for analysing problems with solutions that may be dis�

continuous is to study a family of problems having smooth solutions with these
solutions tending to the discontinuous solution of the original problem in some
limit� In this work we proceed in a similar manner as that for �rst order conser�
vation laws such as the Inviscid Burger�s equation �see LeVeque��
�� We add a
small arti�cial viscosity term to equation ������ in the expectation that this will
ensure the existence of smooth solutions to the resulting problem� We then look
at the limit of these smooth solutions as the �viscosity� tends to zero�

The family of problems that we shall study is generated by varying the vis�
cosity 
 in the problem



d�y

dx�
�

d

dx
f�x� y�� b�x� y� � �� � � x � �� y � �� ������

y��� � ��� y��� � ��� where 
������ � �� Here f�x� y� � �F �xL� y� and
b�x� y� � Ld�xL� y�� Clearly for 
 � �� we recover equation ������� We denote
problem ������ by P� and its solution by y� �if it exists��

P� is a two point boundary value problem and hence always requires boundary
conditions at both ends of the channel� whereas the original problem can have
none� one or two boundary conditions� Because of this feature we may need to
supply arti�cial boundary values for P�� which we shall usually take as the critical
depth�

Solutions to singular perturbation problems� such as P�� have certain well
known features �see Ascher et al��
� O�Malley���
� Pearson���
�� In the interior
of the domain we �nd transition layers� i�e� regions where the solution changes
extremely rapidly� The region in which these rapid changes occur gets narrower
as 
 gets smaller and we expect the transition layer to tend to a discontinuity as 

tends to zero� An important question is whether in the limit� these discontinuities
satisfy the jump condition ������ The regions of sharp variation can also occur
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at the boundaries� in which case they are called boundary layers� In the limit we
expect these layers to tend to a discontinuity at the boundary and in particular
expect them to occur when invalid or arti�cial values are given as boundary data�
By this mechanism we also expect the �ow in the interior of the domain to be
able to disregard any arti�cial or invalid boundary values if necessary�

The above discussion is just speculation at this stage� we require some very
important questions to be asked� most of which we cannot answer for a general
channel� The questions are as follows


�� Does P� have a unique solution for 
 in some range� where 
 can get arbi�
trarily close to zero�

�� Can we construct a convergent sequence fy�ng of such solutions� with 
n � �
as n���

	� Does the limit of this sequence of solutions satisfy equation �������

�� Is this limit solution always physically allowable�

We now proceed to give answers to these questions in a special� but useful
case� The proofs of the theorems required are postponed to section � and only
quoted here� We consider a uniform rectangular channel where the bed slope is
strictly positive� The exact assumptions are as follows


��x� y� � B � constant�
A�x� y� � By�
P �x� y� � �y �B�
L�Q�B� n � ��
S� � C���� L
�
S��x� � � 	x � ��� L
�

����������
���������

������

The resulting functions f and b are given by

f�x� y� � f�y� � �
Q�

By
�

�

�
gBy�� ������

b�x� y� � gBLy

	

S��xL��

�
Qn

By

�� �
�

B
�

�

y

����
�
� � ������

It is easily seen that under the assumptions given� we have bx� by� bxy � C����� �

 �������
f � C������ and

by�x� y� � gBLS��xL� � gL

�
Qn

By

�� �
�

B
�

�

y

���� �
� �

�B

	y

�
� ������

is strictly positive� We also observe that

b�x� y�� ��� as y ��� ����	�

b�x� y�� ��� as y � �� ������

and since by is always positive it is clear that� for any x � ��� �
� there is a unique
depth yn�x� such that b�x� yn�x�� � �� This depth is the normal depth mentioned

��



in the previous section� but� since the channel slope now varies with x� the normal
depth also varies with x� It is easy to show that the function yn�x� is bounded�
so let M � maxfyn�x� 
 x � ��� �
g and m � minfyn�x� 
 x � ��� �
g� hence

�x� y� � ��� �

 ���m
 �� b�x� y� � ��

�x� y� � ��� �

 �M��� �� b�x� y� � ��
������

Under the above assumptions about the channel we can apply theorem � of
section �� This proves that P� has a unique solution� y� � C���� �
� for all 
 � ��
The theorem also gives the bound

minf��� ���mg � y��x� � maxf��� ���Mg� � � x � �� ������

The next question to be answered is what happens when we let 
 tend to zero�
Theorem � of section � shows that� given a sequence f
ng with 
n � � and 
n � �
as n��� then there is a subsequnce f
nkg such that

y�nk � Y � NBV a�e� as k ��� ������

Let the set NBV be the set of all functions u of �nite variation such that for
x � ��� ��

u�x� � u�x�� � lim
��x

u��� ������

and
u��� � u���� � lim

���
u���� ������

It is a property of functions of �nite variation that these limits always exist�
Next we ask whether the limit function Y has the desired properties� In

particular� we would like it to be the physical solution of ������� Theorems 	
and � of section � show that Y satis�es the reduced di�erential equation ������ in
intervals where it is continuous� Also we show in section � that at discontinuities
the jump conditions ����� are satis�ed� These two facts are enough to ensure that
Y satis�es the integral relation �������

For a rectangular channel� only hydraulic jumps from supercritical to subcrit�
ical �ow are physically allowed due to energy considerations� It can easily be seen
that� since f is strictly concave and maximum at the critical depth� condition �ii�
of theorem � of section � tells us that Y can only have such physical jumps�

Although we have shown that the limit function Y is a physical solution of
the integral relation ������ we require more for Y to be useful� We need to have
some control over Y � i�e� be able to specify the depths at the channel ends� We
can apparantly do this by assigning ��� �� appropriate values� but the situation
is more complicated than it seems� First we discuss what boundary conditions
we may apply to the steady �ow problem �see Chow ��
�� At x � � we can
only assert that the depth has a certain value if this value is supercritical� If
no condition is given at this point a subcritical depth occurs at the boundary�
At x � � we can only assert that the depth has a certain value if this value is
subcritical� If no condition is given at this point a supercritical depth occurs at
the boundary� The di�culty arises for the following reason
 Given an arbitrary
set of valid boundary conditions �as described above� which may be at both ends

��



or just on end� then there does not always exist a solution satisfying the full set of
boundary conditions and it is often impossible to tell in advance when this is the
case� There will always be �ows satisfying subsets �which may be empty� of the
boundary conditions� and it is of use to us to �nd the �strongest� of these �ows
�in the sense of greatest Speci�c Force throughout the channel�� This �strongest�
�ow will always satisfy the maximum possible number of boundary conditions
and will tell us which of the given boundary conditions are too weak� if any� by
overriding them�

We choose �� and �� by giving them the values of the corresponding valid
boundary condition if there is one� or else the critical depth is assigned� Condi�
tion �iii� of theorem � gives us some information about how the given values of
�� and �� in�uence Y at the boundaries� It is easy to show that the following
implications hold


�� � yc �� Y ��� � yc�
�� � yc �� Y ��� � �� or Y ��� � ��� � yc�
�� � yc �� Y ��� � yc�
�� � yc �� Y ��� � �� or Y ��� � ��� � yc�

���	��

The star superscript denotes the corresponding sequent depth� i�e� y� is the depth
such that f�y� � f�y�� and �y � yc��y

� � yc� � �� From ���	�� it can be shown
that Y depends on ��� �� in the way we require� Y satis�es any valid boundary
conditions if possible and if this is not possible then Y overrides the boundary
conditions as described previously�

From the above discussion it appears that in the case considered we can use
the limit of solutions of P� to de�ne� for a particular set of boundary conditions�
the unique physical solution� Y � NBV � of the integral relation ������� The
uniqueness can be argued from theorem � of section ��

��



� Numerical Solution of the Regularised Prob�

lem

In this section we look at a numerical scheme for solving the singular perturbation
problem ������� As in section � the theory that we shall give only applies to chan�
nels satisfying assumptions ������� although the scheme can be applied under less
restrictive conditions� In section � we include some analysis for a class of mono�
tone schemes� However� here we shall just discuss one case� which is the scheme
due to Engquist and Osher��
��
� We choose this scheme since it has been suc�
cessfully used for similar singular perturbation problems before �see Osher��	
���

and Glaister��
�� In this work we use a uniform grid� xi � ih� i � �� �� � � � � N � of
spacing h � �	N � where N � � � IN � The di�erence scheme can be written as
follows





h�
�ui�� � �ui � ui����

�

h
�f��ui���� f��ui� � f��ui�� f��ui�����b�xi� ui� � ��

�	�	��
i � �� � � � � N � �� with

u� � ��� uN � ���

where� since f is concave we de�ne

f��y� � f�minfy� ycg��
f��y� � f�maxfy� ycg��

�	�	��

Theorem � of section � shows that this scheme has a unique solution� u�
h �

�u��h� � u��h� � � � � � u��hN��� u
��h
N 
T for all 
 � � and all h � �	N � where N � � � IN �

Moreover� the solution satis�es the bound

minf��� ���mg � u�
h � maxf��� ���Mg� �	�		�

where m�M are de�ned in ������� This is an identical bound to that satis�ed by
the solution of the continuous problem and ensures stability� Using a technique
given in Niijima ���
 we can also show that the total variation of the numerical
solution is uniformly bounded in 
 and h�

Although this numerical scheme can be used to compute the solution to the
singular perturbation problem for any 
 � �� in this work we are solely interested
in computing the solution of the reduced problem �
� ��� Theorem � of section �
gives us a useful result� Suppose we have a sequence of grids with hn � � as
n � �� If Uh is the piecewise constant extension to u�h� then there exists a
subsequence fhnkg such that

Uhn
k � Y � NBV a�e� as k ��� �	�	��

Y is the limit function given in section � and is the physical solution we require�
Because of the above we see that to approximate the solution of the

reduced problem �� 
 �� in practice� we do not need to carry out the
limiting process� but simply solve the scheme ������ with � set to zero�

�	



��� Solution of Discrete Equations

Now that we know that the numerical scheme converges as we re�ne the grid� we
need to think about how we calculate the solution of the numerical scheme� This
involves solving a system of N � � nonlinear equations� The most robust method
is a pseudo time iteration� Theorem � in section � gives us the following practical
method�

Let u� � �u��� u
�
�� � � � � u

�
N 


T � �� with u�� � ��� u�N � �� and de�ne u �
minfm�u��� u

�
�� � � � � u

�
Ng and u � maxfM�u��� u

�
�� � � � � u

�
Ng� where m�M are given

by ������� Let S� � maxfS��x� 
 x � ��� �
g� S� � minfS��x� 
 x � ��� �
g�

by � gLBS� � gL


Qn

Bu

�� 
 �

B
�

�

u

����

� �

�B

	u

�
� �	�	��

and

� � gLBS� � gL


Qn

Bu

�� 
 �

B
�

�

u

����

� �

�B

	u

�
� �	�	��

If !t satis�es

� � !t �
�
�


h�
�

�

h
maxfjf ��u�j� jf ��u�jg� by

���
� �	�	��

then the sequence of vectors� fung�n��� given by

un��i � uni �!t�Tun�i� i � �� � � � � N � �� �	�	��

un� � ��� unN � ���

where

�Tun�i �



h�

�
uni�� � �uni � uni��

�
�
�

h

�
f��u

n
i���� f��u

n
i � � f��u

n
i �� f��u

n
i���

�
� b�xi� u

n
i ��

�	�	��

converges to u�
h� the solution of �	�	��� We also have that

kun � u�
hk� � exp��n!t��ku� � u�

hk�� �	����

where � � !t� � ��
Although the above method has the advantage that it is guaranteed to con�

verge� it is also true that� because of the CFL�like condition on !t� the speed of
convergence can be prohibitive� In practice it is more e�cient to use Newton�s
method to solve the nonlinear equations� The speed improvement is very signif�
icant since the Jacobian is tridiagonal and hence e�cient to invert� Newtons�s
method needs to be modi�ed slightly to prevent solution values from becoming
negative� The main drawback of Newton�s method is that the initial guess is
required to be su�ciently close to the solution for convergence to occur� but we
can arrange this by performing some iterations of the time stepping algorithm�
before switching to the Newton iteration�

��



��
 Post	Processing Solution at Channel Ends

In certain circumstances when invalid or arti�cial boundary values ��� �� are given
to the singular perturbation problem� we �nd that Y ��� �� �� and or Y ��� �� ���
where Y is the solution of the physical solution of the reduced problem� It is the
values of Y ��� and Y ��� that we are interested in� If we let h � � we would
expect discontinuities in the numerical solution at the boundaries� but a problem
arises since we can only solve for �nite h� and this results in these discontinuities
being smeared under certain conditions� Because of this smearing the numerical
solution may not approximate the values of Y ��� and Y ��� very well at grid points
close to the ends�

One method to remedy this problem is to post�process the numerical solution
near the ends of the channel� The method used here is as follows� If smearing is
detected at an end� we arti�cially extend the channel at that end by a number
of grid points �say two� and then re�apply the numerical scheme at that end
for a number of grid�points �say �ve�� with an extended boundary condition of
yc� By doing this we �nd that any smearing is now in the extended region� and
that the value at the real boundary is correct� For example� suppose we detect
smearing near the boundary x � �� then typically we would add grid points
x�� � �h� x�� � ��h� We would then apply our numerical scheme to the
subgrid fx��� x��� x�� x�� x�g to solve for fw��� w��� w�� w�� w�g� where we have
set boundary conditions w�� � yc and w� � u�� Here u� is the value of our
original solution vector at x�� We now replace elements u�� u� of our original
solution vector by w� and w� respectively� This �x is rather ad hoc� and it is
hoped that a more elegant method can be found�

��



� Results

In this section we include numerical results from �ve di�erent test problems� For
each test problem the analytic solution is known so we can get a good measure of
the performance of the numerical scheme� The test problems were created using
an �inverse� approach and are published in MacDonald���
� Full details of the
test problems are given in appendix A� The numerical scheme used is that of
Engquist�Osher� as described in the previous section� and all the test problems
satisfy assumptions ������ so all the theory given in the previous two sections is
applicable�

For each test problem we show the exact solution� Y � as well as numerical
solutions on various grids� The numerical solution is shown by crosses for N � ���
triangles for N � ��� circles for N � �� and squares for N � ���� For each test
problem we also show the channel bed pro�le� the exact free surface pro�le� and
computed free surface pro�les�

��� Discussion of Results

The solution to test problem � is a smooth subcritical �ow� Figure � shows
the exact solution as well as numerical solutions for N � ��� ��� ��� The �ow
for this problem is controlled by the boundary condition at x � ���� so it is
not surprising that the numerical errors grow as the solution moves away from
this boundary� However� they unexpectedly decrease as the solution approaches
the other boundary� It can be seen that the numerical solutions give a good
approximation to the exact solution and also it can be seen visually that the
accuracy increases as the grid is re�ned� This has been con�rmed experimentally
by calculating the L� errors for a large range of grids and as expected the scheme
is found to give a �rst order accuracy�

The solution to test problem � is a smooth supercritical �ow� Figure � shows
the exact solution as well as numerical solutions for N � ��� ��� The �ow for
this problem is controlled by the boundary condition at x � �� and the numerical
errors grow as the solution moves away from this boundary� moreover� as in the
previous problem they eventually start to decrease� Again it can be seen that the
numerical solutions give a good approximation to the exact solution and also the
accuracy increases as we re�ne the grid�

The solution to test problem 	 is a smooth �ow that is subcritical for x � ��
and supercritical for x � ��� Figure �� shows the exact solution as well as nu�
merical solutions for N � ��� ��� This problem has no boundary conditions� the
�ow is controlled by the critical section at x � ��� This explains why the numer�
ical errors grow as we move away from this point� Again the numerical solutions
give a good approximation to the exact solution and the accuracy increases as we
re�ne the grid�

The solution to test problem � is a discontinuous �ow with a jump at x �
���		� Figure �� shows the exact solution as well as numerical solutions for
N � ��� ��� ���� For this problem a boundary condition is given at x � ����
The numerical solutions for this rather hard problem are very good� The jump
is resolved very well taking into account the coarseness of the grids used� It
can be seen visually that both the position and height of the jumps become more

��



accurate as the grid is re�ned� but unlike the previous problems with smooth solu�
tions� there are no simple methods to quantitatively con�rm this improvement in
accuracy� Further re�nement beyond that shown here continues the improvement
in the numerical solution�

The solution to test problem � is also a discontinuous �ow and has a jump
at x � ���		� Figure �� shows the exact solution as well as numerical solutions
for N � ��� ��� ��� For this problem a boundary condition is given at x � ��
Again� taking into account the coarseness of the grids used the scheme is very
sucessful� For example� using only ten grid points� all the important features
of the solution are present and we have a good estimate for the position of the
jump� This estimate could be used if we wished to re�ne the grid locally in the
neighbourhood of the jump� Again we see that accuracy of both the position and
height of the jump increases as the grid is re�ned� Further re�nement than that
shown here continues this process�

It is clear that the method proposed here is a very powerful in generating
approximate solutions to a range of test problems� We have also carried out nu�
merical experiments on test problems which do not satisfy assumptions �������
Although the theoretical results do not hold for these test problems� good numer�
ical results have been obtained�

��
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� Analysis of a Class of Singular Perturbation

Problems

In this section we prove a number of results concerning the problem



d�y�
dx�

�
d

dx
f�y��� b�x� y�� � �� y��x� � �� � � x � �� ������

y���� � ��� y���� � ���

where 
������ � �� which are relevant to the steady Saint�Venant problem and
have already been used in section �� Here bx� by� bxy � C����� �

IR��� f � C��IR��
and we have

by�x� y� � �� 	�x� y� � ��� �

 IR�� ������

We also assume that there exist m�M � � such that

�x� y� � ��� �

 ���m
 �� b�x� y� � ��
�x� y� � ��� �

 �M��� �� b�x� y� � ��

����	�

We let y � minf��� ���mg and y � maxf��� ���Mg�
This problem without the solution restricted to being positive is well known�

for example see Lorenz��
��
� The existing results do not directly apply to our
problem because they require the functions f and b to be de�ned for all y� We are
particularly interested in problems where these functions are singular at y � ��
In order to use the existing analysis we construct another problem from ������ to
which we can apply the existing results� Then� because of the way our new prob�
lem has been constructed� we can infer information about the original problem�

The intermediate problem we shall consider is as follows




d� y�
dx�

�
d

dx
 f� y���  b�x�  y�� � �� � � x � �� ������

 y���� � ���  y���� � ���

We de�ne the functions  f and  b by

 f�y� �

�������������
������������

����f
���y� � �f ��y� � f�y���y � y�� y � y

��f ��y� � f�y���y � y� � f�y�
e�	y�y


f�y� y � y � y

����f
���y�� �f ��y� � f�y���y � y�� y � y

��f ��y�� f�y���y � y� � f�y�
e	y�y


� ������

and

 b�x� y� �

���
��

b�x� y� � �y � y�by�x� y� y � y
b�x� y� y � y � y
b�x� y� � �y � y�by�x� y� y � y

� ������

It is not hard to see that  f � C��IR��  b � C����� �

 IR� and also that

 by�x� y� �  � � �� 	�x� y� � ��� �

 IR� ������

where  � � minfby 
 �x� y� � ��� �

 �y� y
g�

�	



Theorem � Existence and Uniqueness
Problem ������ has a unique solution� y� � C���� �
� for all 
 � �� This solution
satis	es

y � y��x� � y� � � x � �� ������

Proof�
Lorenz��
 proves that problem ������ has a unique solution�  y� � C���� �
�

Clearly if we can show that this solution satis�es the bound

y �  y��x� � y� � � x � �� ������

then it is also a solution of problem �������
Suppose that maxf y��x� 
 � � x � �g � y� then  y� must have a maximum

turning point at x� � ��� ��� say� where  y���x
�� � ��  y��� �x

�� � �� Now using the
di�erential equation we have

 b�x��  y��x��� � 
 y��� �x
�� � d

dx
 f � y��x��

���
x�x�

� 
 y��� �x
�� �  f �� y��x

��� y���x
��

� 
 y��� �x
��

� ��

This is a contradiction since y � M implies  b�x� y� � �� The same type of
argument also gives the lower bound�

We have now shown that ������ has at least one solution� next we show that
this solution is unique� Let y� be a solution to ������� then using the same
argument as above we get the bound

y � y��x� � y� � � x � ��

and hence y� is also a solution to ������� implying that we must have y� �  y��
This completes the proof�

In this work we are mostly interested in solutions of the reduced equation
�
 � ��� which under certain circumstances are relevant to the steady Saint�
Venant problem� The remaining theory in this section concerns the limit 
 � �
of solutions to problem �������

Now let the set NBV be given by

NBV � fy � BV 
 y�x� � y�x�� 	x � ��� �� and y��� � y����g� ������

BV is the set of all functions of �nite variation on ��� �
� The set NBV is well
de�ned� since for functions of �nite variation� the limits from the left and right
always exist for interior points� although only from the right at x � � and the
left at x � �� see Stromberg���
�

Lemma � Let Y � NBV and let f
ng be a positive null sequence with y�n � Y
a�e� as n��� Then Y has the bound

y � Y �x� � y� � � x � �� ������

��



Proof�
Suppose x � ��� ��� Let rk � ��� x�	k and consider the sequence of intervals

given by Ik � �x� x� rk� for k � IN � Since we have that y�n � Y a�e� as n���
we can �nd for each k � IN � an xk � Ik such that y�n�xk� � Y �xk� as n � ��
Now because of the bound ������ we have that y � Y �xk� � y� Clearly xk � x and
xk � x as k ��� so we have that Y �xk� � Y �x� as k ��� since Y � NBV �
This gives the bound� We can use the same principle to prove the bound for x � ��

We now give four important theorems� These can be all proved by applying
the corresponding theorems in Lorenz��
��
 to problem ������ and then using the
fact that y� �  y� 	
 � � and the bound given by lemma ��� to remove the tildes�

Theorem � Let f
ng be a positive null sequence� then there is a subsequence
f
nkg and a function Y � NBV such that

y�n
k
� Y a�e� as k ��� ������

Theorem � Let Y � NBV and let f
ng be a positive null sequence with y�n � Y
a�e� as n��� Y satis	es the following three conditions

�i�
Z �

�
ff�Y �
� � b�x� Y �
g dx � � 	
 � C�

� ��� ���

�ii� For all discontinuities x � ��� �� of Y sg�Y �x���Y �x����f�Y �x���f�k�� �
� holds for all k between Y �x�� and Y �x���

�iii� At the boundary points i � � and i � � � � ����i��sg�Y �i���i��f�Y �i���
f�k�� holds for all k between Y �i� and �i�

Theorem � There is a unique function Y � NBV that satis	es conditions
�i���ii� and �iii� in theorem 
�

An equivalent characterisation of the limit function� Y � which is more useful
for applications is given below� Roughly speaking it requires that Y satis�es the
reduced di�erential equation

�
d

dx
f�Y �x��� b�x� Y �x�� � �� ����	�

in the smooth parts and Y obeys certain jump conditions at discontinuities and
at the boundaries� The precise result follows�

Theorem � A function Y � NBV satis	es conditions �i���ii� and �iii� in theo�
rem 
 if and only if the following holds�

�i� If I is an interval where Y is continuous� then f�Y �x�� is di
erentiable on
I� onesided in end points� and di
erential equation ����
� holds on I�

�ii� If Y is discontinuous at x � ��� ��� then

f�Y �x��� � f�Y �x��� � f�k� if Y �x�� � Y �x���
f�Y �x��� � f�Y �x��� � f�k� if Y �x�� � Y �x���

������

for all k between Y �x�� and Y �x���

�iii� For i � �� � and k between Y �i� and �i

� � ����i��sg�Y �i�� �i��f�Y �i��� f�k��� ������

��



� Analysis of a Class of Monotone Di	erence

Schemes for the Singular Perturbation Prob�

lem

In this section we analyse a family of numerical schemes for solving problem �������
We consider a uniform grid xi � i	h� i � �� �� � � � � N and the di�erence scheme




h�
�ui�� � �ui � ui����

�

h
�g�ui��� ui�� g�ui� ui����� b�xi� ui� � �� ������

i � �� � � � � N � ��
u� � ��� uN � ���

Here the �numerical �ux function� g�u� v� � C��IR�
�� is subject to consistency

and monotonicity conditions

g�u� u� � f�u�� ������

u � g�u� v� is nonincreasing�
v � g�u� v� is nondecreasing�

������

We also require that� for any bounded set " 
 IR�
�� there is a constant L� � �

such that for all �u�� v�
T � �u�� v�
T � "�

jg�u�� v�� � g�u�� v��j � L��ju� � u�j� jv� � v�j�� ������

We shall be most interested in the C� numerical �ux function of Engquist�Osher
given by

g�u� v� �
Z u

c
minff ��s�� �gds�

Z v

c
maxff ��s�� �gds� ������

where c � � is some arbitrary value�


�� Existence and Uniqueness of Discrete Solution

Lemma � Let " � �yL� yR
� 
 IR�
�� Then for any u�� v�� u�� v� � �yL� yR


g�u�� v��� g�u�� v�� � �u� � u��L
u�u�� u�� v�� � �v� � v��L

v�v�� v�� u���

where

Lu�s�� s�� s�� �

�
� if s� � s�
g	s��s�
�g	s��s�


s��s�
if s� �� s��

Lv�s�� s�� s�� �

�
� if s� � s�
g	s� �s�
�g	s� �s�


s��s�
if s� �� s��

and
� � �Lu�u�� u�� v�� � L��

� � Lv�v�� v�� u�� � L��

The proof is trivial and will be omitted�

��



Lemma � Let � � yL � yR� h � � and 
 � �� There exists a value !t��hyL�yR � �
such that� for � � !t � !t��hyL�yR�

!t
�
�


h�
�

�

h
�Lv�s�� s�� s��� Lu�s�� s�� s��� � by�x� s��

�
� �� ������

for all s�� s�� s�� s�� s� � �yL� yR
� x � ��� �
�

Proof�
Let

by � maxfby�x� y� 
 �x� y� � ��� �

 �yL� yR
g � �� ������

Now let

!t��hyL�yR �
�
�


h�
�

�

h
#L� � by

���
�

where " � �yL� yR
�� It is easily seen that this value satis�es the lemma�

Lemma � Let � � yL � y� yR � y� 
 � � and h � �	N � where N � � � IN � Let
us de	ne the set

$N��
yL�yR

�
n
u � �u�� u�� � � � � uN 


T � IRN�� 
 u� � ��� uN � ��� yL � u � yR
o
����	�

and the operator G 
 IRN��
� �� IRN�� by

G�u�ji �

���
��

�� i � ��
ui �!t�T �

hu�i i � �� � � � � N � ��
�� i � N�

������

where

�T �
hu�i �




h�
�ui�� � �ui � ui����

�

h
�g�ui��� ui�� g�ui� ui����� b�xi� ui� ������

and � � !t � !t��hyL�yR � Then we have the following�

�i� u�v � IRN��� yL � u � v � yR ��G�u� �G�v��

�ii� G�$N��
yL�yR

� 
 $N��
yL�yR

�

�iii� u�v � $N��
yL�yR

��kG�u��G�v� k�� �� �!t�yL�yR� k u� v k��

where
�yL�yR � minfby�x� y� 
 �x� y� � ��� �

 �yL� yR
g� ������

Note that � � ��!t�yL�yR � ��

Proof�
�i�� Let u�v � IRN��� with yL � u � v � yR� Now for � � i � N � �

G�v� ji �Gh�u� ji � wi �

!t

h�
�wi�� � �wi � wi���

�
!t

h
�g�vi��� vi�� g�ui��� ui�� �

!t

h
�g�vi� vi���� g�ui� ui����

��



�!t�b�x� vi�� b�x� ui���

where wi � vi � ui� Using lemma � and the mean value theorem� this can be
written as

G�v� ji �G�u� ji � wi��!t
�



h�
�

�

h
Lv�vi��� ui��� ui�

�
������

�wi

�
��!t



�


h�
�

�

h
Lu�vi� ui� vi��� �

�

h
Lv�vi� ui� ui��� � by�xi� wi�

��

�wi��!t
�



h�
�

�

h
Lu�vi��� ui��� vi�

�
�

where yL � wi � yR� Since all the wi are non�negative� the �rst and last term
are easily seen to be non�negative� Also by lemma 	 the second term is also
non�negative� Hence we have the required result

G�u� �G�v��

since G�v� j� � G�u� j� � �� and G�v� jN � G�u� jN � ���
�ii�� Let yL � �yL� yL� � � � � yL
T � IRN��� then for � � i � N � �

G�yL� ji � yL �!tb�xi� yL� � yL�

by ����	�� G�yL� j� � �� � yL and G�yL� jN � �� � yL� Similarly� for yR �
�yR� yR� � � � � yR
T � IRN��� for
� � i � N � �

G�yR� ji � yR �!tb�xi� yR� � yR�

by ����	�� G�yR� j� � �� � yR and G�yR� jN � �� � yR� Now let u � $N��
yL�yR

�
then

yL � yL � u � yR � yR�

and so by �i� we have

yL �G�yL� �G�u� � G�yR� � yR�

�iii�� Let u�v � $N��
yL�yR

� Taking absolute values of equation ������ and using
the triangle inequality on the right hand side we obtain

jG�v� ji �G�u� ji j � jwi��j!t
�



h�
�

�

h
Lv�vi��� ui��� ui�

�
������

�jwij
�
��!t



�


h�
�

�

h
Lu�vi� ui� vi��� �

�

h
Lv�vi� ui� ui��� � by�xi� wi�

��

�jwi��j!t
�



h�
�

�

h
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i � �� � � � � N � �� Summing this equation from i � � to i � N � �� we �nd that
the sum telescopes� giving
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Now� using the fact that w� � wN � jG�v�j��G�u�j�j � jG�v�jN �G�u�jN j � �
and leaving out the two negative terms� we arrive at
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This completes the proof�

Theorem � Let 
 � �� h � �	N � where N � � � IN � Then there is a unique
u�
h � �u��h� � u��h� � � � � � u��hN 
T � IRN��

� satisfying system ������� and

y � u�
h � y� ������

Proof
Let yL � y and yR � y� By lemma �� G 
 $N��

y�y �� $N��
y�y is a contraction

mapping in the L� norm and� by the contraction mapping thoerem� G has a
unique �xed point in $N��

y�y � By de�nition this �xed point must be a solution to

the system of equations �������
Now suppose that the system of equations ������ has more than one solution in

IRN��
� � Then there exist � � yL � y and yR � y such that $N��

yL�yR
contains multiple

solutions� As above we can apply lemma � to show that G 
 $N��
yL�yR

�� $N��
yL�yR

has a unique �xed point in this set� This is a contradiction� and completes the
proof�

Theorem 
 Let 
 � �� h � �	N � where N � � � IN � u� � �u��� u
�
�� � � � � u

�
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� �with u�� � ��� u
�
N � ��� If yL � minfy� u��� u

�
�� � � � � u

�
N��g and yR �

maxfy� u��� u
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�� � � � � u

�
N��g� then the sequence of vectors fung�n�� given by
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where G 
 $N��
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�� $N��
yL�yR

is given by lemma �� converges in L� to the solution�
u�
h� of system ������ and we have that
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hk� � exp��n!t�yL�yR�ku
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hk�� ������

where �yL�yR is given by �������

Proof�

From lemma � we have
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h�k� � ���!t�yL�yR�ku
n � u�

hk��

hence

kun � u�
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The convergence is trivial� since !t�yL�yR � �
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�
 Convergence as h��� �

In section � we proved the existence of a unique physical solution� Y � NBV �
of the reduced problem �
 � ��� We now give a theorem that shows that� if
we apply the above numerical scheme then� as 
 � �� the numerical solution is
guaranteed to converge to Y �

Theorem � Let u�h � �u��h� � u��h� � � � � � u��hN 
T denote the discrete solution of ������
for 
 � � and let Uh be the piecewise constant function

Uh�x� � u��hi for ih � x � ih� h� i � �� �� � � � N � �� ������

Let fhng be a null sequence where each hn � �	�j � �� for some j � IN � then
there is a subsequence fhnkg such that

Uhn
k � Y � NBV a�e� as k ��� ������

Y is the unique function in NBV that satis	es conditions �i���ii� and �iii� in
theorem 
�

Proof�
To prove this result we take the same approach as in the analysis in section ��

We look at the numerical scheme




h�
�ui�� � �ui � ui����

�

h
� g�ui��� ui��  g�ui� ui�����  b�xi� ui� � �� ����	�

i � �� � � � � N � ��
u� � ��� uN � ���

for solving problem ������� Here  g is given by

 g�u� v� �

�����������������
����������������

g�u� v� y � u � y and y � v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�y� v� �H��u� y� u � y and y � v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�u� y� �H��v� y� y � u � y and v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�y� v� �H��u� y� u � y and y � v � y�
g�y� y� �H��u� y� �H��v� y� u � y and v � y�
g�u� y� �H��v� y� y � u � y and v � y�

������
where

H��u� z� �
Z u

z
minf  f ��s�gds� ������

and
H��v� z� �

Z v

z
maxf  f ��s�gds� ������

Since H��z� z� � � and H��z� z� � � it is can be shown that  g � C��IR��� It is not
hard to see that  g�u� u� �  f �u� for all u � IR� Also u �� H��u� z� is nonincreasing
and v �� H��v� z� is nondecreasing� so with our assumptions ������ about g� we
have that u ��  g�u� v� is nonincreasing and that v ��  g�u� v� is nondecreasing�
Moreover� j  f ��y�j � C for some constant C� so because of assumptions ������ and

	�



the fact that H�� H� have bounded derivatives�  g satis�es a Lipschitz condition
globally�

Now under these conditions� the system of equations ����	� has a unique
solution�  u�

h � � u��h� �  u��h� � � � � �  u��hN 
T � for 
 � � and h � �	N � where N � � � IN
�See Lorenz��
�� Because of the way  g�  f and  b have been constructed and the
bound on the solution of ������� we must have that  u�

h � u�
h where u�

h is the
solution of ������� Lorenz��
 proves the corresponding theorem for ����	�� The
result follows because u�

h �  u�
h�
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 Conclusions and Further Work

For a rectangular channel with positive bed slope� we have shown that the unique
physical steady �ow can be obtained as the zero viscosity limit of solutions to a
sequence of viscous problems which are generated by adding an arti�cial viscos�
ity term� of strength 
� to the steady Saint�Venant equations� By this limiting
process we also obtained a family of numerical schemes which are guaranteed to
converge to the physical solution in the limit as the grid size tends to zero� We
demonstrated that these schemes are well behaved in the sense that the numerical
solution always exists and is uniformly bounded� We have also given numerical
results for a particular member of this class of schemes for a series of test prob�
lems� The results show that the numerical scheme approximates the solution well
in smooth regions and also gives very good resolution of the discontinuities�

In the future we would like to extend the theory given in this report to a less
restrictive class of channels� The extension of the analysis to certain other shapes
of cross�section seems to be relatively simple� However� the extension to non�
prismatic channels with non�positive bed slopes appears to be muchmore di�cult�
If it is possible� then it will require a di�erent approach to the analysis given here�
Nevertheless� even if we cannot extend the theory a great deal by the techniques
given in this report� we are con�dent that we can generalise the numerical schemes
given in this work to they apply to arbitrary channels� and in particular natural
channels given by discrete data� After this we plan to modify the numerical
schemes to work on non�uniform grids and eventually use some kind of adaption�
In this way we hope to obtain a better resolution of the discontinuities without
increasing the number of grid points�
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A Notation

IR� �����

u Bold denotes a vector

u ji i�th component of vector

u � � u ji � � for all i� same for �� �� � and �

u � v u ji � v ji for all i� same for �� �� � and �

sg�z� sg�z� � ��� �� � for z � �� � �� � �

Cn�A�
Set of functions f 
 A �� IR that have n continuous
derivatives

u�x�� Limit u�x� ��� as �� � from above

u�x�� Limit u�x� ��� as �� � from above

BV Functions of Bounded Variation on ��� �


NBV fu � BV 
 u�x� � u�x��� for x � ��� ��� u��� � u����g

C�
� ��� �� Smooth test functions with compact support on ��� ��

kuhk� h
PN

i�� juij
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B Details of Test Problems

In this Appendix we give details of the test problems used in section �� The exact
solutions are illustrated in �gures �����
Problem � Subcritical Flow

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by
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Manning�s friction coe�cient for the channel is ���	� The �ow is subcritical at
out�ow� with depth (y������ and subcritical at in�ow�

The exact solution for this problem is y�x� � (y�x��
Problem � Supercritical Flow

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by
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Manning�s friction coe�cient for the channel is ���	� The �ow is supercritical at
in�ow� with depth (y��� and supercritical at out�ow�

The exact solution for this problem is y�x� � (y�x��
Problem � Transcritical Flow

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by
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Manning�s friction coe�cient for the channel is ���	� The �ow is subcritical at
in�ow and supercritical at out�ow�

The exact solution for this problem is y�x� � (y�x��
Problem � Sub�Super�Subcritical Flow with Hydraulic Jump

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by
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Manning�s friction coe�cient for the channel is ���	� The �ow is subcritical at
out�ow� with depth (y������ and subcritical at in�ow�

The exact solution for this problem is y�x� � (y�x��
Problem � Sub�Super�Subcritical Flow with Hydraulic Jump

A rectangular channel� � � x � ���m� has width ��m and a discharge of
��m�s��� The slope of the channel is given by
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