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Abstract

The phenomenon that the asymptotic behaviour of a nonlinear differen-
tial equation and its discretized counterpart can have different dynamical
behavior was not uncovered fully until recently. In our earlier work we dis-
cussed some of the differences between the dynamics of scalar first-order au-
tonomous nonlinear ODFEs and commonly used ODE solvers. In this report
we investigate (largely) numerically the dynamical behavior of numerical dis-
cretizations of 2 x 2 systems of first-order autonomous nonlinear ODEs. Our
goal is to illustrate the interplay between the occurrence of spurious fixed
points, limit cycles and numerical basins of attraction, and the phenomenon
of incorrect, non-convergent and divergent numerical solutions of a class of
Runge-Kutta methods.



1 Introduction

Until recently it was not fully appreciated that the dynamical behaviour of a
numerical discretisation of a non-linear differential equation is not necessarily
the same as the dynamics of the original equation itself. Iserles [11] showed
that whilst linear multistep methods for solving ODEs possess only the fixed
points of the original differential equations, popular Runge-Kutta methods
may exhibit additional, spurious, fixed points. It has been demonstrated
(see for example [17, 7, 19] for the scalar case, and [12, 13] for nonlinear
reaction-convection model equations) that such spurious fixed points may
be stable below the linearised stability limit of the scheme and, although
Humphries [10] has recently shown that if such stable spurious fixed points
exist as the time-step approaches zero they must either approach a true fixed
point or become unbounded, these spurious features may greatly affect the
dynamical behaviour of the numerical solution in practice due to the use of
a finite timestep. Indeed this will be the case not only for stable spurious
fixed points but also for unstable spurious fixed points and spurious higher
order features such as period 2 solutions or even chaos which can be admitted
by even the Linear Multistep methods, including the simple FEuler scheme.
(Hairer et al [9] have studied classes of “regular” methods which do not
exhibit spurious period one or period two fixed points.)

In [17, 7, 19] we demonstrated the occurrence of spurious fixed points
for scalar ODEs when discretised by various numerical schemes. In this re-
port and [18] we investigate, largely numerically, the dynamics of numerical
discretisations of 2 x 2 systems of first-order autonomous nonlinear ODEs, il-
lustrating how wrong, non-convergent or no solutions may be obtained for the
discretised equation due to spurious fixed points, limit cycles and numerical
basins of attraction respectively. As in the scalar case these phenomena may
occur below or very closed to the linearised stability limits of the schemes
(itself not always easily calculated). Our ultimate goal is to study and fully
appreciate the dynamics of discretisations of PDEs and how it relates to the
dynamics of the PDEs themselves, in particular where time-stepping tech-
niques are used to reach a steady-state; preliminary work on this has already
commenced ([6, 12, 13]). It is important to remember that not only the
discretisations but also preconditioners and relaxation techniques may also
modify the dynamics of the original PDE.

In Section 2 we briefly review some basic bifurcation theory before intro-
ducing our test cases in Section 3. In Section 4 we proceed to investigate the
dynamics of various Runge-Kutta methods applied to our model equations,
summarizing our findings in Section 5. Finally, in the Appendix, we describe
the techniques used to obtain our detailed pictures of solution orbits and
basins of attraction on a Connection Machine CM2.



2 Preliminaries

Before embarking on a description of the systems which we will use as il-
lustrations and the numerical methods which we shall apply to them we
review some of the basic theory of fixed points and their bifurcations (see for
example [8, 4] for a detailed account).

Consider a systems of ODFEs

u=F(u). (1)
This system will have fixed points given by
F(ug) =0 (2)

where the subscript “E” stands for “Essential” denoting a fixed point of the
ODE as opposed to the additional fixed points of the discretisations which
we will encounter later.

A fixed point may be either stable or unstable, i.e. u given by (1) will
either remain in the neighbourhood of the fixed point or move away from it
under small perturbations. If we consider such a small perturbation € with
u = ug + € then a Taylor expansion of (1) yields

€ = J(ug)e + O(¢) (3)
where J is the Jacobian matrix
OF
= —. 4
sy = 2% ()

This equation (assuming J(ug) # 0 and neglecting the higher order terms)
has solution

J(uE)tEO (5)

€ =¢

with the exponential matrix having eigenvalues e*, X being the eigenvalues
of J. Therefore for the perturbation to decrease, i.e. for the fixed point to
be stable, the eigenvalues of J must have negative real parts.

Unlike for the scalar case [17, 7] fixed points for 2 x 2 (and higher order)
systems can be of different type, each type exhibiting a distinctive behaviour
(see e.g. [1, 2, 3]). The particular type of fixed point is determined by the
eigenvalues of the Jacobian .J evaluated at the fixed point. For 2x2 first-order
ODEs, if the eigenvalues are real and both of the same sign then the fixed
point is called a node, whilst if they are of opposite sign then the fixed point
is a saddle. For a saddle one eigenvalue will be positive, the other negative,
and so although unstable overall there will be a pair of separatrices, given
by the eigenvector of the negative eigenvalue, along which the fixed point is
an attractor, see Figure 1. If, however, the eigenvalues are complex then the
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Figure 1: Types of fixed points for a linear 2 x 2 system.

fixed point is a spiral due to the rotational (sin and cos) terms thus introduced
in (5), the “tightness” of the spiral being governed by the magnitude of the
imaginary part of the eigenvalues. Finally, if the eigenvalues both have a zero
real part the fixed point is non-hyperbolic in nature with neutral stability.
Such a fixed point is called a center. The various stable and unstable types
are depicted in Figure 1, together with phase trajectories to illustrate the
behaviour of values near the fixed points. Note, however, that the behaviour
illustrated is only local, the linearisation not being valid globally. For higher
order systems a spiral can not exist in isolation but will be combined with
another type, e.g. a saddle spiral.

Given a stable fixed point we call the set of all initial values for which
the solution trajectory of (1) converges to the same fixed point the “Basin
of Attraction” for that particular fixed point. Such a basin may be totally
connected or consist of a number of disjoint pieces. Sometimes the boundary
of these basins may also appear fractal in nature (see e.g. Figures 13 & 33).

If, due to a variation of a parameter of the ODE, a fixed point becomes
unstable then if at the point of instability the eigenvalues are simple and
real then the resulting bifurcation will be to another fixed point. If however
the eigenvalues are complex then the bifurcation will be of Hopf type. This
is a slightly simplified classification since we are not really concerned with
variation of the ODE parameters in this work, however full details can be
found, for example, in [8] and [4].

We are concerned with the numerical approximation of (1) by an ODE
solver. For simplicity we shall restrict ourselves to two level schemes, in
particular to Runge-Kutta schemes. For our general analysis we shall write



such a scheme in the form
' =u" +rG(u”) (6)

where superscripts denote the time level (e.g. nAt) and we use r to repre-
sent the time-step At but allowing it to include any constant scaling factors
present in F. The vector function G is assumed consistent with the ODE in
the sense that F(ug) = 0 = G(ug) = 0, i.e. that fixed points of the ODE
are fixed points of the scheme. Note that in general the converse does not
hold, the scheme possessing fixed points which are not fixed points of the
ODE (see e.g. [11, 19, 17, 7]). It is this feature which forms the core of our
work.

The scheme (6) has fixed points G(uy) = 0 which may be true fixed
points of (1) ug or spurious fixed points ug. If we perform a perturbation
analysis on (6) about uy then we obtain

9G (uy)

6n+1 = En —|— TTER —|— 0(62) (7)
which, ignoring higher order terms, has solution
G
6n-|—1 — (] Ta (uN) )n-l—lEO‘ (8)
u

Therefore, for the numerical fixed point uy to be stable the eigenvalues of

the matrix (assuming dG(uy)/0u # 0)

(I + raGa(;‘N)) (9)

must lie inside the unit circle. As for the ODE, the relative positioning of the
eigenvalues (considering a 2 x 2 system) determines the type of fixed point.
If both eigenvalues are real and both lie inside/outside the unit circle then
the fixed point is a stable/unstable node. If one is inside the unit circle, the
other outside, then the fixed point is a saddle and if they are complex then
the fixed point is a spiral. The situation of eigenvalues on the unit circle (not
varying with parameters of the system) is in general indeterminent.

When a fixed point of the discrete map becomes unstable, usually through
variation of r, then one of three situations can occur. If the eigenvalue passing
outside the unit circle is —1 then a “flip” or “period doubling” bifurcation oc-
curs, however if the eigenvalue is 41 then the bifurcation is to another steady
state. This bifurcation can either be transcritical (the branches extending
both above and below the bifurcation in parameter space) or pitchfork (ei-
ther subcritical or supercritical), the exact nature depending on higher order
terms, see e.g. [7] or [17] for a scalar exposition. If the eigenvalues are com-
plex then (with a few exceptions - see [8]) a Hopf bifurcation occurs. Again
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the reader is encouraged to refer to [8] and [4] for full details. The stability of
bifurcation branches is established in a similar fashion as above, with usually
only portions of the branches being stable.

Finally another feature which can arise (for both a system of ODEs and
their discretisation), usually as the result of a Hopf bifurcation, is a limit
cycle where the map traverses a closed curve in phase space. In all but a few
simple cases such limit cycles are beyond analysis.

3 The equations

In this present work we restrict ourselves to four non-linear systems of ODEs
to illustrate the modified dynamics of our ODE solvers over the dynam-
ics of the original differential equations. Two of these systems arise from
the mathematical modelling of physical and biological processes, namely a
damped pendulum and a simple model of predator-prey interaction in pop-
ulation dynamics. A third system arises as a gross simplification of a PDE
solver (our ultimate objective). We emphasise, however, that since the pur-
pose is to illustrate the type of spurious dynamics that may be introduced
by ODE solvers we do not always restrict our examples to their regions of
physical relevance. Neither do we treat any parameter present in the differ-
ential equations as a bifurcation parameter but keep it constant throughout
each numerical calculation and so only the discretisation parameters come
into play.
The systems considered are

1. A Predator-Prey model:

S 2 _ 10 .3
N 10
2. A Damped Pendulum model:
Z ; iﬂv — sin(u) (11)
3. A Dissipative Complex equation:
fm (i 4 B o) (12
where z = u + v
4. A Perturbed Hamiltonian system:
o = B(1—3u)—2(1—2u+u?—20(1 —u))
b = B(1—30)+2(1 — 20 + 02 — 2u(l — v)) (13)



fixed point | eigenvalues type eigenvectors
(0,0) | =3, —2.1 Stable Node
(1,0) | =1.1, 2 Saddle (1,6.2)7, (1,0)T
(3,0) | —6, 0.9 Saddle (1,007, (1,—4.6)T
(2.1,1.98) | —0.21 £ ¢1/2.0349 | Stable Spiral
Table 1: The fixed points of the Predator-Prey equations.

Figure 2: Phase plane for the Predator-Prey equations.

We now study the dynamical behaviour of each system so that we can
later distinguish the additional dynamics introduced by our discretisations.
The Predator-Prey system (10) has fixed points (¢ = ¢ = 0) (0,0), (1,0),
(3,0) and (2.1,1.98) and a Jacobian
J:(—3—|-8u—§v— )
v

Direct substitution of the fixed points into the Jacobian yields its eigenvalues
and thus classifies the fixed points as in Table 1. The eigenvectors, where
given, indicate the stable and unstable saddle trajectories (locally) and the
global picture is given in the phase portrait of Figure 2. The shaded regions
indicate the basins of attraction of the node and spiral. Initial data within
these regions will converge asymptotically towards the respective attractor,
whilst initial data in the unshaded region will not converge to a fixed point.

Due to the periodicity of the sin term, the Damped Pendulum equation
(11) has an infinite number of fixed points, namely (kx,0) for integer k. The

3u? —1u

u—2.1 (14)



fixed point | eigenvalues | type eigenvectors
(2m + 1)m,0) | VI g dles (1, 0)7, (1,7)7

(2m=,0) PRV 352_4 Stable Spirals < 2
Stable Nodes > 2

Table 2: The fixed points of the Damped Pendulum equation.
Jacobian of this system is

/= ( —C(?s(u) —1ﬂ ) (15)

which, at the fixed points, has eigenvalues

| BEYE Ay "

2

It k£ 1s odd then it is easily seen that the eigenvalues are of opposite sign and
so these fixed points are saddles. If k is even, however, two cases must be
considered depending on the value of 5. If 3 < 2 the eigenvalues are complex,
with negative real part, and so the fixed points are attracting spirals, if on
the other hand # > 2 the eigenvalues are real and negative and so the fixed
point is a node. The situation is summarised in Table 2 and Figure 3.

The Dissipative Complex equation (12) is included in our examples since
as well as a fixed point it possesses an analytical limit cycle. The fixed point
is at (0,0) and since the Jacobian of the equation, treated as a real system
by writing z = u + v, is given by

[ B=3ut =0 —1—-2uw
J_( 1 — 2uw B — 30t —u? (17)

it is easily seen that this fixed point is a stable spiral for 5 < 0 and an unstable
spiral for 3 > 0. The limit cycle can (unusually) be found analytically for
this system. Considering the equation in its original (complex) form we have

. d|z)?
spzi= L oppe e (13)

dt
= 0if |z]*=7

and so the orbit |z| = /B is a limit cycle, that is, it is a closed solution
trajectory of the system. A perturbation analysis readily shows that this
limit cycle is stable (in an intuitive sense) for all (positive) 5. Table 3 and
Figure 4 summarise the behaviour of this system.

7



50

25

> 00

-2.5

—5.0

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

5.0

25

> 00

-2.5

—5.0
-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
u

Figure 3: Phase plane for the Damped Pendulum,
<2 (top) and 3 > 2 (bottom).

orbit | eigenvalues | type
(0,0) | B £ Stable Spiral 5 < 0
Center =0
Unstable Spiral § > 0
|z| = VB Stable Limit Cycle (3 > 0)

Table 3: The dynamics of the Dissipative Complex equation.



Figure 4: Phase plane for the Dissipative Complex equation,

B <0 (left) and 8 > 0 (right).

Before investigating the behaviour of the Perturbed Hamiltonian system
(13) we show its relationship with the numerical solution of a PDE. Consider

the viscous Burger’s equation
u + (Lu?), = ey, (19)

in a semi-discrete framework with spatial derivatives approximated by cen-
tered differences, i.e.

Lyi,  — lu? Upy1 — 2Up + Up—
4 2Lkl o L TR DL =1 K (20
et 2Ax ‘ Ax? Y (20)
Here uy(t) ~ u(kAx,t) and a uniform grid has been assumed.
If we now consider K' = 3 (not a realistic computation for the PDE,

however it serves our purpose of illustrating the dynamics added by the
time discretisation) and apply periodic boundary conditions on = € [0, 1]

(Az = 1/3) we obtain

u+ (v —w?) = Blv—2u+w)

O+ 2w —u?) = Blw—2v+u) (21)

b+ —v?) = Blu—2wto)
where w,v and w represent the three point values and g = 9¢. A conservation
argument (v + v 4+ w = 1) can now be used to eliminate w resulting in
the system (13). If 8 = 0 the system is Hamiltonian (H(u,v) = —2(u +
v)(u—1)(v—1)) with fixed points (—=1,1), (1,1), (1, —1) and (1/3,1/3). The
Jacobian of (13) is

S4il-u-0) 3w
(T s atsy) e



orbit | eigenvalues | type eigenvectors
(1/3,1/3) | =38 +£i1y/3 | Center 3 =0
Stable Spiral 5 > 0
(—1,1) | £3/2 Saddle 8 =0 (1,-D)T, (1,0)T
(1,1) | £3/2 Saddle 8 =0 (1,007, (0, 1)
(1,—1) | £3/2 Saddle 8 =0 0,H)f, (1,-1)T
(—1,1)+6, Saddle 8 > 0
(1,1)+8, Saddle 8 >0
(1, —1)+6, Saddle 8 >0

Phase plane for the Perturbed Hamiltonian system,

B =0 (left) and 8 > 0 (right).

Figure 5:

and it is easily seen that (for 3 = 0) the points (—1,1), (1,1) and (1,—1) are
saddles whilst (1/3,1/3) is a center. When 8 > 0 (the case in which we are
interested) the point (1/3,1/3) becomes a stable spiral whilst the positions
of the saddle are perturbed. The situation is summarised in Table 4 and
depicted in Figure 5. Notice how the (shaded) region of non-divergence for
B = 0 stretches to the larger basin of attraction for 5 > 0.

In the next section we consider numerical discretisation of these ODE
systems and investigate the additional dynamics that the discretisations in-

troduce.
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4 The effect of numerical discretisation

The discretisations which we consider are from the Runge-Kutta family of
schemes, namely

Euler (RK-1):
u"t! = u" 4 rF(u") (23)

Modified Euler (RK-2):
u"t =u" 4+ rF(u” + irF(u")) (24)

Improved Euler (RK-2):

' = u' 4 1 {F(u") + F(u" + rF(u")) (25)
Heun (RK-3):
utt = u"+ 1(k; + 3ks)
k, = rF(u"+ tky)
ks = rF(u” + zk,)
Kutta (RK-3):
u™ = w4 1(ky + 4k, + ks)
k, rF(u™) (27)
ky = rF(u" + tky)
ks = rF(u" —k; + 2k,)
RK-4:
ut = u" + ik + 2k, + 2ks + ky)
k, rF(u)
k, = rF(u"+ k) .
ks = rF(u” + tky)

where the numeric identifier after RK indicates the order of accuracy of the
scheme. Note that the Euler scheme (23) is also a Linear Multistep method
and as such will possess only the fixed points of the differential system ([11]).
All of the other methods are nonlinear in F and so will possess spurious fixed
points in addition to those of the differential system ([11]).

As is easily appreciated, mathematical analysis of the dynamics of the
higher order methods is not practical, even with the aid of algebraic manip-
ulators (e.g. [15, 5, 16]). However some analysis is possible for the lower
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order schemes applied to some of our examples. Where rigorous analysis
is impractical we have still been able to investigate the dynamics using nu-
merical experiments. For this the NASA Ames Connection Machine CM?2
was used which enabled vast numbers (typically 512?) calculations to be per-
formed in parallel, each calculation identical apart from either initial data or
time-step parameter. It was therefore possible to obtain both full bifurcation
diagrams in a (r,u) plane and orbits with their basins of attraction in the
(u,v) plane. This enabled us to obtain a detailed picture of the dynamical
behaviour of the discretisations which would be impossible using scalar or
vector machines. Details of the techniques used for detection of the orbits
and basins of attraction are given in the Appendix.

The figures presented in this report are of two types. The first type is a
full bifurcation diagram where the values of the discrete solution are recorded
for fixed r after a certain number (typically 1000) time-steps have first been
taken for the trajectories to settle to their asymptotic behaviour. This is
repeated for a range of values of r giving the behaviour of the trajectories as
r varies. As stated this would give a three dimensional graph ((r,u,v)) and
so for ease of viewing we have taken slices in v = constant planes.

The term “full” in this context indicates that many trajectories for each
value of r, corresponding to different initial data, have been taken in order
to obtain a complete picture. This is necessary since solutions with different
initial conditions will converge to different asymptotic limits; this is occa-
sionally illustrated in our diagrams by the inclusion of basins of attraction,
trajectories commencing in a particular basin converging to the fixed point
also within that basin. For the bifurcation diagrams the basins must be in-
terpreted as vertical slices since in each calculation r is held fixed. Note also
that these basins may often be fragmented and so separate regions (viewed
as a vertical slice) with the same shading correspond to the same basin and
attractor. Such basins are best illustrated using colour, unfortunately it
is not possible to include colour pictures in this report and so the grayscale
representations are only included when needed to illustrate particular points.

The second type of diagram depicts the asymptotic orbits of the solution
for fixed r in the (u,v) plane. Again different initial data will converge (or
not) to different asymptotic behaviour and so basins of attraction are again
used, where necessary, to illustrate this. For these diagrams the basins should
be interpreted in a true two dimensional manner and not as vertical slices as
for the bifurcation diagrams.

We consider the problems (10)—(13) in turn, presenting an investigation
of the dynamics of the discretisations both by numerical experiment, and
where practical by mathematical analysis. Of course the total number of
combinations (24 for each value of ) is too large to contemplate practically,
especially since each case necessitates a number of numerical experiments to
adequately sample the three dimensional space (r,u,v). We have therefore
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been very selective in the results presented here, but even so the prescence
and nature of spurious dynamical behaviour is evident.

4.1 The Predator Prey equations

Due to consistency, the fixed points of the ODEs will also be fixed points of
the Runge-Kutta schemes which we are considering. However, the stability
(and type) of these essential fixed points of the schemes will depend on the
parameter r, the stability condition for a k-th order Runge-Kutta method
being ([14]) |¢| < 1 where

TkAk
k!

and A ranges over the eigenvalues of the Jacobian J of the system of ODEs.
(This expression arises from the fact that the scheme is a k-th order approx-
imation to the ODEs.) It is easily verified that if Re(A) > 0 then |p| > 1
and so unstable fixed points of the ODEs will not be stable fixed points of
the scheme, although as we shall see their type may change.

For the Euler scheme (23) the stability polynomial (29) is just g = 1+7rA
and so we can use the eigenvalues from Table 1 to obtain the stability and
type of each of the fixed points. For illustrative purposes we shall give the

p=1l4+rx+---+ (29)

details for this simple case, however in general we shall just state the results,
the analysis being straight forward (if tedious). We have therefore, for the
fixed points of the Euler scheme applied to the Predator Prey equations

(0,0): py=1=3r, pp=1-21r
Stable node r € (0, 2),
Saddle r € (2, 2 = 0.952380)

Unstable node r > 0.952380

(L,0): py=1—11r, pp=142r
Saddle r € (0,1.8181)
Unstable node v > 1.8181

(3,0): puy=1—6r, o =1+ .9r
Saddle r € (0,1)
Unstable node r > 1

(2.1,1.98): p=1+4r(—0.21 £¢/2.0349),
le]? =1 — 0.42r + 2.079r?
Stable spiral r € (0, 0.2020),
Unstable spiral r > 0.2020
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As can be seen, not only is the stability of the fixed points dependent
on the parameter r but also their type. As the fixed point (0,0) becomes
unstable at r = 2 the eigenvalue p; of the scheme is —1 and so we might
expect a period doubling flip bifurcation to occur. This is bourne out by
the bifurcation diagram of Figure 6 which depicts a slice through the three
dimensional bifurcation diagram on the plane v = 0. The period 2 orbit
lies in the v = 0 plane since the eigenvector corresponding to py (and Ay) is
(1,0).

Figure 6 shows an interesting consequence of our technique for locating
fixed points (see the Appendix for details), namely that since the stable eigen-
direction of the saddle at (3,0) lies in the v = 0 plane it has been detected
and represented on the bifurcation diagram. Notice that when this saddle
becomes an unstable node at r = ! again p; = —1 and so period doubling
is observed. Figures 7 — 9 illustrate orbits of the solution in the (u,v) plane
for three different values of r. Notice that in these pictures the saddle does
not appear whereas the fixed point (and its bifurcation) does.

When the spiral becomes unstable the eigenvalues are complex and so a
Hopf bifurcation occurs giving rise to a limit cycle as depicted in Figures 10
and 8. Whereas bifurcation to a period two solution is readily detectable
in numerical calculations, bifurcation to a limit cycle will not be so obvious,
especially in the vicinity of the bifurcation (in the parameter r) and in higher
dimensional problems. Indeed the phenomenon of an artificial time iteration
to steady-state, of a large system formed by spatial discretisation, which gets
near to convergence before the residuals “plateau out” could actually be the
result of a limit cycle.

Finally note that although no spurious fixed points are generated by the
Euler scheme higher order period solutions, stable or unstable, are possible.
Such spurious solutions can have a drastic effect on the basins of attraction
of the true fixed points as is illustrated in Figure 11 where it can be seen that
the basins for (0,0) and (2.1,1.98) which extend to +oo for the ODEs are
severely truncated, as well as becoming segmented. One period 2 solution of
the Euler scheme applied to these equations is given by

(32 19+ 1/r0) (30)

which for r = 0.1, the case for Figure 11, take the values (—2,0) and (5,0)
which both lie on the boundaries of the truncated basins of attraction. This
illustration should cause particular concern since it occurs at a value of r
which is well below the linearised stability limit of both fixed points.

The linearised stability regions for the two stable fixed points are sum-
marised for all of the Runge-Kutta methods we are considering in Table 5.
We will only consider one other of them in detail here, namely the Modified

14



u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Euler
iterates 1001 to 11000, v = 0.0000
4.00 _—

2.00 _|

1.00 _]

0.00

-1.00 T T T T T T T T T ] r=aDt
020 040  0.60  0.80 1.00 1.20 1.40 1.60 1.80  2.00

Figure 6: Bifurcation diagram for the Predator Prey equations using the
Euler scheme.
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Figure 7:

scheme.

u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)

Euler
iterates 1001 to 2000, r = 0.2000
Vn
— »
T T T T T 1 Un
-4.00 -2.00 0.00 2.00 4.00 6.00 8.00

Phase orbits for the Predator Prey equations using the Euler
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Euler
iterates 1001 to 2000, r = 0.4000
4.00 _—

3.00 _]

2.00 _|

0.00 _] .

-1.00

-2.00 | Un
-4.00 -2.00 0.00 2.00 4.00 6.00 8.00

Figure 8: Phase orbits for the Predator Prey equations using the Euler
scheme r = 0.4.
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Euler
iterates 1001 to 2000, r = 0.7000
4.00 _—

3.00 _]

2.00 _|

0.00 _] o

-1.00

-2.00 | Un
-4.00 -2.00 0.00 2.00 4.00 6.00 8.00

Figure 9: Phase orbits for the Predator Prey equations using the Euler
scheme r = 0.7.
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)

Euler
iterates 1001 to 11000, v= 1.9800
400 U0
3.50 _|
3.00 _|
2.50 _|

2.00 |~..

1.50 _|]
1.00 _
0.50 _|]
000 | | | | | | | | | r=abt

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 10: Bifurcation diagram for the Predator Prey equations using the
Euler scheme.
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U= ux(=3 + 4u —v/2 —uxx2), v = vx(—2.1 +u)

Euler

iterates 1001 to 2000, r =  0.1000

4.00_

3.00_|

2.00_|

100_|

0.00_|

-100_|

Un
8.00

Figure 11: Basins of attraction for the Predator Prey equations using the
Euler scheme.
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(0,0) (2.1,1.98)
RK-1 | r € (0,2) r € (0,0.2020)
RK-2 | r € (0,2) r € (0,0.848102)
RK-3 | r € (0,0.837581) | r € (0, 1.57240)
RK-4 | r € (0,0.928431) | r € (0,2.05281)

Table 5: Linearised stability regions for the Predator Prey equations.

Key | ug Type Stability? ug
1 | (2—4/1+2/r,0) |Saddle — Node | r € (2,1.10704) | (0.0)
2 (24 /1 +2/r,0) Saddle — Node (0,0)
3 | (2= 1/948/r,0) | Node — Saddle | r € (0,0.418871) | (1,0)
4 1 (24 1/948/r,0) | Node — Saddle | r € (0,0.31502) | (1,0)
5 | (1 —=1/148/r,0) | Node — Saddle (3,0)
6 (1 4+ 1/1+8/r,0) | Node — Saddle (3,0)

Table 6: Spurious fixed points in the v = 0 plane for Modified Euler.

Euler scheme (24) which we will see has stable spurious fixed points occurring
below the linearised stability limits of the essential fixed points.

From the form (24) of the Modified Euler scheme it is easily seen that
as well as the essential fixed points ug of the ODEs, any other value ug
satisfying

us + irF(us) = ug (31)

will also be a fixed point of the scheme. We refer to these additional fixed
points as spurious fixed points. Note that the ug on the right-hand side
of (31) encompasses both stable and unstable fixed points of the ODE and
so for the Predator Prey equations (since F contains cubes) there are up to
twelve (real) spurious steady states, 3 for each essential fixed point. In fact
there are six such spurious steady states which lie in the v = 0 plane, all
of them occurring below the linearised stability limits of the essential fixed
points, although not all are stable there. These six are summarised in Table
6 and shown in the bifurcation diagram of Figure 12. Notice again how the
saddle at (3,0) appears since its stable eigen-direction is in the v = 0 plane.

Notice how the spurious fixed point 1 bifurcates transcritically from the

'Since these are spurious roots it is the eigenvalues of the matrix I + rJ(ug) +
1r?J(ug)J (ug) which must be examined for stability and not u given by (29).
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Modified Euler (R-K 2)
iterates 1001 to 11000, v = 0.0000
8.00 _—

6.00 _|
4.00 S
2.00 _|

0.00 __T_C:ﬂ

-2.00 _| A3

-4.00 _]

T T T T T T T T T ] r=aDt
020 040  0.60  0.80 1.00 1.20 1.40 1.60 1.80  2.00

Figure 12: Bifurcation diagram for The Predator Prey equations using the
Modified Fuler scheme.
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U= uk(=3 + 4u —v/2 —ux2), v' = vx(=2.1 +u)

Modified Euler (R—K 2)

iterates 1001 to 2000, r = 0.2000

3.00_|

2.00_|

100_|

~1.00_|

Figure 13: Spurious fixed points and their basins of attraction for the Preda-
tor Prey equations using the Modified Euler scheme.

essential fixed point (0,0). Such a bifurcation could easily go unnoticed in
numerical calculations, indeed in Figures 14 and 15 the fixed point shown
near the origin is in fact not at the origin where the essential fixed point
should be. Figure 13 illustrates the spurious fixed points together with their
basins of attraction and Figure 15 shows the limit cycle obtained after the
spiral at (2.1,1.98) becomes unstable. Notice the edge of another (spurious)
orbit in the vicinity of (0, —4).

Finally for the Predator Prey equations, although we do not investigate
them analytically the bifurcation diagrams in the v = 0 plane for the remain-
ing schemes are given in Figures 16 — 19.

We remark that due to a result by Humphries [10] spurious fixed points of
Runge-Kutta schemes applied to locally Lipschitz F (which is the case for the
Predator Prey equations) can only exist for r — 0 if they become unbounded
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8.00

6.00

4.00

2.00

0.00

-2.00

-4.00

u = u*(-3 + 4u -v/2 -u**2), v’ = v¥(-2.1 +u)

Modified Euler (R-K 2)

iterates

1001 to 2000, r =

0.8000

-4.00

-2.00

0.00

2.00

4.00

6.00

] Un
8.00

Figure 14: Incorrect (spurious) fixed point near origin for the Predator Prey
equations using the Modified Euler scheme.
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u =u*(-3 +4u -v/2 -uF*2), v’ = v¥(-2.1 +u)
Modified Euler (R-K 2)
iterates 1001 to 2000, r = 0.9524
8.00 _

6.00 _]

4.00 _|

2.00 _| <>

0.00 _|

-2.00 _|

-4.00 T T T T T 1 Un
-4.00 -2.00 0.00 2.00 4.00 6.00 8.00

Figure 15: Spurious limit cycle for the Predator Prey equations using the

Modified Fuler Scheme.
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u =u*(-3 + 4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Improved Euler (R-K 2)
iterates 1001 to 11000, v = 0.0000

400 U0
:,/——iq
300 |
2.00 _|
1.00 _|
X
//4_/
//j.\*.— ’1
0.00 4
- g
-1.00 T T T T T T T T T ] r=aDt

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Figure 16: Bifurcation diagram for the Predator Prey equations using the
Improved FEuler Scheme.
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Heun (R-K 3)
iterates 1001 to 11000, v = 0.0000
4.00 _—

2.00 _|

1.00 _] !

0.00

-1.00 T T T T T T T T T ] r=aDt
020 040  0.60  0.80 1.00 1.20 1.40 1.60 1.80  2.00

Figure 17: Bifurcation diagram for the Predator Prey equations using the
Heun scheme.
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Kutta (R-K 3)
iterates 1001 to 11000, v = 0.0000
4.00 _—

2.00 _|

1.00 _]

0.00 —aill

-1.00 T T T T T T T T T ] r=aDt
020 040  0.60  0.80 1.00 1.20 1.40 1.60 1.80  2.00

Figure 18: Bifurcation diagram for the Predator Prey equations using the
Kutta scheme.
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u =u*(-3 +4u -v/2 -u**2), v’ = v¥(-2.1 +u)
Runge-Kutta 4th order
iterates 1001 to 11000, v = 0.0000

400 UM
.
=
2.00 _| 1.
4
1.00 _|
I A
T z\_/c‘ A
0.00 < s
-1.00

T T T T T T T T T ] r=aDt
020 040  0.60  0.80 1.00 1.20 1.40 1.60 1.80  2.00

Figure 19: Bifurcation diagram for the Predator Prey equations using the

RK-4 scheme.
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which is obviously the case here due to the appearance of the reciprocal of r.
For globally Lipschitz F Humphries results states that spurious fixed points
can not exist for arbitrarily small r, again this is bourne out by our results
for the Damped Pendulum equation.

4.2 The Damped Pendulum equation

If we apply the Euler scheme (23) to the Damped Pendulum equation (11)
we find, as expected, that the saddles at ((2m + 1)7,0) remain saddles and
that the type of the fixed points (when stable) at (mn, 0) are as for the ODE,
spirals for # < 2 and nodes for 3 > 2. Further more it is easy to obtain the
linearised stability regions for these fixed points as being

re(0,8) p<2 (32)

re(0,8—4/p2—4) p>2. (33)

We shall concentrate on the case 5 < 2 and look for period two solutions.

and

Period two solutions of the Euler scheme must satisfy
Fu)+ Flu+rF(u))=0, F(u)#0 (34)

which for the Damped Pendulum equation becomes, after some manipulation,

(2—rp)v = rsin(u)
{ sin(u)(1 4 cos(rv)) = —cos(u)sin(rv) (35)
Eliminating u we obtain
(2—rBv=r 1 — cos?(rv) (36)

2

and treating both sides as functions of a new variable rv we see, by con-
sidering derivatives at the origin, that solutions of this equation will exist
for

— %7“2 <2—-rf< %rz. (37)

It is then easily seen that such solutions exist for r < 3, i.e. below the
linearised stability limit of the fixed points.

For the Predator Prey equations solved by the Euler scheme we presented
formulae for some period two solutions below the linerised stability limit,
but these were unstable. However, as can be seen from Figure 20, for the
Damped Pendulum these subcritical period two solutions can be stable, the
checkerboard shading of the figure indicating the basins of attraction both of
the period two solutions and of the true fixed points. Nearer the linearised
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u =v,Vv = -brv — sin(u) b = 1500
Euler

iterates 1001 to 2000, r = 14000

15.0

-15.0_|

—20.0

7726.0 71%.0 716.0 7%.0 5.0 %.0 1(5.0 1%.0 Zb.!;m

Figure 20: Subcritical period two solutions and their basins of attraction for
the Damped Pendulum using the Euler scheme.
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u =v,Vv = -brv — sin(u) b = 1500

Euler
iterates 1001 to 2000, r = 16000
Vn
8.00
6.00
4.00

—4.00_|

-6.00_|

0 I \ I \ \ I \ el
-8.00 —6.00 —4.00 -=2.00 0.00 2.00 4.00 6.00 8.00

Figure 21: Spurious limit cycles and their basins of attraction for the Damped
Pendulum using the Euler scheme.

32



damped pendulum at (0,0)

T r

5.00 1 r-k 1 5.00 - r-k 2

4.00 4.00

3.00 3.00 -

2,00 - 2.00 -

1.00 100 | /k

0.00 — b 0.00 — . b

T 1 T
0.00 1.00 2.00 3.00 4.00 5.00 0.00 1.00 2.00 3.00 4.00 5.00

r r

5.00 o r-k 3 5.00 r-k4

4.00 4.00

3.00 3.00 -

2.00 2.00 -

1.00 1.00

0.00 —r——71— b 0.00 —r——— b
0.00 1.00 2.00 3.00 400 5.00 0.00 1.00 2.00 3.00 4.00 5.00

Figure 22: Stability regions for the Damped Pendulum.

stability limit these period two orbits become unstable and the fixed points
(spirals) bifurcate into limit cycles as illustrated in Figure 21.

Although some analysis is still possible for the second order Runge-Kutta
schemes we do not present it here since it is not enlightening in itself. How-
ever what analysis we have been able to perform has agreed well with our
numerical computations. The stability regions of the schemes are shown in
Figure 22 and Figures 23 and 24 illustrate spurious subcritical features of
the Modified Euler and RK-4 schemes respectively. For the Modified Euler
scheme spurious fixed points are present, whilst for the fourth order Runge-
Kutta scheme it is period four solutions which have caused the restriction of
the basins of attraction of the essential fixed points.

For our remaining two examples, the Dissipative Complex system and
The Perturbed Hamiltonian we present only numerical results, mathematical
analysis not being practical.
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Figure 23: Spurious subcritical fixed points for the Damped Pendulum using

the Modified Fuler scheme.
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u =v,Vv = -brv — sin(u) b = 1000

Runge—Kutta 4th order

iterates 1001 to 2000, r =  2.5000

4.00

2.00

—2.00

—4.00

—6.00

-8.00 [ Y

I _dog .
-6.00 —doo —doo

Figure 24: Subcritical period 4 solutions for the Damped Pendulum using
the Modified Euler scheme.
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7z’ = z(i+b-abs(z)**2) b = 1.000

Euler

iterates 1001 to 16000, v = 0.0000
200 U0
1.50 _|

e
/.—/
T
d__,f-——-“”f

100 _}—
0.50 _|
0.00 ) r=aDt

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Figure 25: Bifurcation diagram of limit cycle for the Dissipative Complex
equation produced by the Euler scheme.

4.3 The Dissipative Complex equation

We consider only the case 3 > 0 where the ODE has a limit cycle |z] = /5.
Figures 25 — 30 illustrate the unreliability of trying to compute a true limit
cycle with any sizable r. This should not be surprising since the schemes
only give an O(r*) approximation to the solution trajectories, and since the
limit cycle is not a fixed point we would expect inaccuracies to be introduced.
However, it would be easy to forget this presented a numerical solution which
had the qualitative features expected.

4.4 The Perturbed Hamiltonian equation

For this example we present just one illustration using the Kutta scheme
to demonstrate how subcritical spurious solutions can occur and affect the
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7z’ = z(i+b-abs(z)**2) b = 1.000
Modified Euler (R-K 2)
iterates 1001 to 11000, v = 0.0000

3.00 P
2.50 _|
2.00 _|
1.50 _|
e ;
ra
oo | -
.
0.50 _| o
0-00 T T T T T ] r=aDt
0.50 1.00 1.50 2.00 2.50 3.00

Figure 26: Bifurcation diagram of limit cycle for the Dissipative Complex
equation produced by the Modified Euler scheme.
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7z’ = z(i+b-abs(z)**2) b = 1.000
Improved Euler (R-K 2)

iterates 1001 to 11000, v = 0.0000

300 U0

2.50 _]

2.00 _]

1.50 _]

1.00 _|

0.50 _]

0.00 ] r=aDt
0.50 1.00 1.50 2.00 2.50 3.00

Figure 27: Bifurcation diagram of limit cycle for the Dissipative Complex
equation produced by the Improved Euler scheme.
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7z’ = z(i+b-abs(z)**2) b = 1.000
Heun (R-K 3)

iterates 1001 to 11000, v = 0.0000

400 Un

3.50 _]

3.00 _]

2.50 _|

2.00 _|

1.00

0.50 _]

0.00 ] r=aDt
0.50 1.00 1.50 2.00 2.50 3.00

Figure 28: Bifurcation diagram of limit cycle for the Dissipative Complex
equation produced by the Heun scheme.
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7z’ = z(i+b-abs(z)**2) b = 1.000
Kutta (R-K 3)
iterates 1001 to 11000, v = 0.0000
5.00 _

4.00 _|

3.00 _]

2.00 _|

1.00

0.00 ] r=aDt
0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Figure 29: Bifurcation diagram of limit cycle for the Dissipative Complex
equation produced by the Kutta scheme.
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7z’ = z(i+b-abs(z)**2) b = 1.000
Runge-Kutta 4th order

iterates 1001 to 11000, v = 0.0000

400 Un

3.50 _]

3.00 _]

2.50 _|

2.00 _|

1.00

0.50

0.00

T T T T T ] r=aDt
250 3.00 3.50 4.00 450 5.00

Figure 30: Bifurcation diagram of limit cycle for the Dissipative Complex
equation produced by the RK-4 scheme.
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Perturbed Hamlitonian at (1/3,1/3)

T Tr
5.00 1 r-k 1 5.00 - r-k 2
4.00 4.00
3.00 3.00 -
2,00 - 2.00 -
1.00 1.00 —L
0.00 — b 0.00 b

T 1 T T T T 1
0.00 1.00 2.00 3.00 4.00 5.00 0.00 1.00 2.00 3.00 4.00 5.00

r r

5.00 - r-k 3 5.00 r-k 4
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3.00 3.00
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0.00 —r——71— D 0.00 —r——— b
0.00 100 2.00 3.00 4.00 5.0 0.00 100 2.00 300 400 5.00

Figure 31: Stability regions for the Perturbed Hamiltonian.

basins of attraction of the true fixed point. This is shown in Figures 32 and
33 with the stability regions being given in Figure 31. We recall that this
example may be constructed by a crude approximation to a PDE and so this
serves as an indication that problems of spurious dynamical behaviour will
arise for the numerical solution of PDEs as well as ODEs.

5 Summary

In the preceding section we have illustrated a number of important ways
in which the dynamics of a numerical discretisation of a 2 x 2 first-order
autonomous nonlinear system of ODEs can differ from the system itself. To-
gether with their implications for general systems, including those approxi-
mating PDEs these are:
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Figure 32: Section of bifurcation diagram for the Perturbed Hamiltonian
using the Kutta scheme.
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Figure 33: Spurious subcritical behaviour for the Perturbed Hamiltonian
using the Kutta scheme.
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e Spurious fixed points may be present both below and bifurcating from
the linearised stablity limit of the essential fixed point of interest. In the
former case the spuriousness of the limit point may not be recognised
in complicated stituations and in the latter case the vicinity of the
spurious limit point to the (now unstable) true limit point is likely to
hide the misplacement in even simple cases.

e Stable and unstable spurious fixed points and higher order orbits dras-
tically affect the basins of attraction of the essential fixed points of the
ODEs. As a consequence a lack of covergence or convergence to the
wrong fixed point may occur. This is especially likely in the case of
time-like iteration to steady-state where an arbitary initial condition is
imposed.

e The bifurcation of spirals to limit cycles which might account, in part
for the phenomenon of near (but lack of) convergence in large systems.

It should always be bourne in mind that although in our illustrations, due
to their relatively simple nature and the manner of presentation of results
(i.e. full representation of parameter space), the spurious dynamics has been
readily detected; this will not always be the case in practical computations
especially where higher order systems are involved.
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Appendices

A Computations of orbits and bifuractions

The calculations carried out in this work were performed on a Connection
Machine CM2 which is a parallel machine with 65,536 processors. The com-
putational domain is considered as a 512 x 512 array of pixels, the value of
the computational variables being taken at the center of each pixel.

The calculation of the bifurcation diagrams and the orbits is essentially
the same, the only difference being the computational space ((r,u) or (u,v))
in which we are working. Initially the pixel variables are assigned values
according to their position in computational space and constant v or r as
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appropriate. The numerical scheme is then applied to these values for an
initial number of iterations (typically 1000) to allow the solution trajectories
to reach their asymptotic states. At this stage the pixel variables will not
have their initial (u,v) values, unless the pixel represents a fixed point or
belongs to a periodic orbit. That is, if an initial value lies on a periodic orbit
it will visit itself again at some later point in time. (A tolerance of half a
pixel width is allowed, the initial number of iterations preventing mistaken
identity of slowly varying trajectories.) Such points are marked on the raster
display, and a further number of iterations taken, this time checking against
initial conditions at each step, to identify all other such points. Due to the
finite number of pixels and the form of the tolerance test high order periods
will be detected, although they will appear as lower order periods due to the
resolution.

The basins of attraction for both the bifurcation diagrams and the phase
orbits are calculated in a similar manner by use of a reference point. For the
bifurcation diagram case this point is (7, ) Where g, is the minimum
value of u on the orbit for which v = 0 and for the phase portraits the
reference point is taken as (Umin, v(Umin)) Where here wp, is the minimum
value of u on the orbit. If the pixel values take the value of a reference point
during the calculations then the pixel is coloured accordingly. (In practice
the reference values are calculated at the same time being replaced whenever
a point with smaller u value is found on the orbit.) Note that the reference
values must belong to the orbits and so are found using the same techniques
as above.
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