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Abstract

A number of peripheral aspects relating to the application of multidi�

mensional upwind schemes in new areas are presented� expanding on their

current capabilities� In summary� 	
 recently developed high order schemes

for the scalar advection equation are applied to nonlinear systems of equa�

tions� �
 source term decompositions are presented which are appropriate

to existing wave models� �
 the two�dimensional scalar �uctuation distri�

bution schemes are modi
ed for �ow over curved surfaces� in particular on

the sphere� �
 a simple node movement algorithm �used previously in two

dimensions
 is applied to steady state solutions of the three�dimensional

scalar advection equation�
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� Introduction

This report has been written to summarise the current state of a number of

strands of research associated with the application of multidimensional upwind

schemes �see ��� for full details of these methods� to a wider range of problems�

It is divided into four short sections	


�� Multidimensional upwinding has now matured to a stage where it is being

used in practical situations for the modelling of steady state aerodynamic

problems ���� However� there is still much work to be done for the approx


imation of time
dependent 
ows� Advances have been made for the scalar

advection equation ���� combining high order schemes with genuinely mul


tidimensional limiting procedures� and here these techniques are applied to

nonlinear systems via existing decompositions� It is clear from the results

that although the accuracy is improved signi�cantly there is a necessity for

the construction of new and improved wave models�

�� Source terms prove to be relatively straightforward to include as part of

the 
uctuation distribution algorithm and� with the exception of the simple

wave models� they can be extended simply to be incorporated within system

decompositions� The general technique is described here and compared with

the commonly used pointwise approach to illustrate the improvement� In

the case of simple wave models one possible method of decomposing and

discretising the source terms is described� but it is complicated and unclear

as to whether it gives any improvement over the much simpler pointwise

discretisation�

�� In meteorological 
ows the shallow water equations are often modelled on

the sphere� The decomposition stage of the multidimensional upwind algo


rithm is not straightforward in this situation� but the scalar schemes can be

applied on spherical geometries with little di�culty �if conservation is not

enforced� and the method is presented here�

�� The grid movement algorithm applied successfully in two dimensions in ���

generalises easily to three dimensions and is applied here to simple scalar
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advection test cases to illustrate its e�ectiveness�

� Time Dependent Nonlinear Systems

The extension of the time
dependent 
uctuation redistribution schemes of ��� to

nonlinear systems of equations is relatively straightforward and follows closely

that of the �nite element method ����� Given that the 
ux balance can be split

up into scalar components� the process di�ers little from the scalar case	

� compute the low and high order element contributions to the grid nodes us


ing the PSI and Lax
Wendro� schemes respectively� then use these to con


struct the antidi�usive element contributions �AEC�s�� storing not only the

AEC�s for each wave in the decomposition �in the form of distribution co


e�cients and 
uctuations� but also the accumulated element contributions

�for speed in calculating the appropriate bounds on the updated solution

and hence the required limiting factors��

� compute the complete low order update and use this to obtain bounds on

the solution at the new time level�

� use these bounds to calculate limiting factors on the antidi�usive element

contributions� These bounds are necessarily constructed from the origi


nal solution and the overall updates in terms of the conservative variables�

This is because it is not possible to convert perturbations in the conserva


tive variables into perturbations of the �characteristic� variables associated

with the individual waves in the decomposition �due either to the presence

of source terms in the decomposition or the linear dependence of the com


ponents� depending on the type of wave model used�� As a consequence�

each wave in the decomposition utilises the same limiting factor at a given

cell vertex� This may be based solely on one variable �e�g� density for the

Euler equations� depth for the shallow water equations� or taken to be a

minimum of the limiting factors over a set of independent variables� such

as all of the conservative variables �which should minimise the oscillations

in the solution��
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� apply the limiting factors to each wave in turn �it was noted in ���� that it is

not desirable to use separate limiting factors on each equation even though

this would be less di�usive�� transforming the distribution coe�cients via

the 
uctuation redistribution approach of ���� for which only the low and

high order distribution coe�cients and the limiting factors are required a

priori�

Note that 
ux
corrected transport can be applied without reference to the

decomposition� A single limiting factor is calculated for the cell whichever

vertex is considered and this can be applied directly to the overall updates

�a quicker but slightly less accurate method��

� use the new distribution coe�cients to update the solution in the manner

of the standard 
uctuation distribution algorithm�

��� Results

Results are shown here for two one
dimensional test cases� both approximated

on the two
dimensional grid shown in Figure ��� before the solutions are aver


aged over the breadth of the computational domain� ����� ��� � ��� ���� to allow

comparison to be made with exact one
dimensional solutions� For the Euler equa


tions� the well known Sod shock tube problem is used in which a gas is initially

at rest and the 
ow evolves from two constant states on either side of a given

position� taken here to be x � ���� The two states are related by a density

ratio of �	� and a pressure ratio of �	�� between the right and left solution val


ues� For the shallow water equations the analogous problem is presented	 the

dam break problem� here with a depth ratio of �	��� Figures ��� and ��� show

the comparison between the low order results obtained using Roe�s model D and

Rudgyard�s Mach angle splitting as wave models and the results obtained when

the 
uctuation redistribution is applied to each of the scalar components of the

decomposition� A small improvement in accuracy is apparent but oscillations

are not completely removed� Roe�s model D did not prove to be very robust�

particularly for transcritical cases� The Mach�Froude angle splitting had fewer

di�culties� which allowed much larger di�erences to be taken between the left
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Figure ���	 The computational grid�
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Figure ���	 Breadth
averaged two
dimensional solutions for Sod�s shock tube

using Model D �left� and the Mach angle splitting �right��
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Figure ���	 Breadth
averaged two
dimensional solutions for a dam break problem

using Model D �left� and the Mach angle splitting �right��

�



and right states before the scheme produced unphysical solutions� Note though

that this problem could be alleviated to some extent by increasing the di�usive

component of the Lax
Wendro� scheme�

The techniques were also applied to the approximate diagonalisation methods�

with similar success but an even more signi�cant lack of robustness� mainly due

to the fact that the coupling terms inherent in these models destroy the concept

of positivity which is used in the construction of the distribution schemes� Un


fortunately� due to their singular nature at stagnation points it is not feasible to

apply the preconditioned decompositions even in these simple cases�

� Source Terms

In two dimensions� source terms have been included in the systems of conservation

laws which have been modelled� so the equations become

U t � F x �Gy � S � �����

U being the vector of conservative variables� F and G the conservative 
uxes

and S containing the source terms� The obvious way to include the source term

within the approximation is to evaluate over the triangular cell� in place of the


ux balance� the quantity

� � �
Z Z

�F x �Gy � S� dxdy � �����

In this way the sources simply augment the existing terms which appear either

because of the linearisation or the decomposition ��� �� and the form of the �nal

scheme is unchanged� only the de�nitions of the 
uctuations �� The augmented

sources can then be dealt with in a manner which takes into account the type of

wave model used	

� Simple wave models	 the source term is split into x
 and y
components

so that the system can be written

U t �A�Ux �A��Sx� �B�Uy �B��Sy� � � �����

as long as A and B� the conservative 
ux Jacobians� are invertible� or

equivalently

U t � �A�B� � �rU � � � �����
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which contains a perturbed gradient of the conservative variables� given by

�rU � � �Ux �A��Sx� Uy �B��Sy�T � �����

It is this quantity which can now be decomposed into components due to

gradients of plane wave solutions to the nonlinear system� i�e�

�rU � �
NwX
k��

�k rk ��n��
T �����

and this equation is solved for the speci�ed wave strengths � and propaga


tion directions � associated with the chosen wave model� �r are eigenvectors

of the matrix �A�B� � �n� appropriate to the chosen waves and �n� is a unit

vector with orientation ��� Each component of ����� relates to a scalar 
uc


tuation which can be incorporated into a distribution scheme in the usual

way�

� Characteristic decompositions	 the source term is decomposed using

the same similarity transformation as is used on the rest of the system� In

�characteristic� variables W the equations are

W t �AWW x �BWW y � SW � �����

in which SW � �U
�W

��
S� This leads to a number of scalar �advection� equa


tions of the form

Wt � �� � �rW � q � SW � �����

each of which has its own advection velocity �� and coupling term q� and

subsequently a 
ux balance which includes the source term� i�e�

� � �S�
NwX
k��

���k � �rW k � qk � Sk
W�rk � �����

where r are the columns of the transformation matrix �U
�W

� The distribution

coe�cients are calculated as though for the homogeneous equations and

then applied to the above 
uctuations�

�k � �S����k � �rW k � qk � Sk
W� � ������

before calculating the conservative updates�

�



� Preconditioned decompositions	 the source term is decomposed in the

same way as in the characteristic decomposition above except that the pre


conditioner is introduced into the transformation� so the 
ux balance again

has the form

� � �S�
NwX
k��

���k � �rW k � qk � Sk
W�rk � ������

but r are now the columns of the matrix �U
�Q
P��

�Q

�W
and SW � �W

�Q
P

�Q

�U
S�

Once more� the solution procedure is no di�erent from the homogeneous

case with modi�ed 
uctuations�

As an example� the shallow water equations with additional terms for mod


elling bed slope are solved combining the above technique with the hyperbol


ic�elliptic preconditioned decomposition adapted from that of Mesaros and Roe

����� and described in detail in ���� The source terms considered here are

S �

�
BBBBB�

�

gdhx

gdhy

�
CCCCCA �

�
BBBBB�

�

SX

SY

�
CCCCCA ������

where d is depth� h is depth below still water and g is the acceleration due to

gravity� and which� when the transformation to characteristic variables is applied�

becomes

SW �
�

q�d

�
BBBBB�

��uSX � �vSY

�	vSX � 	uSY

�FuSX � �FvSY

�
CCCCCA ������

in subcritical 
ow and

SW �
�

q�d

�
BBBBB�
��u� 	v�SX � �v � 	u�SY

��u� 	v�SX � �v � 	u�SY

FuSX � FvSY

�
CCCCCA ������

when the 
ow is supercritical� As in ���� u and v are the two velocity components�

q �
p
u� � v� is the 
ow speed� F � q


p
gd is the local Froude number�

	 �
q
jF � � �j � � � max�F� �� � ������
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and� in this case� � is taken to be

��F � �

���
��
�F � � �

�
F � � �

�
for � � F � �

� for F � � �
������

��� Results

Results are shown� comparing the upwind distribution of the source terms de


scribed above with a simple pointwise evaluation at each node which is added

after the 
uctuation distribution has been carried out� In the multidimensional

upwind notation this scheme looks like

Un��
i � Un

i �
�t

Si

X
j���i

NwX
k��

�
ji �
k�kj r

k
j ��t Si � ������

This is done for a one
dimensional problem of 
ow over a smoothly varying sym


metric bump in a channel using the grid shown in Figure ��� �which gives roughly

�� cells in the streamwise direction�� The computational domain is the region

��� ��� ��� �� and the bathymetry is de�ned by

h�x� �

���
��

��� � zmax cos����x� ����� for jx� ���j � ���

��� otherwise �
������

in which zmax � ��� is the maximum height of the bed above the level at in



ow� This has been chosen as a simple channel geometry for which exact steady

state solutions to the one
dimensional shallow water equations are available for

comparison ��� with the breadth
averaged numerical results�

Three 
ows are compared� de�ned by	

� F� � ���� d� � ���� giving purely subcritical 
ow which is symmetric

about the peak of the bump �at x � �����

� F� � ����� d� � ���� giving transcritical 
ow with a stationary hydraulic

jump downstream of the peak and a critical point at the peak�

� F� � ���� d� � ���� giving purely supercritical 
ow which is symmetric

about the peak�
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Figure ���	 The grid for the channel 
ow with sloping bed�
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Figure ���	 Solutions for the symmetric channel with varying bed for F� � ���

�top left�� F� � ���� �top right� and F� � ��� �bottom��
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The subscript �� represents the freestream 
ow values �at in�nity� which are

used in the application of simple characteristic boundary conditions at in
ow

and out
ow	 appropriate Riemann invariants are speci�ed� cf� ����

Each of the sets of results in Figure ��� shows an improvement when the

upwind discretisation of the source term is used� Discharge is supposed to remain

constant throughout the channel for steady state 
ows� The small discrepancies

seen in the supercritical case are there simply due to linearisation errors and

could be removed with a little extra e�ort in the linearisation of the source term

to achieve an exact balance with the linearised 
ux gradients� In the transcritical


ow case� the di�erence from the exact one
dimensional solution appears to come

from the application of the boundary conditions in two dimensions� and is visible

in results obtained from other forms of numerical scheme�

� Multidimensional Upwinding on the Sphere

The �rst question which needs to be addressed here is whether the schemes should

be applied in a three
dimensional Cartesian coordinate system or a spherical

polar coordinate system� The former has been chosen here because it avoids the

singularity which appears at the poles in the latter� Since the schemes are applied

on unstructured triangular grids there is no problem with grid singularities� which

occur in many existing structured codes� The big advantage of this approach is

that the advection is treated in the same way� regardless of position on the surface

of the sphere and direction of travel�

Ideally� the underlying scheme would be based on the two
dimensional mul


tidimensional upwind schemes� but applied on a curved surface� Unfortunately�

since the divergence theorem can no longer be applied in the conservation ar


gument� the resulting scheme is not conservative because internal cancellation

can no longer be guaranteed� However� in the scalar case it should be simple to

construct a conservative three
dimensional scheme on a prismatic grid over the

surface of the sphere in which the solution is constrained to be constant perpen


dicular to the curved surface� For the moment� it is noted that the 
uctuation in

a triangle is independent of the orientation of that triangle in three
dimensional

��



space so� given a two
dimensional set of orthogonal coordinates � and � in the

plane of the triangle on the surface� the 
uctuation can be de�ned by

� �
Z Z

�

�r�� � �f �� g�� d� d� � �����

where f and g are both functions of u� This can be approximated by

�� � �S������ � �r��u �
I
��

�f �� g�� � d�n�� � �����

Alternatively� in keeping with the three
dimensional coordinate system� one

can take

�� �
NeX
k��

� �f� �g� �h� � �nk �����

in which �nk is a three
dimensional �outward� normal to the edge of the triangle

whose direction is tangent to the surface at the midpoint of the edge and whose

component in the plane of the cell has the same length as the corresponding edge�

Thus �nk is not in the �
� coordinate plane and the approximation cannot be

exact� even under the assumptions of linearly varying u and constant advection�

However� both of the above approximations are consistent and the distribution

coe�cients can be calculated as for the two
dimensional scheme �since everything

is carried out locally on the triangle� and the same overall update used�

��� Results

Figure ��� shows the initial conditions �and the exact solution after one revolu


tion� for the advection of a cosine bell around a great circle of a sphere proposed

in ����� Figures ��� and ��� show the numerical solution on the coarse grid il


lustrated ����� nodes� ���� cells� after one revolution� respectively around the

equator and across the poles� The scheme used is in fact the implicit consistent

�nite element version of the PSI scheme ���� with 
ux
corrected transport ap


plied to ensure monotonicity and the solutions look reasonably good despite the

lack of conservation� Importantly there is little di�erence between the solutions

obtained for the advection over the poles and around the equator� and no special

treatment of the poles has been necessary�
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Figure ���	 The initial conditions for advection on the sphere�

��



Figure ���	 The solution after one revolution around the equator for advection

on the sphere�
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Figure ���	 The solution after one revolution across the poles for advection on

the sphere�
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� Three�Dimensional Grid Adaptation

The simple grid movement algorithm of ��� has been applied to the three
dimensional

scalar advection equation�

ut � fx � gy � hz � � � �����

to improve the accuracy of the steady state solutions obtained using the PSI


uctuation distribution scheme ����

The underlying idea is simple	 between solution iterations the nodes are moved

to a weighted average of the positions of the neighbouring cell centroids� i�e�

�xnewi �

P
j���i

wj�xjP
j���i

wj

� �����

where the �xj are the positions of the centroids� wj are the cell weights and j

indicates the cells adjacent to node i� The weights here are chosen to depend on

local approximations to the �rst and second derivatives of the solution u� so

w �
	
� � 	�j�ruj� � 	���r�u��


���
� �����

where 	� and 	� are chosen to improve the �nal results� Mesh tangling is avoided

by arti�cially limiting the distance which a node can move� A simple but rather

restrictive limit is

��xi�max �
�

�
min
j��Ci

�
Vj

maxk����Ajk

�
� �����

where Vj is the volume of cell j� Ajk is the area of face k of cell j� and the minimum

is taken over all cells with a vertex at node i� denoted by �Ci� A displacement

can be found for all nodes� including boundary �face� and �edge� nodes which

must then be projected back on to the nearest point on corresponding part of the

boundary� and �corner� nodes� even though they are then forced to remain �xed�

The overall solution strategy is expressed by the following three stages	

�� run the time
stepping algorithm on an initial� �xed grid until the solution

appears steady �but long before convergence is achieved��

�� run the time
stepping interspersed with the grid movement until the grid has

adapted to the steady solution� In this work� each time
step is alternated

with a single node movement iteration�

��



�� �x the grid and run the time
stepping algorithm to convergence using the

solution from step �� as initial conditions�

��� Results

Results are shown for a simple test case of advection through a cube with di


mensions ���� �� � ��� �� � ��� ��� as described in ���� The boundary conditions

are zero everywhere at in
ow except on z � � where u � � for r � �� where

r� � ��x���������y������� �giving an ellipse�� The advection velocity is given

by

�� � �z� ����� �x�T � �����

The grid is constructed from a uniform �� � �� � �� node Cartesian mesh� each

cell of which is divided into � tetrahedra� as shown in Figure ����

Figure ���	 The division of a cube into �ve tetrahedra�

Preliminary results are shown in Figure ���� for parameters 	� � ��� and

	� � ���� The mesh movement obviously improves the quality of the solution

but the algorithm needs to be �ne
tuned before it is of practical use� It should

though be noted that the grid used here is very coarse	 a �ner mesh would be

better able to pick out the features of the 
ow and supply enough nodes to provide

considerably better resolution of the solution� A similar test case� but one which

requires the use of the second derivative in the adaptation is given by de�ning

the same initial conditions� except that u � � � r for r � �� where r is de�ned

above� The solution is similarly improved �the peak value of u on the out
ow

plane is increased from ����� to ������� this time using 	� � ���� and 	� � ��

��



Figure ���	 Grids and solutions for the advection of �cylindrical� pro�le for the

boundary planes at z � � �top� and x � � �bottom��

Figure ���	 Grids and solutions for the advection of �conical� pro�le for the bound


ary planes at z � � �top� and x � � �bottom��
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� Conclusions

The �rst steps towards four separate applications related to multidimensional

upwind schemes have been presented here� Recently developed scalar 
uctuation

redistribution techniques for constructing high resolution monotone schemes are

applied with some success to nonlinear systems of equations� but it is clear that

more accurate and robust wave models will be necessary before the full bene�t of

these scalar techniques can be exploited� Source terms can be incorporated nat


urally into multidimensional upwind methods� and this �upwind� discretisation is

shown to improve signi�cantly on the standard� pointwise approximations� The

scalar schemes are then adapted crudely for use on spherical geometries� The

scheme as it stands is consistent but not conservative	 the latter property requir


ing a modi�ed three
dimensional algorithm on a prismatic grid and additional

constraints� The decomposition stage necessary for approximating the shallow

water equations on the sphere represents an even bigger challenge� which may

include the construction of three
dimensional wave models� Finally� a simple grid

adaptation algorithm� which has been successfully applied in two dimensions is

extended to the three
dimensional case and shown to work well on a simple test

case�

� Epilogue	 the Current Situation

The family of multidimensional upwind schemes which has developed over the

last �fteen years has now achieved a degree of success which has allowed them

to be applied in practical situations where two
dimensional steady state 
ows

are being approximated although up to now this has been predominantly in the

�eld of aerodynamics� More recently� they have also been applied to problems in

hydraulic engineering �the source terms which appear commonly in the modelling

can be incorporated simply� but only at the expense of positivity�� Note though

that all of the applications presented here have been on triangular grids because�

although the schemes can be extended to quadrilateral meshes� the linearisation

procedure is less natural�

Furthermore� the methods have been shown to combine well with the standard

��



techniques for improving accuracy and e�ciency� such as implicit time
stepping

and grid adaptation through both re�nement and movement� Viscous 
ow models

have also been approximated �the Navier
Stokes equations� using these methods

but� although the scalar 
uctuation distribution technique can be extended to

the advection
di�usion equation �by treating the viscous terms as sources�� a

Galerkin �nite element discretisation of the viscous terms is often used�

Even now� though� these schemes have their limitations� the most noticeable

being that the most accurate of the existing two
dimensional wave models have a

singularity at a stagnation point� This can be dealt with satisfactorily in steady

state calculations but remains a problem for time
dependent 
ows� Because of

this� the recent advances in accurate 
uctuation distribution schemes for time


dependent problems cannot be taken full advantage of	 there is still much work

to be done to construct appropriate decompositions for unsteady 
ows� and this

may require an alternative approach to those used so far�

The situation with three
dimensional calculations is less well developed� The

system decompositions have been applied with some success and the 
uctuation

distribution schemes readily generalise to the three
dimensional scalar advection

equation �on tetrahedral meshes�� It is also fairly simple to construct wave models

along similar lines to those described here� but none has yet been proposed which

incorporates the additional features apparent in the underlying three
dimensional

models� e�g� bicharacteristics�
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