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Abstract

In the algorithmic process of data assimilation, errors are contributed both

from the mis-calculation of observations and the mis-estimation of the back-

ground state. The specification of these errors is important as they respec-

tively determine the extent to which the observations and background in-

fluence the analysis. For ease of computation, observation errors are often

assumed to be independent of each other, i.e., uncorrelated; however, in a

reality where instrument noise and model error are present this is not the

case.

It is suspected that under the assumption of uncorrelated errors, infor-

mation from observations is not utilised optimally, and so the benefits of an

increased amount of satellite data are limited. In this report, we represent

the information content of observations though the measures of Shannon In-

formation Content and degrees of freedom of signal, and make comparisons

between three different approaches to observation error correlation specifica-

tion. Information change from using the traditional pre-processing technique

of variance enlargement is also considered.

It is shown that, using empirically derived observation error correlations for

Atmospheric Motion vectors (AMVs) data, incorrectly assuming uncorrelated

observation errors leads to a significant loss of information. As the number

of observations increases, the greater the difference in information is between

analyses using a correlated and an uncorrelated observation error covariance

matrix, and hence the more important it becomes to correctly specify these

correlations. Also, enlarging the variance of observation errors is shown to

have a detrimental effect on the amount of information obtained from the

data, when used as an alternative to correctly modelled correlations.

From our findings, we can see that accurate observation error correlation

specification is needed so that the information gathered from observational

data increases in line with the improvements in the techniques of obtaining

this data. A question for further study is how to implement these correlations

in a computational inexpensive manner.
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1 Introduction

In determining an accurate, high-resolution representation of the current state of

the atmosphere for use as an initial condition in Numerical Weather Prediction, it

is inadequate to solely use observations of atmospheric variables (e.g., temperature,

wind speed, humidity and pressure) because of the insufficient quantity available.

But combining these observations with knowledge of the behaviour (i.e, evolution

in time) and structure (often embodied in a computer model) of the atmosphere

provides us with a more consistent representation. For example, if we know the typ-

ical structure of an anticyclone, then an analysis can be drawn using only scattered

observations. The sequential marrying of such observations and representation is

known as data assimilation.

With the recent improvement of remote sensing techniques and methods of data

assimilation, a significant amount of the data used in NWP models is now collected

by satellites. For example, at the Met Office in May 2005, a global average of

1,627,480 observations from geostationary satellites were assimilated each day. This

accounts for 88% of the total number of observations used [14]. The errors associated

with these indirect measurements often stem from the same source, i.e, instrument

type or a wrongly specified variable relationship.

The correlation properties of these errors are largely unknown and so for ease in

many data assimilation algorithms, the correlated error component is set to zero.

Several pre-processing techniques can be used on the data to compensate for this

loss of accuracy, such as data thinning [13], superobbing [1], and increasing the

observation error variance used in the assimilation [4]. However, such processes

involve sub-optimisation of the data, and so useful information is often lost.

The aim of this paper is to investigate the quantitative amount of information

gained through the inclusion of correlated errors. First some background theory on

observation and background errors, and the problem they play a role in, will be given.

We will then look at information theory and the various methods used to evaluate

the information content of a set of observations. Discussion will be given on some

pre-processing techniques, and we will conduct a practical experiment comparing
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observation information content for different observation error covariance matrices.

Conclusions and discussion of future work will then be given.
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2 Satellite Data Assimilation and the Inverse

Problem

Typically a satellite instrument measures a radiance L and relates it to geophysical

parameters through the radiative transfer equation, as described in [16]:

L(ν) =

∫ ∞

0

B(ν, T (z))
dτ(ν)

dz
dz

+ surface emission

+ surface scattering, (1)

where ν is the frequency, B(ν, T (z)) is the Planck radiance for temperature T at

altitude z, τ(ν) is the altitude z to space transmittance, and dτ(ν)
dz

can be interpreted

as weightings over the atmospheric temperature profile. By selecting radiation at

different frequencies, a satellite instrument can provide information on a range of

geophysical variables.

There are two main approaches to the use of satellite data in data assimilation.

In the first approach retrievals are produced before the main assimilation proce-

dure by some optimal estimation adjusting atmospheric profiles to their background

counterparts and measured radiances. In the second there is no need to perform the

retrieval step separately as it is incorporated into the main analysis by finding the

model variables that minimise the cost function, penalising for distance from the

analysed state to both the background and observations.

The observations in [2], from which we will analyse data later in the paper, are

not of this type, but instead come from satellite winds and radiosonde measurements.

However, satellite wind measurements are operationally derived by cloud tracking

in the infrared, water vapour, or visible channel, and still use the process of radiance

inversion to determine the height level of vectors.

Ideally we would measure any desired geophysical quantity directly by satellite

observation. However, due to the constraints imposed by the atmosphere and tech-

nology, this is often not possible, and so an inverse problem must be solved to convert
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between the measured quantity and the desired one. Taking m measurements for

n state variables, gives us an n-dimensional state vector xt, an m-dimensional mea-

surement vector y, and a set of simultaneous equations with variables from xt and

y. Following the model used in [11], this measurement process can be expressed as

a forward model which maps the state space to the measurement space,

y = Hxt + εo, (2)

where H is the forward model and εo is the measurement noise. Due to the complex

nature of the relationship between atmospheric variables, H is often non-linear.

However, for ease of analysis, we will assume H is linear and accept some non-

linearity error.

In addition we have some prior knowledge of what we expect the state vector to

be, described as the background state xb,

xb = xt + εb, (3)

where εb is the background noise. Ideally this background state will not be deterio-

rated by poor quality observations.

We assume both the measurement and background noise are unbiased,

E[εo] = E[εb] = 0, (4)

where E is the expectation operator, and define the background and observation

error covariances matrices respectively:

B = E[εbεbT

] (5)

R = E[εoεoT

]. (6)

We seek to optimally combine these two sources of knowledge to give the best

representation of the present state of the atmosphere.

Assuming Gaussian pdfs and using Bayesian theory, we minimise the cost func-

tion, defined in [11],

J(x) =
1

2
[(x − xb)T B−1(x − xb) + (y − Hx)T R−1(y − Hx)] (7)
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to get the Best Linear Unbiased Estimate (BLUE) equations:

xa = xb + A(y − Hxb) (8)

A = BHT (HBHT + R)−1 = (B−1 + HTR−1H)−1HT R−1 (9)

where xa is the analysis vector with covariance Sa = (HTR−1H + B−1)−1.

Combining prior information and observations to get a maximum likelihood es-

timate of xa is expected to require a different weighting on each one of these sources

of knowledge; the A matrix provides these optimal weights.

2.1 Observation Error Covariance Matrix

The extent to which the background and observations influence the analysis is deter-

mined by their respective error values. Observation errors are calculated by exam-

ining innovations (differences between observations and the background), and come

from three uncorrelated sources: instrument noise, forward model error and non-

linearity error. However, errors resulting from each individual source are expected

to be correlated due to the similarity of their origin.

We can write R in the form:

R = D1/2CD1/2, (10)

where C is the correlation matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ12 . . . ρ1n

ρ12 1 . . . ρ2n

...
. . .

. . .
...

ρ1n ρ2n . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

D is the error variance matrix

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
. . .

. . .
...

0 0 . . . σ2
n

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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ρij is the observation error correlation between observation i and observation j, and

σ2
i is the observation error variance of observation i.

Error correlations are very important when we have a high resolution model and

a low density of observations, or vice-versa, as they specify how the observations

will be smoothed. Correct correlation specifications are vital to the accuracy of

observation weightings. Positive error correlations reduce the weight given to the

average of observations but give more relative importance to differences between

observed values. Taking correlations into account could therefore give the analysis of

atmospheric quantities which are calculated using the difference of some measurable

quantity a larger dependence on the observations.

The major problem with observation error correlations is their complexity; for

example, satellite data retrieval processes can create artificial correlations, and in-

terpolation errors are correlated whenever observations are dense compared to the

resolution of the model. Characterisation of observation errors is easier for raw radi-

ances because of the fewer processing steps involved, but still in many models, error

correlations are taken to be zero and the R matrix diagonal. This is perhaps a rea-

sonable assumption when observations are taken by separate immovable instruments

(i.e, surface observation networks) but not for radiosonde or satellite measurements,

where the same instrument in used. We will examine the repercussions of making

this assumption later in the paper.

2.2 Background Error Covariance Matrix

The background error covariance matrix is produced from estimates of the error

variance in the forecast, and if it is badly specified, we will not have an accurate

idea of the variance of the final analysis value xa. Various methods for calculating

this matrix are described in [7].

Although in this report we do not concentrate our attention on background error

correlations, they have two very important roles in an assimilation system: informa-

tion spreading/smoothing, and conveyance of the balance properties between model

variables [3]. In regions of dense noisy observations, background error correlations
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are used to smooth the analysis, and in regions of sparse observations, they are used

to spread information from observations to surrounding grid points. Smoothing of

increments ensures the analysis contains scales that are statistically compatible with

the smoothness properties of physical fields.
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3 Information Theory

When we ignore observation error correlations and use processes such as data thin-

ning and superobbing to assimilate satellite data, we are neglecting a portion of this

data, and so information that could perhaps be utilised is lost. Ideally we would

select the optimal subset of observations such that the important information is

retained in a numerically cheap way.

The information content of a set of observations is the number of linearly inde-

pendent pieces of information contained in the set. For an observation to contain

useful information it is required that the natural variability of the observation vector

is greater than the measurement error. Considering the system given by [15]

ỹ = H̃x̃ + ε̃, (11)

where x̃ is the transformed state vector,

x̃ = B−1/2(x − xb), (12)

and ỹ is the transformed measurement vector,

ỹ = R−1/2y, (13)

this condition reduces to, the singular value of H̃ = R−1/2HB1/2 related to the

observation being approximately greater than unity.

This is purely a requirement for measurable information; there are several dif-

ferent ways to calculate the information content of an observation set.

3.1 Shannon Information Content

This is a measure of the reduction of entropy (number of distinct internal states).

Using pdfs as a measure of knowledge of the system, and working in state space,

suppose p(x) is the knowledge before the observation, p(x|y) is the knowledge after,

and S(p) is the entropy. Then the Shannon Information Content, SIC, as defined

by [15] is
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SIC = S[p(x)] − S[p(x|y)] (14)

where

S[p(x)] = −
∫

p(x) lg2[p(x)]dx, (15)

S[p(x|y)] = −
∫

p(x|y) lg2[p(x|y)]dx. (16)

In the linear Gaussian case, which we will be considering, it is algebraically

convenient to use natural logs as opposed to lg2. Such a change purely results

in a slight rescaling of the entropy definition by ln 2 = 0.69, but makes equation

manipulation considerably easier. Using this approach, we get the equations:

S[p(x)] = n ln(2πe)1/2 +
1

2
ln |B|

S[p(x|y)] = n ln(2πe)1/2 +
1

2
ln |Sa|

where |B| and |Sa| are the determinants of matrices B and Sa respectively.

SIC =
1

2
ln

∣∣S−1
a B

∣∣
=

1

2
ln

∣∣(HT R−1H + B−1)B
∣∣

=
1

2
ln

∣∣HT R−1HB + I
∣∣

=
1

2
ln

∣∣B1/2HT R−1HB1/2 + I
∣∣

=
1

2
ln

∣∣∣H̃T H̃ + I
∣∣∣

=
1

2

m∑
i=1

ln(1 + λ2
i ) (17)

where λi are the singular values of H̃.

Physically entropy can be thought of as a ‘measure of the volume of the state

space occupied by a pdf which describes the knowledge of the state’, and by taking

an observation, the volume of uncertainty is reduced.
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3.2 Degrees of Freedom of Signal

Statistically degrees of freedom can be considered as the number of values in a

statistic that are free to vary; the number of degrees of freedom in some observation

data is a measure of the amount of information from the data that has been utilised.

Obviously we seek observation groupings with a high number of degrees of freedom.

To evaluate the number of degrees of freedom, we take the expected value of the

minimum of the cost function given by (7):

E[J(x)] = E[(x − xb)T B−1(x − xb)] + E[(y − Hx)T R−1(y − Hx)]

= number of degrees of freedom of the data

But we know that some observations are worthless as their natural variability

is less than the measurement error; these observations provide degrees of freedom

related to noise, dofn. To identify which observations provide us with useful infor-

mation, we define a further transformed measurement vector y = UT ỹ, where U

is the matrix of left singular values of H̃ . We find that the elements of y which

vary more than the noise are those for which the singular value of H̃ is greater than

unity. These transformed observations correspond to a measurable quantity, and

provide degrees of freedom related to signal, dofs. Large singular values correspond

to well-observed directions and a significant reduction in error variance.

So, the total number of degrees of freedom of the data equals the degrees of

freedom for signal (dofs) plus the degrees of freedom for noise (dofn); dofs measure

the part of the minimised J(x) attributed to the state vector, and dofn measure the

part attributed to noise. Through linear transformations, under which degrees of

freedom remain unchanged, we have a numeric representation for dofs and dofn in

terms of singular values of H̃ (λi),

dofs =

m∑
i=1

λi
2

1 + λi
2 , (18)

dofn =
m∑

i=1

1

1 + λi
2 , (19)

which sum to the total number of measurements, m.
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In terms of information theory, degrees of freedom of signal ‘indicate the amount

of useful information contained in the observations‘; in practical terms, they indicate

the number of quantities measured.

The above is a statistical approach to dofs. Alternatively, we can use a linear

algebra approach to get a numeric representation for dofs.

We have an initial covariance matrix B, and performing an analysis to minimise

the variance in observed directions gives us a posterior covariance matrix Sa. We

evaluate this minimised variance by examining the eigenvalues of these two matrices:

for large eigenvalues there is a large uncertainty in the direction of the associated

eigenvector, and conversely, for small eigenvalues there is little uncertainty in the

associated direction.

To perform a comparison of B and Sa, it would be simpler to have diagonal

matrices. To this end consider a non-singular square matrix L, as in [8], such that

LBLT = I (20)

LSaL
T = Ŝa. (21)

This transformation is not unique as we can replace L by XT L where X is an

orthogonal matrix, i.e, XT LBLT X = XT X = I. Now, if we take X to be the matrix

of eigenvectors of Ŝa, then we simultaneously reduce B to the identity matrix of its

eigenvalues and Sa to a diagonal matrix, Λ, i.e, XT LSaL
T X = XT ŜaX = Λ.

So, after this transformation, the diagonal elements of the transformed B ma-

trix are all unity, and each corresponds to an individual degree of freedom. The

eigenvalues of Ŝa may therefore be interpreted as the relative reduction of variance

in each of the N independent directions, where N is the dimension of the state

vector. So, in the well-observed directions the corresponding eigenvalue of Ŝa will

be small, and directions that have not been impacted by the observation will have

large eigenvalues.
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So, an alternative representation of dofs is,

dofs = N − trace(Λ), (22)

and correspondingly for dofn,

dofn = trace(Λ). (23)

This approach is equivalent to that of finding singular values of H̃ , [8]; the benefit

of using it over the statistical method will be seen later in the chapter.

3.3 Fisher Information Content

When estimating a parameter of a distribution, we want to obtain an estimate of

maximum likelihood. In a Bayesian setting, this procedure is based on obtaining a

set of measurements and maximising the probability of these measurements having

occurred given a certain state vector, p(y|x). In maximising the likelihood that we

assign the correct value to a parameter, we are minimising the error in incorrectly

estimating it; the Fisher Information Content, F , is a measure of this minimisation.

Rather than maximising the likelihood function p(y|x), normally the log likeli-

hood function is algebraically simpler to maximise and achieves the same goal. So,

considering the function, as defined by [15],

ln p(y|x) = −1

2
(y − Hx)T R−1(y − Hx) + a constant, (24)

the quantity

F = E

[(
δ ln p(y|x)

δx

)2
]

(25)

is known as the Fisher Information Matrix. This can also be written in the form,

F = E

[(
δ ln[p(x|y)/p(x)]

δx

)2
]

= E

[(
δ ln p(x|y)

δx
− δ ln p(x)

δx

)2
]

(26)

where p(x) was the initial knowledge of the system and p(x|y) was the knowledge

after the observations.

14



Rewriting the SIC, we can see that a link exists between the two:

SIC =

∫
[p(x|y) ln p(x|y) − p(x) ln p(x)]dx

= E[ln p(x|y)] − E[ln p(x)]. (27)

If entropy is related to the volume of the state space, then the Fisher Information

is related to the corresponding surface area.

In the linear Gaussian case, the Fisher Information Content is the inverse of the

analysis covariance matrix Sa:

S−1
a = F = HT R−1H + B−1. (28)

3.4 Alternative Formulae

However, suppose we were to accidentally, or even deliberately, compute the analysis

covariance matrix, Sa, using the incorrect observation error covariance matrix, R;

would it still be appropriate to use the above formulas to calculate information

content? This question is important, as in our later analysis we will be calculating

SIC and dofs values for cases where correlations in the observation error covariance

matrix are ignored.

If we were to knowingly use an incorrect R matrix in our calculations, then we

would be accepting additional observation errors, which would need to be included

for the analysis procedure to be correct. This can be achieved through the addition

of an extra term to the analysis covariance matrix, as in [10], giving,

S∗
a = Sa + AR′AT (29)

A = BHT (HBHT + Rf )
−1 (30)

R′ = Rt − Rf , (31)

where Rt and Rf represent the true and false observation error covariance matrices

respectively, and Sa and A are both evaluated at Rf .

So to calculate the Shannon Information Content when an incorrect R matrix

is used, we again consider equations (17) and (18), but with S∗
a as the analysis
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covariance matrix, to get

SIC =
1

2
ln |S∗

a
−1B|

=
1

2
ln |[(HT R−1

f H + B−1)−1 + AR′AT ]−1B|, (32)

which does not reduce down to a nice expression with singular values of H̃, but is

still possible to evaluate.

To calculate the degrees of freedom of signal it is easiest to manipulate the

formulas produced from the linear algebra analysis as they are given directly in

terms of Sa. So, from equations (20), (21) and (22),

dofs = N − tr(Λ∗) (33)

where XT LS∗
aL

T X = XTS∗
aX = Λ∗.

However, we could argue that we always knowingly use an incorrect R matrix, as

it is impossible to know observation errors exactly, and hence we should be consistent

with our analysis. So, in cases where we use an incorrect observation error covariance

matrix, the analysis covariance matrix Sa should just be evaluated at the incorrect

R matrix, Rf .

So to summarise, we have three approaches to evaluating the information content:

Approach 1 : Assume that we are using the correct R matrix, Rt,

and evaluate Sa at this value

Sa = (HTR−1
t H + B−1)−1

Approach 2 : We knowingly use an incorrect R matrix and include an

additional term in the error covariance matrix to

accurately model this

S∗
a = (HT R−1

f H + B−1)−1 + AR′AT

16



Approach 3 : Accept that we are using an incorrect R matrix,

Rf , and evaluate Sa at this value

Sa = (HTR−1
f H + B−1)−1
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4 Observation Error Correlations - Traditional

Approaches

As mentioned in Section 2, the complexity of observation error correlations usually

means that the R matrix is taken to be diagonal despite knowing this not to be the

case. In most cases, to compensate for the lack of correlation, the variances in the R

matrix are inflated, so that the observations have a lower weighting in the analysis.

The benefits of this approach are debatable.

In [4] the impact on the analysis of using uncorrelated R matrices with differ-

ent levels of inflated variance, compared to that of the true correlated R matrix

was examined. Results showed that error variances can be made at most 2-4 times

larger than the standard deviation of the true R matrix before the model field be-

comes degraded through excessive error amplification. So, whatever benefit variance

enlargement has, it is limited by the need for a physically accurate model represen-

tation. The paper also concluded overall that ‘if the real observation matrix has

significant correlations, the approximation of a diagonal error covariance will not

realise the full potential of the observations‘, i.e, information will be lost.

Another approach to the problem of correlated errors is the process of superob-

bing [1], which uses a weighted average of the differences between observations and

collocated backgrounds within a 3-d box to create one superob. This lowers the ef-

fect of correlated error by reducing the data density, and reduces uncorrelated error

through averaging. The benefits of this approach are the lowered risk of smooth-

ing atmospheric features, and better optimisation of data compared to conventional

methods such as data thinning.

Suppose we have N observations in a 3-d box (yi) with corresponding background

values (xi
b), then the superob value will be,

s = x0
b +

N∑
i=1

wi(yi − xi
b), (34)

where x0
b is the background value at the superob location and wi are the weightings,

assumed in this case to be 1/N .
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Under the assumption that innovations are equally weighted, superobbing has

been found to be most effective in boxes where uncorrelated error dominates. It

is further suggested that this random error reduced by superobbing is not the pri-

mary source of error. So again, the process has a limited benefit on the case when

correlated observation errors are present.

Suberobbing is a method of data thinning. Data thinning can be beneficial

as it compromises between the risks of having too low a data density and having

correlated observation errors. But under what conditions will the best balance

between observation correlation and thinning be reached?

In a recent paper [13] it was found that when assimilating data with correlated

errors as if they were uncorrelated and using optimal thinning, increasing observation

density led to a significant improvement in analysis accuracy, and the extraction

of most of the independent information. However, for spatially correlated errors,

implemented correctly in the analysis, increasing the observation density beyond

some threshold value yielded very little or no improvement in analysis accuracy.

The conclusion was that wrongly treating observation errors as uncorrelated limits

the use of high density observations.

So, although implementation procedures exist for when correlated observation

errors are ignored, research has shown that such methods result in a deficiency in

data utilisation, and a suspected loss of information.
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5 Calculation of Quantative Information Content

for Atmospheric Motion Vectors

We know that to optimally extract essential information from a set of observations

in an assimilation system, a good specification of observation error R is needed. It

is suspected that the more accurately R is represented, the more information in the

observations will be available, i.e, if observation error correlations are ignored then

information will be lost. The aim of this section is to quantitatively evaluate the

difference in information content between a diagonal covariance and a full covariance

R matrix for a set of data on Atmospheric Motion Vectors (AMVs).

The data for this analysis comes from [2], which focuses on quantifying spatial

correlations of random errors in AMVs. The paper analyses pairs of collocations

between AMVs and radiosonde observations; for each pair, two different AMVs are

collocated with radiosonde observations from two respective stations. Assuming the

sonde errors are spatially uncorrelated, any AMV-sonde difference between stations

is attributed to spatially correlated AMV errors. AMV/sonde collocation matching

between stations occurs if the AMVs originate from the same imagery, and the

difference between assigned pressures is less than 150hPa. This method is obviously

very data intensive, and so can only take place in dense sonde networks.

Consider an idealised data set with observations on an p × p regular grid with

200km spacing, where the points are numbered column wise, i.e, for a 3 × 3 grid

�

�

�

�

�

�

�

�

�

�

�

200km

200km

1 4 7

2 5 8

3 6 9

We assume isotropic correlations given by the correlation function:

Cij =
(
1 +

rij

L

)
exp

(
−rij

L

)
(35)

20



where rij is the level spacing between point i and point j, and L is the length scale.

Taking the correlated part of the AMV error as the square root of the variance, we

assume that all error covariances are the same.

We will use the results from the satellite GOES-10 in the northern hemisphere

(high latitude mid-level AMVs) to compute the information content for different

sizes of grid: L = 190, r = 200, and σ = 3.5

Values of SIC and dofs, for the three approaches we are considering are calcu-

lated via the various methods described in Section 3.

For Approach 1, the observation correlation matrix C is computed from the

correlation function (35), and then combined with the p2 by p2 matrix of diagonal

variances,

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

12.25 0 . . . 0

0 12.25 . . . 0
...

. . .
. . .

...

0 0 . . . 12.25

⎞
⎟⎟⎟⎟⎟⎟⎠

,

via the formula R = D1/2CD1/2, to get the covariance matrix R. We assume this R

matrix is correct, and denote it Rt.

Assuming that we observe every desired atmospheric property directly, and we

have uniform uncorrelated background errors, H = I = B, we can calculate the

singular values λi of H̃ = R
−1/2
t HB1/2 = R

−1/2
t . From these we can deduce the

Shannon Information Content (17).

For ease of calculation, consider the linear algebra approach to dofs. Since the

background error covariance matrix is the identity, the requirement on the trans-

forming matrix is reduced to LLT = I, i.e. L is an orthogonal matrix. Choose

L = I, then Sa = Ŝa, and so we compute the eigenvalues of Sa to deduce the dofs

(22).

To evaluate the difference in information content when using a diagonal co-

variance and a full covariance R matrix, we must implement Approach 2 and

Approach 3.

In Approach 2, we know that we are using an incorrect R matrix in the form
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of the full R matrix, Rt, with the correlations ignored, i.e,

Rf =

⎛
⎜⎜⎜⎜⎜⎜⎝

12.25 0 . . . 0

0 12.25 . . . 0
...

. . .
. . .

...

0 0 . . . 12.25

⎞
⎟⎟⎟⎟⎟⎟⎠

The values for SIC and dofs are given by evaluating equations (32) and (33) for

Rf , under the assumption H = I = B.

Approach 3 is the evaluation of equations (17) and (22) as in Approach 1,

only now with Rf as the observation error correlation matrix.
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6 Results

6.1 Shannon Information Content and Degrees of Freedom

of Signal

Tables 1 and 2 clearly show the benefits in terms of information content, of using

a fully correlated R matrix as opposed to a diagonal approximation. For all sizes

of grid examined, the Shannon Information Content and the number of degrees of

freedom of signal are larger when the full R matrix is used (Approach 1) rather

than either diagonal one (Approach 2 or 3). Comparing the two diagonal approxi-

mations (Approach 2 and 3), we see that when the Shannon Information Content

is used as the measure of information, Approach 2 gives a greater reduction in

uncertainty. However, when the number of degrees of freedom of signal is used as

the information measure, the value is no different for either approach.

To explain why the number of degrees of freedom of signal stay the same, we

examine the trace of the matrices Sa and S∗
a, under the assumptions H = I = B.

The trace of a matrix is equal to the sum of its eigenvalues, and so the equations

for degrees of freedom of signal, (22) and (33), can be written:

Approach 2: dofs = N − ∑
eigenvalues of S∗

a

Approach 3: dofs = N − ∑
eigenvalues of Sa

where

Sa = (I + R−1
f )−1

S∗
a = Sa + (I + Rf)

−1(Rt − Rf )(I + Rf)
−1T

.

Since the matrix Rt −Rf has zeros on the diagonal and (I + Rf )
−1 is a diagonal

matrix, the second term of S∗
a will also have zeros on the diagonal and a zero trace.

The sum of the eigenvalues of the second term of S∗
a is now zero, and hence the sum
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of the eigenvalues of Sa will be equal to the sum of the eigenvalues of S∗
a. Therefore,

under Approach 2 and Approach 3, the dofs will be the same.

This just one specific case; under what general conditions would dofs be the same

for Approach 2 and Approach 3? Firstly, suppose our assumption of H = I = B

still holds, and that the observation error variances in Rf are not necessarily the

same as those in Rt, i.e, Rt − Rf does not necessarily have zeros on the diagonal.

Here, (I + Rf )
−1 is still diagonal, and if we define μ2

i as the approximated error

variance of observation i in Rf , and ki as the difference in variance between Rt and

Rf , then the requirement for equal degrees of freedom of signal becomes

n∑
i=1

ki

(1 + μ2
i )

2 = 0. (36)

So, if we use the correct variances in our approximation of the full observation error

covariance matrix, then the number of degrees of freedom of signal will be the same

for both Approach 2 and Approach 3.

However, if H �= I �= B, then we are evaluating more complicated equations in

(22) and (33). For Approaches 2 and 3 to produce the same degrees of freedom,

we require:

trace[AR′AT ] = 0, (37)

which expanded is,

trace[BHT (HBHT + Rf)
−1(Rt − Rf )(HBHT + Rf )

−1T
HBT ] = 0. (38)

This equation cannot be simplified into a nice condition as in the case H = I = B,

and is unlikely to hold in more realistic models.

From Figures 1 and 2 we can see that the Shannon Information Content and

number of dofs are directly proportional to the square of the number of columns

(or rows) of the grid, ie. the number of observation points. The figures further

demonstrate that, as the size of the grid increases, there is an increased difference

between the information content using Approach 1, and the information content

using Approach 2 and 3. Note that in Figure 2, the line for Approach 2 is

underneath the line for Approach 3 since the number of dofs are the same for

these two methods.
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In section 4, we discussed variance enlargement as an alternative to the use

of a fully correlated matrix. Considering this approach, our results indicate that

increasing the variance of R diagonal causes a reduction in the number of dofs and

SIC for all grid sizes (Table 2 and 3, Figures 3-6). However, when compared to

the difference in information content between Approach 1 and Approach 2 or 3,

this reduction is not that significant. It is interesting that the number of dofs is

now different for Approach 2 and Approach 3. This happens because equation

(36) is no longer satisfied, i.e, the diagonal approximation of the full R matrix has

incorrect variances on the diagonal.

Again comparing the two approaches of diagonal approximation, we see that, as

in the standard variance case, if SIC is used as the measure of information content,

Approach 2 provides us with more information. Also, using Approach 2, the

number of dofs is larger. This makes intuitive sense, as we have a greater reduction

in uncertainty through more observation information.
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6.2 Fisher Information Content

Using the assumptions of a linear Gaussian data distribution and

H = B = I, the Fisher Information Matrix, given by (28), takes the form:

Approach 1 F = R−1
t + I (39)

Approach 2 F = [(R−1
f + I)−1

+(I + Rf )
−1(Rt − Rf)(I + Rf )

−1T
]−1 (40)

Approach 3 F = R−1
f + I (41)

The Fisher Information Matrix is a measure of the minimum error in estimating

our variables. We have assumed that all our variables were observed directly, and

so this error is purely measurement based when we assume that we are using the

correct matrices.

For a full R matrix, as in Approach 1, F will contain non-diagonal elements

representing correlations between measurement errors. In Approach 2, we are using

a diagonal R matrix which we are know is incorrect, so F will also have non-diagonal

elements. However, these elements correspond to additionally accepted observation

errors included to make the analysis correct, and not from individual correlations

between measurements errors, since all variable measurements are assumed to be

independent. In Approach 3, F is diagonal, which is expected as all variable

measurement errors are assumed to be independent, as R is diagonal in this approach

as well.

For example, in the 2 × 2 case for Approach 1:

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.2583 −0.1516 −0.1516 0.0721

−0.1516 1.2583 0.0721 −0.1516

−0.1516 0.0721 1.2583 −0.1516

0.0721 −0.1516 −0.1516 1.2583

⎞
⎟⎟⎟⎟⎟⎟⎠

and for Approach 2:
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F =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0892 −0.0544 −0.0544 −0.0403

−0.0544 1.0892 −0.0403 −0.0544

−0.0544 −0.0403 1.0892 −0.0544

−0.0403 −0.0544 −0.0544 1.0892

⎞
⎟⎟⎟⎟⎟⎟⎠

and for Approach 3:

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0816 0 0 0

0 1.0816 0 0

0 0 1.0816 0

0 0 0 1.0816

⎞
⎟⎟⎟⎟⎟⎟⎠

Here, when we have assumed correlations are present (Approach 1) or that we

are using an incorrect R matrix (Approach 2), the minimum error in estimating

an observation is greater than when we have assumed an idealised case of no corre-

lations and the correct R matrix (Approach 3). This again makes intuitive sense.

However, the Fisher Information Matrix would be more interesting to analyse if the

variables were not observed directly; then the error in estimating these observations

would arise from more than these two sources.
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Size of Grid Degrees of freedom of signal

Approach 1 Approach 2 Approach 3

2×2 0.7284 0.3019 0.3019

3×3 2.0286 0.6792 0.6792

4×4 3.9346 1.2075 1.2075

5×5 6.4418 1.8868 1.8868

6×6 9.5501 2.7170 2.7170

7×7 13.2595 3.6981 3.6981

8×8 17.5701 4.8302 4.8302

9×9 22.4818 6.1132 6.1132

10×10 27.9947 7.5472 7.5472

20×20 116.1857 30.1887 30.1887

Table 2: Degrees of freedom results

Size of Grid Approach 2 Approach 3

SIC dofs SIC dofs

2×2 0.1201 0.2322 0.0800 0.1569

3×3 0.2711 0.5225 0.1800 0.3529

4×4 0.4829 0.9289 0.3200 0.6275

5×5 0.7555 1.4514 0.5001 0.9804

6×6 1.0889 2.0900 0.7201 1.4118

7×7 1.4830 2.8447 0.9801 1.9216

8×8 1.9379 3.7155 1.2802 2.5098

9×9 2.4536 4.7024 1.6202 3.1765

10×10 3.0301 5.8055 2.0003 3.9216

20×20 12.1374 23.2218 8.0011 15.6863

Table 3: Information content results (2× variance)
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Size of Grid Approach 2 Approach 3

SIC dofs SIC dofs

2×2 0.0707 0.1388 0.0404 0.0800

3×3 0.1591 0.3123 0.0909 0.1800

4×4 0.2828 0.5552 0.1616 0.3200

5×5 0.4420 0.8675 0.2525 0.5000

6×6 0.6365 1.2492 0.3636 0.7200

7×7 0.8665 1.7003 0.4950 0.9800

8×8 1.1318 2.2208 0.6465 1.2800

9×9 1.4325 2.8107 0.8182 1.6200

10×10 1.7685 3.4700 1.0101 2.0000

20×20 7.0755 13.8800 4.0405 8.0000

Table 4: Information content results (4× variance)
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7 Conclusions and Future Work

Implications that using a diagonal error covariance matrix as opposed to a fully

correlated one results in a significant loss in information, could possibly lead to a

re-evaluation of the assumptions made when obtaining initial conditions through the

solution of the inverse problem. So, it is important that any trends in information

loss are identified and explained if possible.

For all sizes of grid (p × p) analysed, using the full R matrix (Approach 1), as

opposed a diagonal one (Approach 2 or 3), gives a greater Shannon Information

Content and a greater number of degrees of freedom of signal. So, as suspected, we

lose information by using a diagonal R matrix.

For all three approaches, the SIC and number of dofs are directly proportional

to the number of observation points. However the gradient of proportionality varies;

from Figure 1 and 2 we see that the gradient of the line for Approach 1 is steeper

than that for Approach 2 or 3. So, as we take more observations, the more

important it becomes, in a sense of information optimisation, that we have a fully

specified R matrix.

Comparing Approach 2 and Approach 3, we find that Approach 2 gives a

greater reduction in uncertainty, i.e, a greater SIC, and more useful information,

i.e, a greater number of dofs. This implies that by using Bayesian philosophy, we

have actually reduced the uncertainty more than we might think we have if we had

simply used Rf as our ‘correct’ R matrix. In practice, we must always use this

Bayesian philosophy of Approach 2, where we make calculations based on our best

knowledge, which is never the truth.

Variance enlargement in a diagonal R matrix has a detrimental effect on the

values of both SIC and dofs for all grid sizes. As the scale of variance enlargement

increases, the gradient of the line for the modified Approach 2 and Approach 3

decreases (Figures 3-6). So, as grid size increases, the greater the negative influence

variance enlargement will have on information content. But as previously mentioned,

when compared to the differences between Approach 1 and Approach 2 or 3, this

impact has limited significance.
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The structure of this experiment is obviously very basic, and the assumptions

of regular observation spacing and identical error variances are in reality not the

case; but simplification is required, and modifying other factors in the experiment is

likely to result in a more significant and telling change. The data we used from [2]

was assumed to be directly observed, and any background error, uncorrelated and

uniform. It would be more interesting to examine raw radiance data, or data directly

converted from radiances for variables related to those that we are interested in (i.e,

H �= I). This could be done under the further assumption of correlated background

errors; the subject and definition of which is examined in many papers.

Although our results suggest that it would be significantly beneficial, in terms

of information utilised, to use a fully correlated R matrix when solving the inverse

problem, we have not addressed the problems in implementing this. Obviously the

inverse of R is considerably more computationally expensive to calculate when R is

non-diagonal, especially as our grid size becomes larger, and hence more realistic.

We need to have some idea of whether this extra information is worth the added

computational time and expense, or even if it is possible to use a fully correlated R

matrix in a numerically cheap way.

Also, as mentioned briefly in Section 2.1, using a correlated error covariance

matrix reduces the weighting given to observations in the analysis, but gives more

relative importance to the difference between observations. This could be examined

further by considering the relationship between pressure and velocity in geostrophic

motion:

∇p = ρfv ∧ k, (42)

where p is the pressure, ρ is the density, f is the Coriolis force, v is the wind velocity

and k is a unit normal.

We would suspect that if error correlations were present in pressure observations

then these observations would provide us with less knowledge about the pressure

at each point, but give a better estimate for the pressure gradient, and hence more

knowledge about the wind velocity. Whether, in addition, the conveyance of this

35



balance property enables us to extract more information from the observations would

also be interesting to investigate.
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