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Abstract

A number of multidimensional slope limiting operators are presented

for MUSCL�type �nite volume schemes in two dimensions on triangular

grids� The most compressive limiter considered� in the sense that it attains

the highest possible magnitude for the reconstructed solution gradient�

is implemented in a manner whereby the reconstruction of the solution

in a triangle in the limited case is independent of the geometry of the

neighbouring cells� Furthermore� the new limiter leads to the de�nition of

multidimensional monotonicity regions within which every other gradient

limiter can be placed� The technique is extended to arbitrary polygonal

grids� and described in more detail for quadrilaterals� Results are presented

for the scalar advection equation� for which an accuracy study is carried

out� and for two nonlinear systems� the shallow water and Euler equations�

The extension to systems is carried out using Roe	s approximate Riemann

solver and a comparison is made between the application of the limiter

to the conservative variables and to the characteristic variables� All the

techniques presented readily generalise to three dimensions�

�This work has been carried out as part of the Oxford�Reading Institute for Computational

Fluid Dynamics and was funded by EPSRC�
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� Introduction

High order Total Variation Diminishing �TVD� schemes have been developed

in one dimension into reliable tools for numerically predicting the solution of

hyperbolic systems of equations� including models of convection dominated �ows�

However� in higher dimensions it has proved di�cult to obtain the same degree

of robustness and accuracy with extensions of these one�dimensional techniques�

particularly on unstructured grids� As a consequence� a great deal of research

has been carried out into the generation of genuinely multidimensional high order

TVD schemes�

One avenue has led to the development of multidimensional limiting strategies

for modifying high order 	nite volume schemes in such a way that the resulting

method is monotonic� thus avoiding the creation of spurious oscillations in the nu�

merical solution and so improving the robustness of the algorithm� Monotonicity

is achieved by imposing limits on the solution gradients� obtained via reconstruc�

tion of the solution within each cell� so that no new extrema are created by the

approximation�

This report addresses a number of issues relating to the application of a speci	c

type of limiter to a simple second order accurate 	nite volume scheme� The

underlying numerical scheme� described in Section 
 for the solution of the scalar

advection equation� is a standard upwind cell�centre 	nite volume method of the

MUSCL type with linear reconstruction of the solution within each grid cell ���

A standard technique for limiting the gradient of the reconstruction to enforce

monotonicity �
 is then brie�y described� together with a new limiting procedure

which is both faster and removes the dependence of the limited reconstruction in

a grid cell on the geometry of its neighbouring cells� The description of the new

limiter introduces the notion of a monotonicity region for the gradients within

which all of the reconstructions must lie to attain monotonicity� The extension of

these ideas to quadrilaterals �and general polygonal grids� is also discussed� and

the resulting schemes compared with a standard operator split scheme� Results

are presented for each of the schemes described�

Section � describes the extension of these methods to solve nonlinear systems






of equations� speci	cally the shallow water equations and the Euler equations�

The basic high order scheme is described� in which Roe�s approximate Riemann

solver is applied at the grid edges to decompose the system into components for

which the scalar scheme can be used� The limiting procedure is carried out on

both the conservative variables and the characteristic variables in turn and the

results compared�

� The Scalar Advection Equation

In conservation form the two�dimensional scalar advection equation is written

ut � fx � gy � � � �
���

where the conservative �uxes f � f�u� and g � g�u� are functions of the solution

variable u�

A MUSCL type cell�centre 	nite volume method for the numerical solution of

the scalar advection equation is described as follows� Integrate �
��� over a control

volume� � say� �here taken to be a single grid cell� and apply the divergence

theorem to the resulting �ux integral� giving the equation

Z Z
�
ut dxdy �

I
��

�f � d�n � � � �
�
�

where �f � �f� g�T is the �ux function and �n represents an outward pointing

normal to the boundary �� of the control volume�

Approximation of the boundary integral in �
�
� leads to the 	nite volume

discretisation
�u

�t
� � �

V

NeX
k��

�f�k � �nk � �
���

in which u is de	ned to be the average value of u over the control volume �� V

is the area of the control volume� Ne is the number of its edges and �nk is the

outward pointing normal to the kth edge scaled by its length� Note that since the

control volumes coincide with the grid cells� the numerical �ux function �f�k is an

approximation to the �ux at a particular grid edge�

Assuming that the approximation to u is piecewise constant within each cell

and generally discontinuous at the cell edges� as illustrated in Figure 
��� a scheme
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Figure 
��� The limiting planes as de	ned for a triangular control volume �left�

and a piecewise constant reconstruction of the solution �right��

which is 	rst order accurate in space is obtained� The scheme can be made

monotonic by introducing an upwind bias into the evaluation of the numerical

�ux function� The word monotonic is slightly ambiguous when used in a two�

dimensional context but will be used from now on to denote a scheme which

doesn�t create spurious extrema at the new time level� Taking as an example the

kth edge of cell � in Figure 
��� the upwinding is applied �� by de	ning

�f��u�� uk� � �nk �
����� u�

��� � �nk if
��� � �nk � �

uk
��� � �nk otherwise �

�
���

where uk is the value of u in the adjacent grid cell and
��� is an appropriate average

of the advection velocity vector �� �
�
�f

�u
� �g
�u

�
evaluated from the solution values

u� and uk� In the special case of constant advection�

��� � �� �

�B	 a

b


CA �
���

where a and b are constant throughout the domain� Note that an equivalent

expression to �
��� is given by

�f��u�� uk� � �nk � �



��f� � �fk� � �nk � �



j��� � �nkj�uk � u�� �
���

which is preferred in the generalisation to nonlinear systems of equations because

of its symmetry� Furthermore� although only triangular grid cells are illustrated

in Figure 
��� Equations �
��� and �
��� are valid for any polygonal grid cells�

such as quadrilaterals�

�



��� Gradient Operators and Higher Order Schemes

Higher order spatial accuracy is achieved here by introducing a higher order

reconstruction of the variable u within each grid cell� For example� a piecewise

linear approximation to the solution� such as that shown in Figure 
�
� which is

exact for linear initial data� leads to a second order method�

Thus� given an initial constant �or average� solution value u within a cell we

carry out a linear reconstruction of u within that cell expressed as

u � u� �r � �L � �
���

where �r is a position vector relative to the centroid of the cell and �L is a gradient

operator� yet to be de	ned� It is easy to show that such a reconstruction is

conservative in the sense that

�

V

Z Z
�
u dxdy � u � �
���

It can also be shown �
 that when �
��� is satis	ed the resulting numerical scheme

�
��� can be guaranteed to be monotonic for an appropriate restriction on the

time�step as long as the reconstruction �
��� within each cell does not lead to the

creation of any new extrema at the midpoints of the edges of that cell�

u

Figure 
�
� A piecewise linear reconstruction of the solution for a triangular

control volume�
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In the present case the numerical �ux function of Equation �
��� at a cell edge�

such as one of those shown in Figure 
�
� is written in terms of the reconstructed

solution values from the two neighbouring cells at the midpoint of the edge� so

that �f� is now written

�f��uL� uR� � �f��u� � �r�k � �L�� uk � �rk� � �Lk� � �
���

where �rij is the vector from the centroid of cell i to the midpoint of the edge

between cells i and j� and �Li is the gradient of the reconstructed solution in cell i�

In the notation used here uL is considered to be an interior reconstructed solution

value relative to the cell under consideration and uR is the corresponding exterior

value� taken from the adjacent cellwhich is generally di�erent� This motivates the

subsequent use of a Riemann solver to evaluate the edge �uxes� It now remains

to de	ne an appropriate gradient �L for the linear reconstruction of the solution

within each cell of the grid�

A simple gradient operator which is exact for linear data can be de	ned on

any grid by taking the �constant� solution value in three arbitrarily chosen� but

preferably adjacent� cells �i� j and k say� forming a triangle with anticlockwise

indexing of its vertices� and de	ning

�r��ijk� �

�������������������

�B	 �nx
nu

�ny

nu


CA for nu � �

�B	 �
�


CA otherwise �

�
����

in which � � ����� and nx� ny and nu are the components of the vector n normal
to the plane de	ned by the triangle ijk in xyu�space given by

n � �P i � P k�� �P j � P k� � �
����

where

P
�
�

�BBBBB	
x�

y�

u�


CCCCCA � �
��
�

The vector �n has been constructed in such a way that nu always has the same

sign as the area of �ijk� so the second option in �
���� has been introduced to

�



deal with the possibility of �ijk having a non�positive area� An example of such

a triangle is shaded in Figure 
���

ij

k

Figure 
��� A reconstruction triangle with negative area �shaded��

Selecting �L in �
��� to be the �r operator of �
���� leads to a second order ac�
curate method but doesn�t prohibit overshoots and undershoots at the midpoints

of the cell edges and therefore the scheme does not satisfy the monotonicity con�

dition� In order to impose monotonicity the gradient operator �L must be de	ned

to be a �limited� form of �r�

����� Gradient Limiters

Previously constructed gradient limiters �
� � applied to the above scheme have

required

a� the construction of a gradient operator of the form �
���� from which to

choose the �unlimited� reconstruction of the solution�

b� the limiting of the chosen gradient operator to impose monotonicity�

On a triangular grid the simplest approach� known as the Limited Central Dif�

ference �LCD� scheme� considers only �r���
�� �in the notation of Figure 
��� in
step a� above� The limiting stage involves the calculation of

�k �

�������������

max�uk�u� ���

�r�k��L
if �r�k � �L 	 max�uk � u�� ��

min�uk�u� ���

�r�k��L
if �r�k � �L 
 min �uk � u�� ��

� otherwise

�
����

for each edge k� The LCD limited gradient is then given by

�L � ��r���
�� �
�
min
k������

�k
�
�r���
�� � �
����

�



The Maximum Limited Gradient �MLG� scheme devised by Batten et al� �


improves on the LCD scheme by using the ideas of Durlofsky et al� �� to create a

far more compressive limiter� The MLG scheme chooses its initial reconstruction

from the four gradient operators

�r���
�� � �r���
�� � �r������ � �r���
�� � �
����

Each of these is limited using the procedure described by �
���� and �
����� leading

to the limited gradient planes

�L� � ���r���
�� � �L� � ���r���
�� �
�L� � ���r������ � �L� � ���r���
�� � �
����

The MLG limited gradient operator is then taken to be the �Li of �
���� with

the largest slope j�Lij� The main disadvantage of this limiter is the extra expense
involved in computing and limiting four gradient planes rather than just one�

although it is signi	cantly more accurate than the LCD scheme�

In one dimension the MLG limiter reduces to the well�known Superbee limiter

��� Note though that this two�dimensional generalisation does not depend con�

tinuously on the data� It is simple to construct a situation where the value of u� is

allowed to vary continuously �with u�� u� and u� remaining 	xed� but the limited

gradient operator in �
���� varies discontinuously as the operator on which it is

based switches between the planes de	ned in �
����� This is most signi	cant close

to a steady state solution when the discontinuity may interfere with convergence

by causing limit cycling� The limiter of Durlofsky et al� �� su�ers from the same

problem�

It is worth commenting that steps a� and b� of the limiting procedure� as

described at the start of this section� can easily be extended to arbitrary polyg�

onal�polyhedral control volumes in two and three dimensions� This is useful if

general polygonal or hybrid grids are to be used� or even for highly distorted

quadrilateral grids on which the standard directionally split techniques give poor

accuracy�

On quadrilaterals� for example� an MLG�type limiter may be constructed in

essentially the same manner as for triangles� the main di�erence being in the

�
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Figure 
��� The limiting planes as de	ned for a quadrilateral control volume�
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selection of the gradient operators� cf� �
���� and �
���� in the 	rst step of the

limiting� A grid cell now has four edge�neighbours and hence ten possible choices

for the gradient operator �all shown in Figure 
���� For the sake of computational

speed not all of these operators would be considered� In particular� the two

triangles in Figure 
��b� have no natural order to their vertices� this introduces

an ambiguity into the de	nition of negative areas and so it is natural to exclude

them from the algorithm� In general there are Cn
� possible choices of gradient

plane for a shape with n edges�faces� The limiting procedure �
���� can then

be applied as before to the chosen operators� This technique readily carries over

to general polygonal and polyhedral grids in two and three dimensions� even if

adaptive grid re	nement creates hanging nodes�

����� A �Maximum Slope� Limiter

Consider a triangular cell� as illustrated in Figure 
��� and its three edge�neighbours�

Each of the gradient operators of �
���� de	nes a direction

c�Li �
�r��ijk�

j�r��ijk�j � �
����

in which the reconstructed gradient is to be maximised subject to the creation of

no new extrema at the midpoints of the cell edges� The gradient operator which

is ultimately chosen by the MLG scheme is the plane from �
���� which allows

the �steepest� limited slope� However� there is only a 	nite number of gradient

planes to choose from� there is no reason why the algorithm should have picked

out the steepest monotonic reconstruction possible� Only this reconstruction will

lead to the most compressive limiter�

The monotonic linear reconstruction �L with maximal gradient can be calcu�

lated in a cell � from the following simple constrained optimisation problem�

� Maximise j�Lj subject to

min�uk � u�� �� � �r�k � �L � max�uk � u�� �� �
����

for k � �� 
� �� where �r�k is the vector from the centroid of cell � to the

midpoint of the edge between cells � and k�

For clarity� this may be rewritten as

��



� Maximise f�x� y� � x� � y� subject to

min �uk � u�� �� � �rx��k x� �ry��k y � max�uk � u�� �� �
����

for k � �� 
� �� The desired gradient operator is then given by �L � �x� y�T�

�r��

�r��

�r��

�

�

�

Figure 
��� An example of a monotonicity region �shaded� � the black dot indicates

the position representing the steepest monotonic gradient plane�

The solution of this optimisation problem is illustrated in Figure 
��� The

shaded area indicates the region within which f�x� y� satis	es the criteria �
�����

from now on called the monotonicity region� Since the family of curves given by

f�x� y� � constant de	nes a set of concentric circles then f�x� y� is maximised

at an intersection of the boundary edges of the monotonicity region� In the case

of the MLG limiter� four further constraints are added� f�x� y� is still maximised

but now it must not only satisfy �
���� but also the resulting gradient operator

�L must be parallel to one of �
����� There are in	nitely many ways in which the

limited gradient operator but no others will be discussed here�

��



For an arbitrary triangular grid and solution data there are at most ten distinct

intersections of the straight lines de	ned by the constraint inequalities �
�����

including �L � �� �when x � y � �� which is optimal only when u� is a local

extremum� Generally there is a maximum of �
�
n�n� �� � � possible solutions for

an n�sided polygon� Although more sophisticated techniques can be used� �L is

optimised here by calculating each feasible solution and choosing the appropriate

one� With a more complicated logical structure only one gradient operator need

be evaluated in each cell�

Although the optimisation problem proves to be relatively expensive to solve�

it need only be considered in cells where the initial reconstruction gives rise to

overshoots and undershoots� Furthermore� the limiter does not have to be applied

explicitly if the cell value u� is detected to be a local extremum a priori since then

�L � ��� Hence the additional expense is only incurred in a small proportion of the

grid cells� In fact the implementation described below is signi	cantly cheaper in

practice than the MLG algorithm�

It should also be noted that the new limiting procedure depends only on the

values of the solution in the edge�neighbours of a cell and not on the position of

their centroids� removing one aspect of grid dependence from the algorithm�

The Grid�Independent �GI� limiter on a triangular grid can be summarised

as follows�

� Calculate the gradient operator �r���
�� as in the LCD scheme and check
whether it creates any new local extrema at the edge midpoints�

� if it doesn�t� set �L � �r���
���

� otherwise calculate the monotonic gradient operator �L with maximal

gradient from �
�����

In fact all four gradient operators of the MLG limiter �
���� could be checked

for monotonicity� but the small increase in compression is not worth the extra

computational expense �even though it would then reduce to the Superbee limiter

in one dimension��

As it stands� the gradient operators calculated by the above algorithm do

not depend continuously on the data� This can be corrected in the case when

�




only a single gradient operator is considered by constructing a transition function

which imposes a continuous change between the unlimited gradient operator �L� �

�r���
�� and the optimal gradient operator �Lopt calculated from �
����� This

resulting gradient operator is taken to be

�L � ���L� �
��max���� �� ��

�
��Lopt � ���L�� � �
�
��

where � � � 
 � �typically � � ����� and �� is the limiting factor associated with

�L� as de	ned in �
����� The important property of this operator is that

�L �

�����
�L� when �� � �

�Lopt when �� � �� � �
�
�
��

In practice� this additional restriction appears to be unnecessary for time�dependent

applications�

As with the MLG limiter� the GI limiter in its discontinuous form is easily

generalised to other polygonal shapes of control volume� For example� it can

be seen that on a two�dimensional quadrilateral grid where the control volumes

coincide with the grid cells the di�erences from the algorithm on triangles are

in the initial choice of gradient operators �cf� Figure 
��� and the inclusion of a

fourth monotonicity constraint in �
���� and �
����� Unfortunately� the search

for the optimal direction is complicated considerably by the addition of this ex�

tra equation� There are now �� feasible solutions for the resulting optimisation

problem� each of which must be checked for its optimality� This is not straight�

forward� particularly on regular grids since the region satisfying the inequalities

often reduces to a straight line which can be di�cult to detect� This problem

could not arise on a triangular grid�

��� A Directionally Split Limiter

On structured quadrilateral grids it is easy to construct a directionally split lim�

iter� e�g� in two dimensions a one�dimensional limiter is applied in two indepen�

dent directions determined by the grid� The Directionally Split �DS� limiting

procedure described in �� is used here to construct an operator splitting method

to compare with the multidimensional limiters described above�

��



The DS limiter is similar in many ways to the slope limiters described above�

and the multidimensional gradient operators can be modi	ed and limited so that

the resulting scheme is equivalent on rectangular grids� The gradient operators

are decoupled into components in the two grid directions and a separate value of

� is calculated in the manner of �
���� �taking into account only the constraints

in the relevant grid directions� for each of the components� so

�L �

�B	 �xLx

�yLy


CA � �
�

�

The MLG�type limiting procedure calculates a single value of � which satis	es

� � min ��x� �y� �
�
��

and is therefore far less compressive�

The type of modi	cation given by �
�

� cannot be applied on grids where

successive cell centroids do not lie in a straight line� but then the DS approach

as described in �� is not actually linearity preserving on such grids since the grid

�directions� become meaningless�

The GI approach is more �exible since it only requires a short calculation to

check whether new extrema have been created by the chosen gradient operators�

If so then the optimal gradient operator is constructed from �
���� which� on

rectangular grids� is equivalent to the gradient operator derived from the split

approach above �
�

�� Although the GI scheme is linearity preserving on any

mesh� the extra speed and in general higher compression of the DS scheme gives

it a considerable advantage on structured grids�

��� Boundaries

The limiting procedure is applied very simply at boundaries of the domain� In

step a� of the limiting procedure only those gradient operators which can be

constructed from centroids of control volumes within the domain are included

and the others are assumed to be zero� Also� only internal solution values are

considered in the search for new extrema in the reconstruction� On a triangular

grid this means that only a single gradient operator is constructed �and limited�

��



in each cell with just one boundary edge� The scheme therefore produces an exact

reconstruction of linear data on triangles except in cells with multiple boundary

edges� When periodic boundary conditions are used no special treatment of the

boundaries is needed�

On structured quadrilateral grids at least one gradient operator can always be

constructed in each cell� so the scheme reconstructs linear data exactly throughout

the domain�

��� Time Integration

Second order temporal accuracy may be obtained using a Runge�Kutta time�

stepping method such as that given by

u� � un� �
�t

V

NeX
k��

�f
�
un� � �r�k � �Ln

� � u
n
k � �rk� � �Ln

k

�
� �nk

un	�� �
�





un� � u� � �t

V

NeX
k��

�f
�
u� � �r�k � �L�� uk � �rk� � �Lk

�
� �nk

�

� un� �
�t


V
��u� � �u�� � �
�
��

However� the cost of the reconstructions and the local Riemann solutions is pro�

hibitively expensive� so the following approximation to the above update scheme

��� is used instead�

u� � un� �
�t


V

NeX
k��

�f
�
un� � �r�k � �Ln

�

�
� �nk

un	�� � un� �
�t

V

NeX
k��

�f
�
u� � �r�k � �Ln

� � uk � �rk� � �Ln
k

�
� �nk � �
�
��

It has been shown �
 that on triangular grids any limiter of the type described

in this report is monotonic for a restriction on the time�step within each cell given

by

�t � V

�maxk j��� � �nkj
� �
�
��

It can also be shown easily that the corresponding restriction necessary for mono�

tonicity to be satis	ed on quadrilateral grids is

�t � V

�maxk j��� � �nkj
� �
�
��

��



In both of the above limits the maximum is taken over the adjacent cells�

The global time�step restriction used with the DS limited scheme is de	ned

to be

�t � mini�j j�xijj


�
c�

p
u� � v�

�
ij

� �
�
��

where �xij is the vector joining the centroid of cell i to the centroid of cell j� an

edge�neighbour of cell i�

��� Results

Numerical experiments have been carried out to test the behaviour of all of the

schemes described in this report� The 	rst test presented here is the advection of

an initial pro	le given by the double sine wave function

u � sin�
�x� sin�
�y� � �
�
��

with velocity �� � ��� ��T over the domain ��� � � ��� �� This problem has been
solved on three types of grid each of which is illustrated in Figure 
��� Periodic

boundary conditions are applied�

A B C

Figure 
��� The three grid types used for the numerical experiments�

Error estimates in the L� norm for the solution when t � ��� are shown in

Figure 
��� The errors in the L� and L� norms behave in a similar manner for

all of the grids used� In all of the numerical experiments the ratio dtdx � ����

where dx is the length of any horizontal grid edge in Figure 
��� The 	rst order

scheme is unsurprisingly the least accurate� Of the second order schemes the

MLG limiter gives easily the most accurate results on grid A and is the only one

of the schemes on triangles that approaches second order accuracy �roughly ����

at the 	nest grid level�� better even than the dimensionally split quadrilateral

scheme for which errors are also shown in the 	gure� It should be noted that for

��



a precise comparison in terms of computational e�ort �i�e� number of cells rather

than grid size� the graph for the quadrilateral grid should be shifted ���� to the

right� Even then the MLG scheme is better� On the coarsest grid the GI scheme

is best but it rapidly deteriorates until it is only slightly more accurate than the

LCD scheme�

On grid B all of the linear reconstruction schemes on triangles give consider�

ably worse results than on grid A� in particular the MLG scheme� which is now

the worst on the 	nest grids� It is now the GI scheme which is the most accu�

rate� although the results are nowhere near the quality of those obtained on the

quadrilateral grids�

The advantage of using the GI scheme is clari	ed by considering a second

test case� It involves the circular advection of the �cone�� given by the initial

conditions �when t � ��

u �

����� cos
��
�r� for r � ��
�

� otherwise
�
����

where r� � �x � ����� � y�� with velocity �� � ��
�y� 
�x�T around the domain
���� � � ���� �� the solution being continually set to zero at each of the in�ow
boundaries� The initial pro	le should be advected in a circle without change of

shape until it returns to its original position when t � ����

Four solution pro	les obtained on a ��� �� type B grid are shown in Figures

�� and 
��� Of the four� the GI scheme clearly retains the peak best� followed

by the MLG� LCD and 	rst order schemes in decreasing order of accuracy� The

errors in the solutions are shown in Table �� along with computing times� and

these clearly show the GI scheme to be the most accurate for this test case� The

table also shows that the GI scheme� although slower than the LCD scheme� is

about �
 faster than the MLG method�

� Systems of Equations

The extension of these cell centred 	nite volume schemes to nonlinear systems of

equations is straightforward� The conservative equations take the general form

U t � Fx �Gy � � � �����

��



-2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0
LOG dx

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

LO
G

(L
2)

1st order

LCD

MLG

GI

Quads

Grid type A

-2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0
LOG dx

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

LO
G

(L
2)

1st order

LCD

MLG

GI

Quads

Grid type B

Figure 
��� L� errors for the double sine wave test case�
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Figure 
��� Solutions for the rotating cone test case�
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Figure 
��� Solutions for the rotating cone test case�
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Scheme L� L� L� Peak value Time �s�

First order �����
 ����
� ������ ��
�� ��

LCD ������ ������ ������ ����� �
�

MLG ������ ���
�� ������ ����� ���

GI ����
� �����
 ��
��� ����� ���

Table �� Error norms of solutions to the rotating cone problem at t � ��� on a

�� � �� type B grid�

in which U is the vector of conserved variables and F � G are the conservative

�ux vectors� These are de	ned explicitly for the shallow water equations and the

Euler equations in Appendices A and B respectively�

Integrating the equations ����� over a control volume � �taken as before to be

a grid cell� and applying the divergence theorem to the �ux integral results in

Z Z
�
U t dxdy �

I
��
�F� G� � d�n � � � ���
�

where �n again represents an outward pointing normal to the boundary� Approx�

imating the boundary integral and de	ning U� to be the average value of U over

the control volume � leads to the 	nite volume discretisation

�U�

�t
� � �

V

NeX
k��

�F �� G�� � �nk � �����

where V is the area of the control volume� Ne is the number of edges of the

control volume and �nk is the outward pointing normal to the kth edge scaled by

its length�

The scalar numerical �ux function of �
��� is given by the generalisation of

�
��� to systems of equations� namely

�F ��UL� UR�� G
��UL� UR�� � �nk � �

� ��FL� GL� � �FR� GR�� � �nk
��

�j� �A� �B� � �nkj�UR � UL� � �����

in which A � �F

�U
and B � �G

�U
are the �ux Jacobians� The construction of �A and

�B� the conservative approximations to the Jacobian matrices� and subsequently

the numerical �ux at the midpoint of the cell edge follows the technique suggested


�



by Roe ��� The evolution of the discontinuous approximation to the solution

is modelled by constructing a series of approximate Riemann problems at the

edge midpoints with left and right states UL and UR respectively �the internal

and external states relative to the control volume�� Each Riemann problem is

solved by decomposing the �ux di�erence across the edge into its characteristic

components� which results in a numerical �ux function for edge k given by

�F ��UL� UR�� G
��UL� UR�� � �nk � �

� ��FL� GL� � �FR� GR�� � �nk
��

�

PNw

j�� ��
j j��jj�rj � �����

Here Nw is the number of components �or �waves�� in the decomposition� the

symbol �� represents the Roe average value at the discontinuity �which is con�
structed so as to ensure that the linearised decomposition is conservative�� �j is

a wave �strength� and �j and rj� respectively the eigenvalues and eigenvectors of

the matrix �A�B� ��nk� represent the speed of the wave and the transformation of
a perturbation of the characteristic variables into a perturbation of the conserva�

tive variables� Details of the exact values of these averages for the shallow water

equations and the Euler equations are contained in Appendices A and B� The

substitution of ����� into ����� together with the application of an appropriate

time�stepping scheme gives the 	nal algorithm�

One question remains� to which set of independent variables should the lim�

iting procedures of Section 
�� be applied! This is important because the choice

a�ects the values of UL� UR� FL and FR in ����� and ������ The simplest approach

is to apply the limiting to the conservative variables in a 	eld by 	eld manner

�taking appropriate measures to ensure that negative pressures are not created

by the reconstruction�� It is also straightforward to limit the primitive variables

via a simple transformation but� particularly since a characteristic decomposition

is used in the calculation of the �ux function ������ limiting the characteristic

variables W appears to be more appropriate�

Unfortunately� unlike the primitive variables� the characteristic variables W

are related to the conservative variables in terms of di�erences� that is

�W �
d�W
�U

�U � �����







so the limiting procedure must be recast in the same terms� Hence the limiting

is carried out not on the values of the reconstructed solution at the midpoints of

the cell edges� but on the di�erences between these values and the solution at the

cell centroid�

The procedure de	ned in Section 
�� is modi	ed by rede	ning the vector P
�

in �
��
� to be

P
�
�

�BBBBB	
x�

y�

�w�


CCCCCA � �����

where �w� � w� � w� and w is a component of the vector W of characteristic

variables� Each value of �w is calculated using the formula ����� in which the

approximate Jacobian
d�W
�U
is evaluated at an appropriate average state� taken

here to be the local approximation �
��U� � U

�
� at the relevant grid edge�

The limiting is applied to each component of �W in turn and the correspond�

ing values of �U are retrieved by inverting ������ Therefore� on the occasions

when no limiting is applied within a cell� the original values of �U are obtained�

It is unfortunate that advantage cannot be taken of the fact that the wave

strengths in ����� are in fact di�erences in the characteristic variables� i�e� �j �

�Wj� but there appears to be no way of evaluating the Roe average states to give

a conservative algorithm� Therefore� even though the limiting is applied to the

characteristic variables� the conservative variables must be calculated before the

approximate Riemann problems are constructed and solved�

��� Boundary Conditions

Simple characteristic boundary conditions are applied� in which the �ux at a

boundary edge is evaluated directly using information from within the boundary

cell to supplement the imposed boundary values� The physical conditions applied

at a given edge correspond to the positive eigenvalues of the matrixC � A cos ��

B sin �� where the conservative �ux Jacobian matrices A and B are given in the

appendices for the shallow water and Euler equations�

At a freestream boundary four possibilities pertain� �a� supercritical in�ow�

where all four eigenvalues are positive and the boundary �ux is determined com�


�



pletely by the imposed solution values� �b� supercritical out�ow� where no eigen�

value is positive and the �ux is calculated from internal solution values� �c� sub�

critical in�ow� where one eigenvalue is negative whose corresponding Riemann

invariant is given its internal value and everything else is imposed� and 	nally

�d� subcritical out�ow� for which one eigenvalue is positive and the value of the

associated Riemann invariant is imposed� At a solid wall the normal velocity

component is set to zero while the rest of the information required to calculate

the �ux is taken from the interior of the domain�

This crude treatment of the boundaries has proved to be adequate for many of

the cases considered� but in the future a ghost cell approach should be considered

to improve the modelling�

��� Results

The 	rst test case considered here is that of shallow water �ow for a partial dam

break problem ��� The computational domain consists of a 
��m � 
��m basin

bisected by a dam� When t � ���s a break in the dam appears between ��m and

���m from one end� Initially h � ��m on one side and h � �m on the other�

while the water has zero velocity everywhere� The ���� cell grid on which the

calculations were carried out is shown in Figure ���� Each of the boundaries is

treated as a solid wall except those on the left and right�

Figures ��
���� show the surface elevation of the water at t � ��
s for four

schemes� The 	rst order scheme is clearly the most di�usive of those shown but

the other three give very similar results� particularly in the sharpness with which

they capture the front of water moving downstream� Small di�erences appear in

the minimum value of the depth of the water which occurs just downstream of

the dam close to the edges of the gap where the �ow is highly rotational� This is

indicated by the slight di�erences in the scales on the vertical axes of the graphs�

It is the MLG scheme which gives the lowest minimum while the LCD and GI

schemes give roughly similar results�

Figure ��� shows the result obtained when the GI limiter is applied to the

characteristic variables instead of the conservative variables� It is immediately

obvious that the characteristic limiting is considerably more di�usive and there


�



Figure ���� The grid for the partial dam break test case�

seems little reason to apply it�

A second dam break test case has been compared with experimental results

�� This time a reservoir of water ��
m deep is released into an L�shaped channel

with initial depth of ����m� The velocity of the �ow is zero everywhere when

t � ���s� Bed friction e�ects are also modelled in this test case� A Manning

roughness coe�cient of ������ was used and the appropriate source terms were

treated in a simple node�by�node manner as described in ��� The �ow depth is

sampled at the six points shown in Figure ��� at regular intervals until t � ����s�

The 	gure also shows the geometry of the test case and the 

�� cell grid on

which the solution has been approximated� Each boundary is treated as a solid

wall except the one in the top right hand corner at which a supercritical out�ow

condition is applied� It should be noted that it was not possible to attain the

exact initial conditions in the experiment� so the initial data for points P� and

P� di�ers slightly from those of the numerical results�

The experimental results are pictures together with results obtained from the

	rst order and LCD schemes� The boundary conditions proved to be inadequate

for the more compressive limiters and the calculations blew up when the initial


�



First order scheme

LCD scheme

Figure ��
� Solutions for the partial dam break test case�
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Figure ���� Solutions for the partial dam break test case�
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Characteristic GI scheme

Figure ���� Solutions for the partial dam break test case when limiting is applied

to the characteristic variables�

P�

P� P� P	

P


P�

Figure ���� The grid and geometry for the dam break with L�shaped channel test

case�
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wave front reached the corner� The agreement with experimental data is good for

both schemes at P�� At P
 the re�ected wave front is captured more sharply and

more accurately by the LCD scheme although neither agrees closely with experi�

ment when the wave front 	rst passes the point� The two numerical solutions are

again in good agreement at P� and P�� with the second order scheme capturing

the fronts slightly more sharply� At P� the LCD scheme gives a considerably

better approximation to the experimental data while at P� neither scheme gives

particularly good agreement�

These schemes have also been applied to the Euler equations� One standard

test case which has been used is that of Mach � �ow over a forward facing step

in a tunnel ���� The tunnel is � units long and � unit wide and a step of height

��
 is located ��� units into the tunnel� Initially the �ow has density ���� pressure

��� and velocity ��� from left to right in Figure ���� which also shows the 

��

cell grid on which the problem was approximated� Both freestream boundaries

have supercritical boundary conditions applied at them� The numerical solution

obtained from the LCD scheme when t � ��� is shown in Figure ���� It compares

well with each of the other second order schemes illustrated in ��� on grids with

similar numbers of cells� although the Mach stem on the step indicates that the

modelling at the top corner of the step is more di�usive than desired� As in the

previous test case the boundary conditions were not su�ciently robust to achieve

solutions for the MLG or GI schemes�

� Conclusions

In this report the construction of second order accurate monotonic cell centre

	nite volume schemes on triangular grids has been discussed� The methods are

based on MUSCL�type schemes ��� in two dimensions in which a linear recon�

struction of the solution is created within each cell from local data� the gradient

of which is limited to impose monotonicity on the approximation� The methods

have been tested on the scalar advection equation and then extended to nonlinear

systems of equations via Roe�s approximate Riemann solver� The extension of

these schemes to general polygonal grids and three dimensions is also discussed
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Figure ���� Comparison of experimental and numerical data for the dam break

with L�shaped channel test case�
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Figure ���� The grid for the forward facing step test case�

Figure ���� Density contours for the forward facing step test case�

��



brie�y�

It has been shown that the family of monotonicity enforcing limiters can be

completely de	ned by constraints applied at the midpoints of the edges of the

cells� These constraints de	ne a region within which every valid limiter lies�

Furthermore� it follows that a limiter can be constructed which gives the maxi�

mum possible slope for the reconstruction� It has the property of removing the

dependence of the reconstruction on the geometry of the surrounding grid cells

but� although it is considerably cheaper than the most accurate of the previously

constructed limiters and preserves peaks far better� the general quality of the

solutions is worse� However� given the monotonicity region it should be possible

to construct a more accurate limiter�
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A The Shallow Water Equations

The shallow water equations depend on the conservative variables and �uxes given

by

U �

�BBBBB	
h

hu

hv


CCCCCA � F �

�BBBBB	
hu

hu� � gh�

�

huv


CCCCCA � G �

�BBBBB	
hv

huv

hv� � gh�

�


CCCCCA � �A���

where h is the depth of the �ow� u and v are the x� and y�velocities and g is the

acceleration due to gravity� and result in the following �ux Jacobians�

A �
�F

�U
�

�BBBBB	
� � �

c� � u� 
u �

�uv v u


CCCCCA � B �
�G

�U
�

�BBBBB	
� � �

�uv v u

c� � v� � 
v


CCCCCA �

�A�
�

��



where c �
p
gh is the gravity wave speed�

In Roe�s approximate Riemann solver the eigenvalues and eigenvectors of the

matrix

�A� B� � �n �

�BBBBB	
� nx ny

�c� � u��nx � uvny 
unx � vny uny

�uvnx � �c� � v��ny vnx unx � 
vny


CCCCCA �A���

are

�� � �unx � �vny � �c � �� � �unx � �vny � �� � �unx � �vny � �c � �A���

and

r� �

�BBBBB	
�

�u� �cnx

�v � �cny


CCCCCA � r� �

�BBBBB	
�

��cny
�cnx


CCCCCA � r� �

�BBBBB	
�

�u� �cnx
�v � �cny


CCCCCA � �A���

respectively� and the corresponding wave strengths in ����� are given by

��� �
�h



�
�


�c
���hu�nx ���hv�ny � ��unx � �vny��h�

��� �
�

�c
����hv�� �v�h�nx � ���hu�� �u�h�ny�

��� �
�h



� �


�c
���hu�nx ���hv�ny � ��unx � �vny��h� � �A���

in which the Roe average states are

�u �
uR
p
hR � uL

p
hLp

hR �
p
hL

� �v �
vR
p
hR � vL

p
hLp

hR �
p
hL

� �c �

s
g�hR � hL�



�

�A���

and the di�erence operator is given by

�� � ���R � ���L � �A���

In two dimensions the subscripts �L and �R represent the interior and exterior
edge midpoint values relative to the cell under consideration�

��



B The Euler Equations

The Euler equations depend on the conservative variables and �uxes given by

U �

�BBBBBBBB	

�

�u

�v

e


CCCCCCCCA
� F �

�BBBBBBBB	

�u

p � �u�

�uv

u�e� p�


CCCCCCCCA
� G �

�BBBBBBBB	

�v

�uv

p � �v�

v�e� p�


CCCCCCCCA
� �B���

where � is the density of the �ow� u and v are the x� and y�velocities� p is pressure

and e is the total energy� related to the other variables by an equation of state

which� for a perfect gas� is

e �
p

� � � �
�



��u� � v�� � �B�
�

and result in the following �ux Jacobians�

A �
�F

�U
�

�BBBBBBBB	

� � � �

���
� �u

� � v��� u� ��� ��u ��� ��v � � �
�uv v u �

���
� u�u� � v��� uH u��� � �� �H �� � ��uv �u


CCCCCCCCA
�B���

and

B �
�G

�U
�

�BBBBBBBB	

� � � �

�uv v u �

���
� �u

� � v��� v� �� � ��u �� � ��v � � �
���
� v�u� � v��� vH �� � ��uv v��� � �� �H �v


CCCCCCCCA
�

�B���

where H � �e

�
� ���

�
�u� � v�� is the total enthalpy�

In Roe�s approximate Riemann solver the eigenvalues and eigenvectors of the

matrix

�A� B� � �n � Anx �Bny �B���

are

�� � �unx � �vny � �c � �� � �unx � �vny �

�� � �unx � �vny � �
 � �unx � �vny � �c � �B���

��



and

r� �
��
��c

�BBBBBBBB	

�

�u� �cnx

�v � �cny

�H � �c��unx � �vny�


CCCCCCCCA
� r� � ��

�BBBBBBBB	

�

�ny
nx

��uny � �vnx


CCCCCCCCA
�

r� �

�BBBBBBBB	

�

�u

�v

�
�
��u� � �v��


CCCCCCCCA
� r
 �

��
��c

�BBBBBBBB	

�

�u� �cnx
�v � �cny

�H � �c��unx � �vny�


CCCCCCCCA
� �B���

respectively� and the corresponding wave strengths in ����� are given by �j � �Wj

for j � �� 
� �� �� where

�W � L�U �B���

and

L �

�BBBBBBBB	

� �unx	�vny
�� � �������u�	�v��

����c
nx
�� � ������u

���c
ny
�� � ������v

���c
�����
���c

�uny��vnx
�� �ny

��
nx
�� �

� � �������u�	�v��
��c�

������u
�c�

������v
�c�

� �����
�c�

�unx	�vny
�� � �������u�	�v��

����c �nx
�� � ������u

���c �ny
�� � ������v

���c
�����
���c


CCCCCCCCA
�

�B���

The Roe averages �u� �v� �c and �H are evaluated consistently from the average values

of the parameter vector variables given by

�Z �
�



�ZL � ZR� � �B����

where

Z �
p
�

�BBBBBBBB	

�

u

v

H


CCCCCCCCA
� �B����
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