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Abstract

A number of multidimensional slope limiting operators are presented
for MUSCL-type finite volume schemes in two dimensions on triangular
grids. The most compressive limiter considered, in the sense that it attains
the highest possible magnitude for the reconstructed solution gradient,
is implemented in a manner whereby the reconstruction of the solution
in a triangle in the limited case is independent of the geometry of the
neighbouring cells. Furthermore, the new limiter leads to the definition of
multidimensional monotonicity regions within which every other gradient
limiter can be placed. The technique is extended to arbitrary polygonal
grids, and described in more detail for quadrilaterals. Results are presented
for the scalar advection equation, for which an accuracy study is carried
out, and for two nonlinear systems, the shallow water and Euler equations.
The extension to systems is carried out using Roe’s approximate Riemann
solver and a comparison is made between the application of the limiter
to the conservative variables and to the characteristic variables. All the

techniques presented readily generalise to three dimensions.

*This work has been carried out as part of the Oxford /Reading Institute for Computational
Fluid Dynamics and was funded by EPSRC.



1 Introduction

High order Total Variation Diminishing (TVD) schemes have been developed
in one dimension into reliable tools for numerically predicting the solution of
hyperbolic systems of equations, including models of convection dominated flows.
However, in higher dimensions it has proved difficult to obtain the same degree
of robustness and accuracy with extensions of these one-dimensional techniques,
particularly on unstructured grids. As a consequence, a great deal of research
has been carried out into the generation of genuinely multidimensional high order
TVD schemes.

One avenue has led to the development of multidimensional limiting strategies
for modifying high order finite volume schemes in such a way that the resulting
method is monotonic, thus avoiding the creation of spurious oscillations in the nu-
merical solution and so improving the robustness of the algorithm. Monotonicity
is achieved by imposing limits on the solution gradients, obtained via reconstruc-
tion of the solution within each cell, so that no new extrema are created by the
approximation.

This report addresses a number of issues relating to the application of a specific
type of limiter to a simple second order accurate finite volume scheme. The
underlying numerical scheme, described in Section 2 for the solution of the scalar
advection equation, is a standard upwind cell-centre finite volume method of the
MUSCL type with linear reconstruction of the solution within each grid cell [9].
A standard technique for limiting the gradient of the reconstruction to enforce
monotonicity [2] is then briefly described, together with a new limiting procedure
which is both faster and removes the dependence of the limited reconstruction in
a grid cell on the geometry of its neighbouring cells. The description of the new
limiter introduces the notion of a monotonicity region for the gradients within
which all of the reconstructions must lie to attain monotonicity. The extension of
these ideas to quadrilaterals (and general polygonal grids) is also discussed, and
the resulting schemes compared with a standard operator split scheme. Results
are presented for each of the schemes described.

Section 3 describes the extension of these methods to solve nonlinear systems



of equations, specifically the shallow water equations and the Euler equations.
The basic high order scheme is described, in which Roe’s approximate Riemann
solver is applied at the grid edges to decompose the system into components for
which the scalar scheme can be used. The limiting procedure is carried out on
both the conservative variables and the characteristic variables in turn and the

results compared.

2 The Scalar Advection Equation
In conservation form the two-dimensional scalar advection equation is written
w+ fotg, =0, (2.1)

where the conservative fluxes f = f(u) and ¢ = g(u) are functions of the solution
variable .

A MUSCL type cell-centre finite volume method for the numerical solution of
the scalar advection equation is described as follows. Integrate (2.1) over a control
volume, € say, (here taken to be a single grid cell) and apply the divergence

theorem to the resulting flux integral, giving the equation

//utdxdy—l—j{ f-dﬁ:(), (2.2)
Q a9

where f = (f, g)T is the flux function and 7 represents an outward pointing
normal to the boundary 92 of the control volume.

Approximation of the boundary integral in (2.2) leads to the finite volume
discretisation

ou 1Y
5 = _V,;fk'nk’ (2.3)

in which @ is defined to be the average value of u over the control volume Q, V
is the area of the control volume, N, is the number of its edges and 7 is the
outward pointing normal to the k" edge scaled by its length. Note that since the
control volumes coincide with the grid cells, the numerical flux function f;j is an
approximation to the flux at a particular grid edge.

Assuming that the approximation to u is piecewise constant within each cell

and generally discontinuous at the cell edges, as illustrated in Figure 2.1, a scheme



Figure 2.1: The limiting planes as defined for a triangular control volume (left)

and a piecewise constant reconstruction of the solution (right).

which is first order accurate in space is obtained. The scheme can be made
monotonic by introducing an upwind bias into the evaluation of the numerical
flux function. The word monotonic is slightly ambiguous when used in a two-
dimensional context but will be used from now on to denote a scheme which
doesn’t create spurious extrema at the new time level. Taking as an example the

k'™ edge of cell 0 in Figure 2.1, the upwinding is applied [5] by defining

N ) Nede  if XN-iip >0
Fug,ug) -y, = i (2.4)

-y otherwise ,

where uy is the value of u in the adjacent grid cell and Xis an appropriate average

af 9g

5, au) evaluated from the solution values

of the advection velocity vector X = (

g and ug. In the special case of constant advection,

et — a
X=X = (2.5)
b

where a and b are constant throughout the domain. Note that an equivalent
expression to (2.4) is given by

—

[ (uo,ug) - il = %(fo + fi) - |i itk | (ur — o) (2.6)

which is preferred in the generalisation to nonlinear systems of equations because
of its symmetry. Furthermore, although only triangular grid cells are illustrated
in Figure 2.1, Equations (2.4) and (2.6) are valid for any polygonal grid cells,

such as quadrilaterals.



2.1 Gradient Operators and Higher Order Schemes

Higher order spatial accuracy is achieved here by introducing a higher order
reconstruction of the variable v within each grid cell. For example, a piecewise
linear approximation to the solution, such as that shown in Figure 2.2, which is
exact for linear initial data, leads to a second order method.

Thus, given an initial constant (or average) solution value @ within a cell we

carry out a linear reconstruction of v within that cell expressed as
w=Tu+7L, (2.7)

where 7 is a position vector relative to the centroid of the cell and Lisa gradient
operator, yet to be defined. It is easy to show that such a reconstruction is

conservative in the sense that

%//Qudxdyzﬂ. (2.8)

It can also be shown [2] that when (2.8) is satisfied the resulting numerical scheme
(2.3) can be guaranteed to be monotonic for an appropriate restriction on the
time-step as long as the reconstruction (2.7) within each cell does not lead to the

creation of any new extrema at the midpoints of the edges of that cell.

Figure 2.2: A piecewise linear reconstruction of the solution for a triangular

control volume.



In the present case the numerical flux function of Equation (2.6) at a cell edge,
such as one of those shown in Figure 2.2, is written in terms of the reconstructed
solution values from the two neighbouring cells at the midpoint of the edge, so

that f* is now written

JF*(UL?UR) = f*(u0+Fok'E0, Uk+Fk0'Ek) ) (2.9)
where 7;; is the vector from the centroid of cell 7 to the midpoint of the edge
between cells ¢ and j, and L; is the gradient of the reconstructed solution in cell :.
In the notation used here u, is considered to be an interior reconstructed solution
value relative to the cell under consideration and ug is the corresponding exterior
value, taken from the adjacent cellwhich is generally different. This motivates the
subsequent use of a Riemann solver to evaluate the edge fluxes. It now remains
to define an appropriate gradient [ for the linear reconstruction of the solution
within each cell of the grid.

A simple gradient operator which is exact for linear data can be defined on
any grid by taking the (constant) solution value in three arbitrarily chosen, but
preferably adjacent, cells (¢, j and k say, forming a triangle with anticlockwise

indexing of its vertices) and defining

__ Nz
N

for n, > ¢
ny
-

V(Aijk) = o (2.10)

otherwise ,

0

in which e &~ 107'° and n,, n, and n, are the components of the vector n normal

to the plane defined by the triangle ¢k in xyu-space given by

n = (P —Py) x(P; —Py), (2.11)
where
L
P.o=1 |- (2.12)
U

The vector © has been constructed in such a way that n, always has the same

sign as the area of Aijk, so the second option in (2.10) has been introduced to



deal with the possibility of A¢jk having a non-positive area. An example of such

a triangle is shaded in Figure 2.3.

Figure 2.3: A reconstruction triangle with negative area (shaded).

Selecting L in (2.9) to be the V operator of (2.10) leads to a second order ac-
curate method but doesn’t prohibit overshoots and undershoots at the midpoints
of the cell edges and therefore the scheme does not satisfy the monotonicity con-

dition. In order to impose monotonicity the gradient operator L must be defined

to be a ‘limited’ form of V.

2.1.1 Gradient Limiters

Previously constructed gradient limiters [2, 3] applied to the above scheme have

required

a) the construction of a gradient operator of the form (2.10) from which to

choose the (unlimited) reconstruction of the solution.
b) the limiting of the chosen gradient operator to impose monotonicity.

On a triangular grid the simplest approach, known as the Limited Central Dif-
ference (LCD) scheme, considers only 6(&123) (in the notation of Figure 2.1) in

step a) above. The limiting stage involves the calculation of

max (ur—ug,0)

if Top - [ > max (up — o, 0)

For-L
Oék < min ;Lk—EumO if FOk . Z < min (uk — ug, 0) (213)
k"
1 otherwise

for each edge k. The LCD limited gradient is then given by

L = aV(A123) = (min ozk) V(A123) . (2.14)

=1,2,

7



The Maximum Limited Gradient (MLG) scheme devised by Batten et al. [2]
improves on the LCD scheme by using the ideas of Durlofsky et al. [3] to create a
far more compressive limiter. The MLG scheme chooses its initial reconstruction

from the four gradient operators
V(A123), V(A023), V(AL03), V(A120) . (2.15)

Each of these is limited using the procedure described by (2.13) and (2.14), leading

to the limited gradient planes

LO == Oéo@(Ang), [_:1 == Oélﬁ(AOQ?)),
Ly = ayV(AL03), Ly = asV(AI120). (2.16)

The MLG limited gradient operator is then taken to be the L; of (2.16) with
the largest slope |[_:Z| The main disadvantage of this limiter is the extra expense
involved in computing and limiting four gradient planes rather than just one,
although it is significantly more accurate than the LCD scheme.

In one dimension the MLG limiter reduces to the well-known Superbee limiter
[8]. Note though that this two-dimensional generalisation does not depend con-
tinuously on the data. It is simple to construct a situation where the value of wug is
allowed to vary continuously (with uq, uz and us remaining fixed) but the limited
gradient operator in (2.16) varies discontinuously as the operator on which it is
based switches between the planes defined in (2.15). This is most significant close
to a steady state solution when the discontinuity may interfere with convergence
by causing limit cycling. The limiter of Durlofsky et al. [3] suffers from the same

problem.

It is worth commenting that steps a) and b) of the limiting procedure, as
described at the start of this section, can easily be extended to arbitrary polyg-
onal /polyhedral control volumes in two and three dimensions. This is useful if
general polygonal or hybrid grids are to be used, or even for highly distorted
quadrilateral grids on which the standard directionally split techniques give poor
accuracy.

On quadrilaterals, for example, an MLG-type limiter may be constructed in

essentially the same manner as for triangles, the main difference being in the

8
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Figure 2.4: The limiting planes as defined for a quadrilateral control volume.



selection of the gradient operators, ¢f. (2.14) and (2.15) in the first step of the
limiting. A grid cell now has four edge-neighbours and hence ten possible choices
for the gradient operator (all shown in Figure 2.4). For the sake of computational
speed not all of these operators would be considered. In particular, the two
triangles in Figure 2.4b) have no natural order to their vertices; this introduces
an ambiguity into the definition of negative areas and so it is natural to exclude
them from the algorithm. In general there are C} possible choices of gradient
plane for a shape with n edges/faces. The limiting procedure (2.16) can then
be applied as before to the chosen operators. This technique readily carries over
to general polygonal and polyhedral grids in two and three dimensions, even if

adaptive grid refinement creates hanging nodes.

2.1.2 A ‘Maximum Slope’ Limiter

Consider a triangular cell, as illustrated in Figure 2.1, and its three edge-neighbours.

Each of the gradient operators of (2.15) defines a direction

—

T = &k (2.17)
IV(Aijk)|

in which the reconstructed gradient is to be maximised subject to the creation of
no new extrema at the midpoints of the cell edges. The gradient operator which
is ultimately chosen by the MLG scheme is the plane from (2.15) which allows
the ‘steepest’ limited slope. However, there is only a finite number of gradient
planes to choose from, there is no reason why the algorithm should have picked
out the steepest monotonic reconstruction possible. Only this reconstruction will
lead to the most compressive limiter.

The monotonic linear reconstruction I with maximal gradient can be calcu-

lated in a cell 0 from the following simple constrained optimisation problem:
e Maximise |L| subject to

min (ug — up,0) < 7op - L < max (uy — ug,0) (2.18)

for k = 1,2,3, where o is the vector from the centroid of cell 0 to the

midpoint of the edge between cells 0 and k.
For clarity, this may be rewritten as

10



e Maximise f(z,y) = 2* + y* subject to
min (ug — o, 0) < (re)ok @+ (ry)ory < max (ux — ug,0) (2.19)

for k£ = 1,2,3. The desired gradient operator is then given by [ = (z,9)7.

o3

Figure 2.5: An example of a monotonicity region (shaded) - the black dot indicates

the position representing the steepest monotonic gradient plane.

The solution of this optimisation problem is illustrated in Figure 2.5. The
shaded area indicates the region within which f(x,y) satisfies the criteria (2.19),
from now on called the monotonicity region. Since the family of curves given by
flz,y) = constant defines a set of concentric circles then f(x,y) is maximised
at an intersection of the boundary edges of the monotonicity region. In the case
of the MLG limiter, four further constraints are added; f(x,y) is still maximised
but now it must not only satisfy (2.19) but also the resulting gradient operator
L must be parallel to one of (2.15). There are infinitely many ways in which the

limited gradient operator but no others will be discussed here.

11



For an arbitrary triangular grid and solution data there are at most ten distinct
intersections of the straight lines defined by the constraint inequalities (2.19),
including L=20 (when # = y = 0) which is optimal only when ug is a local
extremum. Generally there is a maximum of %n(n — 1)+ 1 possible solutions for
an n-sided polygon. Although more sophisticated techniques can be used, [ is
optimised here by calculating each feasible solution and choosing the appropriate
one. With a more complicated logical structure only one gradient operator need
be evaluated in each cell.

Although the optimisation problem proves to be relatively expensive to solve,
it need only be considered in cells where the initial reconstruction gives rise to
overshoots and undershoots. Furthermore, the limiter does not have to be applied
explicitly if the cell value ug is detected to be a local extremum a priori since then
L = 0. Hence the additional expense is only incurred in a small proportion of the
grid cells. In fact the implementation described below is significantly cheaper in
practice than the MLG algorithm.

It should also be noted that the new limiting procedure depends only on the
values of the solution in the edge-neighbours of a cell and not on the position of
their centroids, removing one aspect of grid dependence from the algorithm.

The Grid-Independent (GI) limiter on a triangular grid can be summarised

as follows:

o Calculate the gradient operator 6(&123) as in the LCD scheme and check

whether it creates any new local extrema at the edge midpoints.

— if it doesn’t, set L= 6(&123).

— otherwise calculate the monotonic gradient operator L with maximal

gradient from (2.19).

In fact all four gradient operators of the MLG limiter (2.15) could be checked
for monotonicity, but the small increase in compression is not worth the extra
computational expense (even though it would then reduce to the Superbee limiter
in one dimension).

As it stands, the gradient operators calculated by the above algorithm do

not depend continuously on the data. This can be corrected in the case when

12



only a single gradient operator is considered by constructing a transition function
which imposes a continuous change between the unlimited gradient operator Lo =
6(&123) and the optimal gradient operator Eopt calculated from (2.19). This
resulting gradient operator is taken to be

- l—max(ag,l —¢€), >

[_: = OéoLo + (Lopt — Oéo[_:o) 5 (220)

3
where 0 < e < 1 (typically e = 0.01) and «y is the limiting factor associated with

Ly as defined in (2.13). The important property of this operator is that

Eo when ag =1

L = (2.21)

—

Lopt when Qp = 1—e¢.
In practice, this additional restriction appears to be unnecessary for time-dependent

applications.

As with the MLG limiter, the GI limiter in its discontinuous form is easily
generalised to other polygonal shapes of control volume. For example, it can
be seen that on a two-dimensional quadrilateral grid where the control volumes
coincide with the grid cells the differences from the algorithm on triangles are
in the initial choice of gradient operators (¢f. Figure 2.4) and the inclusion of a
fourth monotonicity constraint in (2.18) and (2.19). Unfortunately, the search
for the optimal direction is complicated considerably by the addition of this ex-
tra equation. There are now 19 feasible solutions for the resulting optimisation
problem, each of which must be checked for its optimality. This is not straight-
forward, particularly on regular grids since the region satisfying the inequalities
often reduces to a straight line which can be difficult to detect. This problem

could not arise on a triangular grid.

2.2 A Directionally Split Limiter

On structured quadrilateral grids it is easy to construct a directionally split lim-
iter, e.g. in two dimensions a one-dimensional limiter is applied in two indepen-
dent directions determined by the grid. The Directionally Split (DS) limiting
procedure described in [1] is used here to construct an operator splitting method

to compare with the multidimensional limiters described above.

13



The DS limiter is similar in many ways to the slope limiters described above,
and the multidimensional gradient operators can be modified and limited so that
the resulting scheme is equivalent on rectangular grids. The gradient operators
are decoupled into components in the two grid directions and a separate value of
« is calculated in the manner of (2.13) (taking into account only the constraints

in the relevant grid directions) for each of the components, so

o oL,
L = ) (2.22)

ay Ly

The MLG-type limiting procedure calculates a single value of o which satisfies
a = min (o, ay) (2.23)

and is therefore far less compressive.

The type of modification given by (2.22) cannot be applied on grids where
successive cell centroids do not lie in a straight line, but then the DS approach
as described in [1] is not actually linearity preserving on such grids since the grid
‘directions’ become meaningless.

The GI approach is more flexible since it only requires a short calculation to
check whether new extrema have been created by the chosen gradient operators.
If so then the optimal gradient operator is constructed from (2.19) which, on
rectangular grids, is equivalent to the gradient operator derived from the split
approach above (2.22). Although the GI scheme is linearity preserving on any
mesh, the extra speed and in general higher compression of the DS scheme gives

it a considerable advantage on structured grids.

2.3 Boundaries

The limiting procedure is applied very simply at boundaries of the domain. In
step a) of the limiting procedure only those gradient operators which can be
constructed from centroids of control volumes within the domain are included
and the others are assumed to be zero. Also, only internal solution values are
considered in the search for new extrema in the reconstruction. On a triangular

grid this means that only a single gradient operator is constructed (and limited)

14



in each cell with just one boundary edge. The scheme therefore produces an exact
reconstruction of linear data on triangles except in cells with multiple boundary
edges. When periodic boundary conditions are used no special treatment of the
boundaries is needed.

On structured quadrilateral grids at least one gradient operator can always be
constructed in each cell, so the scheme reconstructs linear data exactly throughout

the domain.

2.4 Time Integration

Second order temporal accuracy may be obtained using a Runge-Kutta time-

stepping method such as that given by

—_— i3 At Ne r i3 g _)n i3 g _)n g
wo = up— - > [ (ug + o L, uf + 7o - L) -
k=1
1 At Ne o = o = .
ugth = 5 (ug—l-_o— sz (ﬂo-l-roxg'Lo, ﬂk-l-TkO'Lk) nk)
k=1
At

However, the cost of the reconstructions and the local Riemann solutions is pro-
hibitively expensive, so the following approximation to the above update scheme

[10] is used instead:

— n At e r n = _)TL =
Uy = UO_WZf(Uo‘|‘TOk‘Lo)‘nk
k=1
n+1 n At e 7 — - n — N Zn o
ug = uo—VZf(uo—l—rok-Lo,uk+rk0-Lk) STy (2.25)
k=1

[t has been shown [2] that on triangular grids any limiter of the type described

in this report is monotonic for a restriction on the time-step within each cell given

by

v

At < (2.26)

3maxy | X - 7]
It can also be shown easily that the corresponding restriction necessary for mono-

tonicity to be satisfied on quadrilateral grids is

v

At < (2.27)

Amax | X - 7t
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In both of the above limits the maximum is taken over the adjacent cells.
The global time-step restriction used with the DS limited scheme is defined
to be

T3]

2 (c—l— Vu? + v2)

where 7;; is the vector joining the centroid of cell ¢ to the centroid of cell j, an

At S minm (228)

y
edge-neighbour of cell ¢.

2.5 Results

Numerical experiments have been carried out to test the behaviour of all of the
schemes described in this report. The first test presented here is the advection of

an initial profile given by the double sine wave function
u = sin(27x)sin(27y) , (2.29)

with velocity X = (1,1)T over the domain [0,1] x [0,1]. This problem has bheen
solved on three types of grid each of which is illustrated in Figure 2.6. Periodic

boundary conditions are applied.

A B C

Figure 2.6: The three grid types used for the numerical experiments.

Error estimates in the L, norm for the solution when ¢ = 0.1 are shown in
Figure 2.7. The errors in the Ly and L. norms behave in a similar manner for
all of the grids used. In all of the numerical experiments the ratio dt/dx = 0.04
where dz is the length of any horizontal grid edge in Figure 2.6. The first order
scheme is unsurprisingly the least accurate. Of the second order schemes the
MLG limiter gives easily the most accurate results on grid A and is the only one
of the schemes on triangles that approaches second order accuracy (roughly 1.88
at the finest grid level), better even than the dimensionally split quadrilateral

scheme for which errors are also shown in the figure. It should be noted that for
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a precise comparison in terms of computational effort (i.e. number of cells rather
than grid size) the graph for the quadrilateral grid should be shifted 0.15 to the
right. Even then the MLG scheme is better. On the coarsest grid the GI scheme
is best but it rapidly deteriorates until it is only slightly more accurate than the
LCD scheme.

On grid B all of the linear reconstruction schemes on triangles give consider-
ably worse results than on grid A, in particular the MLG scheme, which is now
the worst on the finest grids. It is now the GI scheme which is the most accu-
rate, although the results are nowhere near the quality of those obtained on the
quadrilateral grids.

The advantage of using the GI scheme is clarified by considering a second
test case. It involves the circular advection of the ‘cone’, given by the initial

conditions (when t = 0)

cos*(2wr) for r <0.25
u = (2.30)

0 otherwise

where r? = (z + 0.5)* 4+ y?, with velocity X = (—27y, 27rz)T around the domain
[—1,1] x [—1,1], the solution being continually set to zero at each of the inflow
boundaries. The initial profile should be advected in a circle without change of
shape until it returns to its original position when ¢ = 1.0.

Four solution profiles obtained on a 64 x 64 type B grid are shown in Figures
2.8 and 2.9. Of the four, the GI scheme clearly retains the peak best, followed
by the MLG, LCD and first order schemes in decreasing order of accuracy. The
errors in the solutions are shown in Table 1, along with computing times, and
these clearly show the GI scheme to be the most accurate for this test case. The
table also shows that the GI scheme, although slower than the LCD scheme, is
about 12% faster than the MLG method.

3 Systems of Equations

The extension of these cell centred finite volume schemes to nonlinear systems of

equations is straightforward. The conservative equations take the general form
U+ F. 4G =0, (3.1)

17
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Figure 2.7: L, errors for the double sine wave test case.
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Figure 2.8: Solutions for the rotating cone test case.
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Figure 2.9: Solutions for the rotating cone test case.

20



Scheme Ly L, L Peak value | Time (s)
First order | 0.0152 | 0.0621 | 0.7161 0.284 94
LCD 0.0094 | 0.0431 | 0.5358 0.479 120
MLG 0.0055 | 0.0281 | 0.3855 0.617 154
GI 0.0029 | 0.0152 | 0.2009 0.887 137

Table 1: Error norms of solutions to the rotating cone problem at ¢ = 1.0 on a

64 x 64 type B grid.

in which U is the vector of conserved variables and F, G are the conservative
flux vectors. These are defined explicitly for the shallow water equations and the
Euler equations in Appendices A and B respectively.

Integrating the equations (3.1) over a control volume ) (taken as before to be

a grid cell) and applying the divergence theorem to the flux integral results in

//QQt dxdy‘Fng(E, G)-dii =0, (3.2)

where 77 again represents an outward pointing normal to the boundary. Approx-
imating the boundary integral and defining U, to be the average value of U over

the control volume ) leads to the finite volume discretisation

Ne
%o - —%;(E,Q*)-ﬁk, (3.3)
where V is the area of the control volume, N, is the number of edges of the
control volume and 7, is the outward pointing normal to the k" edge scaled by
its length.
The scalar numerical flux function of (2.9) is given by the generalisation of

(2.6) to systems of equations, namely

(I Up, Up), G*(Uyp, Ug)) - ix = 5 (I, Gr) + (Ep, GR)) - i
“LAB) | (Up—UL), (34)

in which A = % and B = % are the flux Jacobians. The construction of A and
B, the conservative approximations to the Jacobian matrices, and subsequently

the numerical flux at the midpoint of the cell edge follows the technique suggested
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by Roe [7]. The evolution of the discontinuous approximation to the solution
is modelled by constructing a series of approximate Riemann problems at the
edge midpoints with left and right states Uy and Up respectively (the internal
and external states relative to the control volume). Each Riemann problem is
solved by decomposing the flux difference across the edge into its characteristic

components, which results in a numerical flux function for edge k given by

(E*(QLagR)vg*(QngR)) ' ﬁk = % ((EngL) + (ERng)) ) ﬁk
—5 T oIV (3.5)

2

Here N, is the number of components (or ‘waves’) in the decomposition, the
symbol * represents the Roe average value at the discontinuity (which is con-
structed so as to ensure that the linearised decomposition is conservative), o’ is
a wave ‘strength’ and A and r’, respectively the eigenvalues and eigenvectors of
the matrix (A, B)- 7y, represent the speed of the wave and the transformation of
a perturbation of the characteristic variables into a perturbation of the conserva-
tive variables. Details of the exact values of these averages for the shallow water
equations and the Euler equations are contained in Appendices A and B. The
substitution of (3.5) into (3.3) together with the application of an appropriate

time-stepping scheme gives the final algorithm.

One question remains: to which set of independent variables should the lim-
iting procedures of Section 2.1 be applied? This is important because the choice
affects the values of Uy, Ug, F'y and Fgin (3.4) and (3.5). The simplest approach
is to apply the limiting to the conservative variables in a field by field manner
(taking appropriate measures to ensure that negative pressures are not created
by the reconstruction). It is also straightforward to limit the primitive variables
via a simple transformation but, particularly since a characteristic decomposition
is used in the calculation of the flux function (3.5), limiting the characteristic
variables W appears to be more appropriate.

Unfortunately, unlike the primitive variables, the characteristic variables W
are related to the conservative variables in terms of differences, that is

JE—

AW = a_mAU

ou ~U (3.6)
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so the limiting procedure must be recast in the same terms. Hence the limiting
is carried out not on the values of the reconstructed solution at the midpoints of
the cell edges, but on the differences between these values and the solution at the
cell centroid.
The procedure defined in Section 2.1 is modified by redefining the vector P,
in (2.12) to be
L
P, = Y ) (3.7)
Aw,
where Aw, = w, — wg and w is a component of the vector W of characteristic
variables. Each value of Aw is calculated using the formula (3.6) in which the

approximate Jacobian is evaluated at an appropriate average state, taken

EE

here to be the local approximation %(QO + U,) at the relevant grid edge.

The limiting is applied to each component of AW in turn and the correspond-
ing values of AU are retrieved by inverting (3.6). Therefore, on the occasions
when no limiting is applied within a cell, the original values of AU are obtained.

It is unfortunate that advantage cannot be taken of the fact that the wave
strengths in (3.5) are in fact differences in the characteristic variables, i.e. a; =
AW, but there appears to be no way of evaluating the Roe average states to give
a conservative algorithm. Therefore, even though the limiting is applied to the
characteristic variables, the conservative variables must be calculated before the

approximate Riemann problems are constructed and solved.

3.1 Boundary Conditions

Simple characteristic boundary conditions are applied, in which the flux at a
boundary edge is evaluated directly using information from within the boundary
cell to supplement the imposed boundary values. The physical conditions applied
at a given edge correspond to the positive eigenvalues of the matrix C = A cos 0+
Bsin 0, where the conservative flux Jacobian matrices A and B are given in the
appendices for the shallow water and Euler equations.

At a freestream boundary four possibilities pertain: (a) supercritical inflow,

where all four eigenvalues are positive and the boundary flux is determined com-
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pletely by the imposed solution values, (b) supercritical outflow, where no eigen-
value is positive and the flux is calculated from internal solution values, (c¢) sub-
critical inflow, where one eigenvalue is negative whose corresponding Riemann
invariant is given its internal value and everything else is imposed, and finally
(d) subcritical outflow, for which one eigenvalue is positive and the value of the
associated Riemann invariant is imposed. At a solid wall the normal velocity
component is set to zero while the rest of the information required to calculate
the flux is taken from the interior of the domain.

This crude treatment of the boundaries has proved to be adequate for many of
the cases considered, but in the future a ghost cell approach should be considered

to improve the modelling.

3.2 Results

The first test case considered here is that of shallow water flow for a partial dam
break problem [4]. The computational domain consists of a 200m x 200m basin
bisected by a dam. When ¢ = 0.0s a break in the dam appears between 95m and
170m from one end. Initially 2 = 10m on one side and &~ = 5m on the other,
while the water has zero velocity everywhere. The 3688 cell grid on which the
calculations were carried out is shown in Figure 3.1. Each of the boundaries is
treated as a solid wall except those on the left and right.

Figures 3.2-3.3 show the surface elevation of the water at ¢ = 7.2s for four
schemes. The first order scheme is clearly the most diffusive of those shown but
the other three give very similar results, particularly in the sharpness with which
they capture the front of water moving downstream. Small differences appear in
the minimum value of the depth of the water which occurs just downstream of
the dam close to the edges of the gap where the flow is highly rotational. This is
indicated by the slight differences in the scales on the vertical axes of the graphs.
It is the MLG scheme which gives the lowest minimum while the LCD and GI
schemes give roughly similar results.

Figure 3.4 shows the result obtained when the GI limiter is applied to the
characteristic variables instead of the conservative variables. It is immediately

obvious that the characteristic limiting is considerably more diffusive and there
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Figure 3.1: The grid for the partial dam break test case.

seems little reason to apply it.

A second dam break test case has been compared with experimental results
[]. This time a reservoir of water 0.2m deep is released into an L-shaped channel
with initial depth of 0.01m. The velocity of the flow is zero everywhere when
t = 0.0s. Bed friction effects are also modelled in this test case. A Manning
roughness coefficient of 0.0095 was used and the appropriate source terms were
treated in a simple node-by-node manner as described in [6]. The flow depth is
sampled at the six points shown in Figure 3.5 at regular intervals until £ = 41.0s.
The figure also shows the geometry of the test case and the 2240 cell grid on
which the solution has been approximated. Each boundary is treated as a solid
wall except the one in the top right hand corner at which a supercritical outflow
condition is applied. It should be noted that it was not possible to attain the
exact initial conditions in the experiment, so the initial data for points P5 and
P6 differs slightly from those of the numerical results.

The experimental results are pictures together with results obtained from the
first order and LCD schemes. The boundary conditions proved to be inadequate

for the more compressive limiters and the calculations blew up when the initial
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Figure 3.5: The grid and geometry for the dam break with L-shaped channel test

case.
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wave front reached the corner. The agreement with experimental data is good for
both schemes at P1. At P2 the reflected wave front is captured more sharply and
more accurately by the LCD scheme although neither agrees closely with experi-
ment when the wave front first passes the point. The two numerical solutions are
again in good agreement at P3 and P4, with the second order scheme capturing
the fronts slightly more sharply. At P5 the LCD scheme gives a considerably
better approximation to the experimental data while at P6 neither scheme gives
particularly good agreement.

These schemes have also been applied to the Euler equations. One standard
test case which has been used is that of Mach 3 flow over a forward facing step
in a tunnel [11]. The tunnel is 3 units long and 1 unit wide and a step of height
0.2 is located 0.6 units into the tunnel. Initially the flow has density 1.4, pressure
1.0 and velocity 3.0 from left to right in Figure 3.7, which also shows the 2286
cell grid on which the problem was approximated. Both freestream boundaries
have supercritical boundary conditions applied at them. The numerical solution
obtained from the LCD scheme when ¢ = 4.0 is shown in Figure 3.8. It compares
well with each of the other second order schemes illustrated in [11] on grids with
similar numbers of cells, although the Mach stem on the step indicates that the
modelling at the top corner of the step is more diffusive than desired. As in the
previous test case the boundary conditions were not sufficiently robust to achieve

solutions for the MLG or GI schemes.

4 Conclusions

In this report the construction of second order accurate monotonic cell centre
finite volume schemes on triangular grids has been discussed. The methods are
based on MUSCL-type schemes [10] in two dimensions in which a linear recon-
struction of the solution is created within each cell from local data, the gradient
of which is limited to impose monotonicity on the approximation. The methods
have been tested on the scalar advection equation and then extended to nonlinear
systems of equations via Roe’s approximate Riemann solver. The extension of

these schemes to general polygonal grids and three dimensions is also discussed
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Figure 3.7: The grid for the forward facing step test case.

Figure 3.8: Density contours for the forward facing step test case.
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briefly.

It has been shown that the family of monotonicity enforcing limiters can be
completely defined by constraints applied at the midpoints of the edges of the
cells. These constraints define a region within which every valid limiter lies.
Furthermore, it follows that a limiter can be constructed which gives the maxi-
mum possible slope for the reconstruction. It has the property of removing the
dependence of the reconstruction on the geometry of the surrounding grid cells
but, although it is considerably cheaper than the most accurate of the previously
constructed limiters and preserves peaks far better, the general quality of the
solutions is worse. However, given the monotonicity region it should be possible

to construct a more accurate limiter.
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A The Shallow Water Equations

The shallow water equations depend on the conservative variables and fluxes given

h hu hv
U= |hu |, E=| 2+ |, &= huv . (A
hv huv hv? 4+ %

where h is the depth of the flow, u and v are the x- and y-velocities and ¢ is the

acceleration due to gravity, and result in the following flux Jacobians:

0 1 0 0 0 1
or oG
A - _— — 2,2 B e — _
U c u® 2u 0 , U uv v ou ,
—Uv voou =02 0 2o
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where ¢ = /gh is the gravity wave speed.

In Roe’s approximate Riemann solver the eigenvalues and eigenvectors of the

matrix
0 Ny Ny
(A, B)-n = (? —u?)ny —uon, 2un, —vn, uny, (A.3)
—uvng + (2 —v?)n, VN un, + 2vn,
are

A = Ung +0ny+¢, Ay = any+0n,, A3 = Ung+on, — ¢, (A4)

and
1 0 1
= | atén, |5 2= | —ény, | > 3= | u—2cn, | (A.5)
U+ cny CNy, U — Cny

respectively, and the corresponding wave strengths in (3.5) are given by

G = % + % (A(hu)n, + A(hv)n, — (ung + ony)Ah)

Gy = % ((A(hv) — 0AR)n, — (A(hu) — aAh) ny)

. Ah 1 . N

G = =52 (A(hu)n, + A(hv)n, — (ung + ony)AR) (A.6)

in which the Roe average states are

o urvhrtuvhy o orvhrtorvhn o Jg(hr+ i)

VitV 0 VEr+vh 2
(A.T)

and the difference operator is given by
A= ()r—=()r- (A.8)

In two dimensions the subscripts -5, and -g represent the interior and exterior

edge midpoint values relative to the cell under consideration.
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B The Euler Equations

The Euler equations depend on the conservative variables and fluxes given by

P pu pu
U + u? UV
v=|"1 =" a=] " . B
pv puv p+ pv2
€ u(e + p) v(e+p)

where p is the density of the flow, v and v are the - and y-velocities, p is pressure
and e is the total energy, related to the other variables by an equation of state

which, for a perfect gas, is

1
e = 7?%1 + §p(u2 + v2) , (B.2)

and result in the following flux Jacobians:

0 1 0 0
A Z OF _ | el - B=7u  (AI=7yp y-1
ou —uv v U 0
lu(u? +0?) —uH w*(1—7)+H (1—7y)uww qu
(B.3)
and
0 0 1 0
— 0
B — 6_Q _ Uv v U 7
o o) —v? (I-qu By -1
%v(uz—l—vz) —vH (1 —7)uv v*(1—y)+H v
(B.4)

where H = %6 — %(u2 + v?) is the total enthalpy.

In Roe’s approximate Riemann solver the eigenvalues and eigenvectors of the

matrix
(A,B)-7 = An, +Bn, (B.5)
are
A = ang+on,+¢, Ay = ung +on,,
A3 = Ung +0n,, Ay = Ung+0ony, —¢, (B.6)
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and

1
_ U+ Cny
N = %
0+ Cny
H + &(in, + tn,)
1
u
rs = » Iy =
v
s(u? +0?)

0
. —Ny
EZ = p 9
Ng
—un, + vng
1
5 U — Cny
2% o 7 (B.7)
U — €Ny

H — ¢(an, + ony)

respectively, and the corresponding wave strengths in (3.5) are given by a; = AW;

for y = 1,2,3,4, where

AW = LAU (B.8)
and
B P e kSl W G D P o e | R G
o 2pc o pc o pc pc
- . i o 0
1 — (7—1)2(?22‘”]2) (W;l)ﬂ (7;1)77 (W~—21)
Bnatny | DR e 0ZDE e G207 (Go1)
o 2pc o pc o pc pc
(B.9)

The Roe averages @, 0, ¢ and H are evaluated consistently from the average values

of the parameter vector variables given by

where
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Z = §(ZL+ZR) )

(B.10)
1
! (B.11)
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