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Abstract

Some techniques for improving the accuracy of multidimensional up�

wind �uctuation distribution schemes for the scalar advection equation are

compared� One involves the construction of a consistent Petrov�Galerkin

nite element scheme which is equivalent to the �uctuation distribution

scheme when mass�lumping is applied� Another uses a predictor�corrector

technique to improve the approximation� In both cases monotonicity is im�

posed using a �ux�corrected transport approach� A third method is then

described which combines the second order accurate Lax�Wendro� scheme

with the PSI scheme via a �uctuation redistribution step which ensures

monotonicity �and which is a generalisation of the FCT approach for �uc�

tuation distribution schemes�� Furthermore� the concept of a distribution

point is introduced� leading to a �preferred direction� for the limiting proce�

dure� Extensive numerical results are presented for each of these schemes�
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� Introduction

Over the last ten years a family of cell vertex �nite volume methods for the so�

lution of the two�dimensional scalar advection equation has evolved known as

multidimensional upwind �uctuation distribution schemes ���	 For the approxi�

mation of steady state �ows on unstructured triangular grids these have reached

a degree of maturity whereby the multidimensional schemes reproduce most of

the advantages of upwind schemes in one dimension
 smooth� second order ac�

curate solutions and rapid convergence to the steady state without the necessity

for additional arti�cial viscosity	

Unfortunately� all of the current upwind distribution schemes are only �rst or�

der accurate for time�dependent �ows	 Recently� this problem has been addressed

with some success in ��� in which the schemes have been equated with upwind

�nite element algorithms� but only at the expense of inverting a full mass matrix	

An alternative method� which takes the form of a predictor�corrector scheme� will

be described for improving the accuracy of the approach for approximating un�

steady solutions of the scalar advection equation	 Both of these techniques lead

to spurious oscillations in the solution close to steep gradients unless some form

of limiting procedure is applied	 Hence they are combined with a �ux�corrected

transport technique �� to ensure monotonicity	

In this report a more sophisticated approach to enforcing monotonicity �of

which �ux�corrected transport is a special case� will be described which can be

applied to any cell vertex �uctuation distribution scheme� such as the second order

accurate Lax�Wendro� scheme ���	 The new method consists of a �uctuation

redistribution step in which the distribution coe�cients are altered to avoid the

creation of new extrema by the nodal updates whilst retaining conservation	

The concept of a distribution point will be described and related to mono�

tonicity conditions derived from the local solution	 Furthermore� the equivalent

equation will be used to construct a preferred direction for the movement of the

distribution when the redistribution is applied	 Extensive numerical results will

then be presented to demonstrate the e�ectiveness of the new techniques	

In Section � the multidimensional upwind schemes currently used for solv�
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ing steady state problems are described	 This is followed in Sections � and �

by descriptions of the consistent �nite element method proposed in ��� and a

predictor�corrector approach based on MacCormack�s scheme	 The next section

describes the �ux�corrected transport technique for imposing monotonicity on

�nite element and �uctuation distribution schemes while in Section � a new ap�

proach is suggested based on the notion of �uctuation redistribution	 Results

are presented for two time�dependent scalar advection test cases in Section � and

some conclusions are drawn at the end	

� A Steady State Scheme

Consider the two�dimensional scalar advection equation�

ut � fx � gy � � or ut � �� � �ru � � � �����

where �� �
�
�f
�u
� �g
�u

�T
de�nes the advection velocity	 The �uctuation associated

with this equation is the cell�based quantity given by

� � �
Z Z

�

�� � �ru dxdy

�
I
��

u�� � d�n � ��	��

where �n represents the inward pointing normal to the boundary of the cell	 In

many cases � can be evaluated exactly under an appropriate �conservative� lin�

earisation of the equation ��	�� ���� in which case it can be written

� � �S�
b�� �d�ru � �����

where S� is the cell area and the symbol b� indicates an appropriately linearised

quantity	 For linear advection �� is constant so a conservative linearisation can be

constructed simply by assuming that u varies linearly over each triangle with the

discrete solution values stored at the nodes and continuity across the edges ���	

The numerical scheme is constructed from a discretisation of the integrated

form of ��	�� by evaluating the quantity � of ��	�� within each cell and then

distributing it to the nodes of the grid	 Combining this technique with a simple

forward Euler discretisation of the time derivative leads to an iterative update of
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the nodal solution values which can be written

un��i � uni �
�t

Si

X
��i

�j
i�j � �����

where Si is the area of the median dual cell for node i �one third of the total

area of the triangles with a vertex at i�� �j
i is the distribution coe�cient which

indicates the appropriate proportion of the �uctuation �j to be sent from cell j

to node i� and ��i represents the set of cells with vertices at node i	

��� The PSI Scheme

The distribution coe�cients �j
i are chosen so that the resulting scheme is con�

servative� linearity preserving �second order accurate at the steady state� and

positive �monotonic�	 The word monotonic is slightly ambiguous when used in a

two�dimensional context but will be used from now on to denote a scheme which

doesn�t create spurious extrema at the new time level	

The PSI scheme ��� has all of the above properties and is de�ned as follows


�� For each triangle locate the downstream vertices� i�e� those for which

b�� � �ni � � � ����

where �ni is the inward pointing normal to the edge opposite vertex i	

�a� If a triangle has a single downstream vertex� node i say� then that node

receives the whole �uctuation� so

ui � ui �
�t

Si
� � �����

while the values of u at the other two vertices remain unchanged	

�b� Otherwise� the triangle has two downstream vertices� i and j say� and the

�uctuation is divided between these two nodes so that

ui � ui �
�t

Si
��i �

uj � uj �
�t

Sj
��j � ��	��

where ��i � ��j � �	





The �uctuations in ��	�� are de�ned as the limited quantities�

��i � �i � L��i���j� �

��j � �j � L��j���i� � ��	��

where

�i � �
�

�

b�� � �ni�ui � uk� � �j � �
�

�

b�� � �nj�uj � uk� � �����

in which k denotes the remaining �upstream� vertex of the triangle and L

denotes the minmod limiter function�

L�x� y� �
�

�
�� � sgn�xy��

�

�
�sgn�x� � sgn�y��min�jxj� jyj� � ������

The scheme is globally positive and therefore stable� the appropriate restriction

on the time�step being

�t �
SiP

j���i
max

�
�� �

�

c��j � �nji� � ������

�� ��

Upwind Lax�Wendro�

� nodes

� nodes

� nodes

� nodes

Figure �	�
 The stencils of the PSI scheme and the Lax�Wendro� scheme	

The above algorithm is second order accurate only at the steady state	 This

is not surprising since the limiter in step b� above is taking the contributions �i

and �j ��	�� due to the �rst order N scheme ��� and redistributing the �uctuation

between the two downstream vertices �along the out�ow edge� which� in some

sense� is giving second order accuracy in the cross�stream direction	 The scheme

is only �rst order accurate in the streamwise direction �in fact on a regular grid

with edges aligned with the �ow it reduces to the one�dimensional �rst order

upwind scheme� but at the steady state this is irrelevant because the solution
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is constant parallel to the streamlines	 This is illustrated further in Figure �	�

which shows the stencil of the upwind scheme and this has only two nodes in the

streamwise direction but three for cross�ow	

In the following sections the PSI scheme will be modi�ed to improve its ac�

curacy for approximating time varying solutions of the two�dimensional scalar

advection equation on triangular grids	

��� The Lax�Wendro� Distribution Scheme

The Lax�Wendro� scheme ��� does not have the restricted stencil of the PSI

scheme and this allows it to attain second order accuracy	 In fact it is the unique

single step second order accurate �uctuation distribution scheme on triangles with

a compact stencil �as in Figure �	��	 The distribution coe�cients in ��	�� which

lead to this scheme are

�j
i �

�

�
�

�t

�S�j

�� � �nji � ������

where S�j
is the area of the jth cell and �nji is the scaled inward pointing normal

to the edge of triangle j opposite the vertex at node i	 The limit on the time�step

at a node i for the stability of this scheme is taken to be

�t � � min
j���i

�� S�j

maxl������
�
j�� � �njl j

�
�A � ������

where l covers the vertices of each cell in the local patch surrounding the node	

��� Area weighting of Nodal Updates

The accuracy of low order �uctuation distribution schemes �such as PSI� can be

improved slightly by altering the weighting of the nodal updates in a manner

which ensures that linear initial data on an arbitrary grid remains linear after

each time�step ���	

Given linear data� ��� � �ru� is constant throughout the domain so the general

nodal update ��	�� takes the form

un��i � uni �
�t

Si

X
��i

�j
iS�j

K � ������
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where K � ��� � �ru	 Therefore� replacing Si in ��	��� by
P
��i

�j
iS�j

gives the

same increment at each node and hence the data remains linear at the new time

level	 The resulting nodal update is

un��i � uni �
�tP

��i
�j
iS�j

X
��i

�j
i�j � �����

Note that this modi�cation has no e�ect on the conservative nature of the dis�

tribution scheme	 In fact� on regular grids in which six triangles surround each

interior node the two schemes ��	�� and ��	��� are the same	 It can also be shown

that the area weighting of ��	��� leaves the Lax�Wendro� scheme unaltered	

� The Finite Element Approach

Any �uctuation distribution scheme� such as the PSI scheme described above� can

be equated with a mass�lumped Petrov�Galerkin �nite element scheme� and in

one dimension it is well known that using a consistent �nite element formulation

generally leads to a signi�cant increase in spatial accuracy over the corresponding

mass�lumped scheme	 For example� applying a consistent mass matrix to the �rst

order upwind scheme increases its spatial accuracy to third order in one dimension

���� so a similar improvement might be hoped for in the two�dimensional case	

In the previous section it was assumed that the approximate solution u was

continuous and varied linearly over each triangle with the discrete values being

stored at the nodes	 In �nite element terms this means that the solution can be

written

u�x� y� t� �
NnX
i��

ui�t�	i�x� y� � �����

where Nn is the number of grid nodes and 	i�x� y� are the standard linear trial

functions	 It remains to choose the test functions so that the mass�lumped scheme

is equivalent to the chosen �uctuation distribution scheme	

In ��� an SUPG�type test function is adopted	 This takes the form


i � 	i �
X
��i

�j
i �j � �����

where �j takes a value of � on cell j and zero elsewhere� and �j
i are coe�cients

corresponding to the contribution of cell j to node i and are yet to be determined	
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Forcing the equivalence of the mass�lumped Petrov�Galerkin scheme to the

�uctuation distribution scheme ��	�� requires that the test functions 
i should be

chosen to satisfy

�
Z Z

�j


i
�� � �ru dxdy � �j

i�j � �����

where �j
i are the distribution coe�cients of ��	��	 Combining this with the fact

that the �uctuation is given by

�j � �
Z Z

�j

�� � �ru dxdy � �����

implies that the coe�cients in ��	�� are de�ned by

�j
i � �j

i �
�

�j

Z Z
�j

	i �� � �ru dxdy � ����

From ��	�� and ��	� it can be seen that a pure Galerkin �nite element dis�

cretisation with linear test and trial functions �
i � 	i� leads straightforwardly

to �j
i � � and a distribution coe�cient for the equivalent �nite volume scheme of

the form

��j
i �G �

�

�j

Z Z
�j

	i �� � �ru dxdy � �����

Thus� ��	� implies that the general form of the test functions is given by


i � 	i �
X
��i

��j
i � ��j

i �G��j � �����

where the �j
i are the distribution coe�cients pertaining to the chosen �uctuation

distribution scheme ���	

The use of piecewise linear trial and test functions means that the �nite ele�

ment integrals are easy to evaluate	 In particular ��	�� becomes

��j
i �G �

�

�
� �����

and consequently


i � 	i �
X
��i

�
�j
i �

�

�

�
�j � �����

The consistent mass matrix for this scheme can now be assembled from the

individual element contributions which take the form

Mk � fmi�jgk �
Z Z

�k


i 	j dxdy � ������

�



in which i and j represent global node indices and k is the cell index	 The nonzero

components are easily calculated to be

Mk �
S�k

�

�BBBBB�
�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�

�
� �k

� �
�

�

�CCCCCA � ������

where �k
i is the distribution coe�cient associated with the ith vertex of the kth

cell� so the assembled mass matrix is given by

M � fmi�jg �
NcX
k��

Mk � ������

where Nc is the number of grid cells	 The scheme therefore takes the form

NnX
j��

mi�j
duj
dt

� �
X
��i

�k
i �k for i � �� ���� Nn � ������

where Nn is the number of grid nodes	

The mass matrix M is not symmetric so in the experiments which follow its

inversion is carried out using the GMRES���� algorithm� which is described in

detail in ���� ���	 The right hand side of ��	��� is precisely that of the �uctuation

distribution approach and mass�lumping leads to a scheme of the form

Si
dui
dt

� �
X
��i

�k
i �k for i � �� ���� Nn � ������

so combining this with a forward Euler time discretisation is equivalent to ��	��	

��� High Order Time�Accuracy

Second order accuracy in time is achieved using the implicit discretisation ����
M

�t
� J

	
�Un�� � Un� � Rn � �����

in which M is the assembled mass matrix� U is the vector of nodal variables and

R is the vector of nodal residuals �i�e� the right hand side of ��	����	 J � �R
�U

is

the linearised Jacobian and may be evaluated numerically using

�Ri�U
n�

�Un
j

�
Ri�U

n � ��j��Ri�U
n�

�
� ������

��



where �j is the vector of zeros with � in the jth entry and � is a small parameter

�taken here to be ������	

When  � � in ��	�� the temporal discretisation is �rst order �forward Euler�	

Second order accuracy is achieved by choosing  � �

�
which gives a Crank�Nicolson

algorithm	 Note that the matrix
�
M

	t
� J

�
in ��	�� is generally no more expen�

sive to invert than the mass matrix on its own� so implicit time�stepping can

be used to allow larger time�steps to be taken with a negligible increase in the

cost	 In practice though� it has proved to be di�cult to signi�cantly increase the

time�step without a dramatic loss of accuracy in the solution	

� A Predictor�Corrector Approach

A second technique which has been widely used in one dimension to create

schemes with high order accuracy is the predictor�corrector approach	 This has

the advantage over the consistent �nite element scheme in that no matrix inver�

sion is necessary	

The predictor�corrector approach is demonstrated simply in one dimension by

MacCormack�s scheme ��� for the scalar advection equation�

ut � fx � � � �����

The �rst �predictor� step of the algorithm calculates and stores the update due

to the standard �rst order upwind scheme� which for �f
�u

� � is given by

ui � uni �
�t

�x
�fni � fni���

� uni �
�t

�x
�i���� � ��	��

where � represents the one�dimensional �uctuation	

The corrector step is applied to cancel out the leading order error terms in

the �rst order approximation of the predictor step	 One way to achieve this is to

take a backward space di�erence given by

ui � ui �
�t

�x
�fi�� � fi�

� ui �
�t

�x
�i���� � ��	��

��



where f � f�u�� and then to average the two updates� so that the �nal scheme

takes the form

un��i �
�

�
�ui � ui�

� uni �
�t

��x
��fni � fni��� � �fi�� � fi��

� uni �
�t

��x
��i���� � �i����� � ��	��

In the case of linear advection� f � �u where � is a constant and so on a

uniform grid one can de�ne � � �	t
	x

so that ��	�� becomes

un��i � uni �
�

�
���� ���uni�� � uni ��

�

�
��� � ���uni � uni���

� uni �
�t

�x

�
�

�
��� ���i���� �

�

�
�� � ���i����

�
� ��	�

which is precisely the Lax�Wendro� scheme written in �nite di�erence and �uc�

tuation distribution form respectively	

Equivalently� the corrector stage ��	�� can be constructed from a reversal of

both the temporal and spatial discretisations such that

ui � ui �
�t

�x
�fi�� � fi� � �����

which is very similar to ��	�� and is equivalent to upwinding backwards in time	

This approximation provides a correction to the predicted update which leads to

a scheme of the form

un��i � ui �
�

�
�uni � ui� � �����

cf� ��	��	 As before this reduces to the Lax�Wendro� scheme ��	� for linear

advection on a uniform grid	

Now consider the multidimensional case	 The predictor step can be any

�preferably monotonic� �uctuation distribution scheme�

Si�ui � uni � � �t
X
��i

�j
i�j � �����

so here it is chosen to be the PSI scheme described in Section �	 The corresponding

backward space di�erence is easily obtained by reversing the sign of
b�� in the

calculation of the distribution coe�cients �j
i so that

Si�ui � uni � � �t
X
��i

�j
i�j � �����

��



and taking the average of the two updates gives

un��i �
�

�
�ui � ui�

� uni �
�t

�Si

X
��i

�
�j
i�j � �j

i�j
�
� ��	���

If the corrector step is thought of in terms of reversing the temporal discretisation

then the second stage becomes

Si�ui � ui� � �t
X
��i

�j
i�j � ������

and� as in one dimension� it leads to an equivalent update of

un��i � ui �
�

�
�uni � ui� � ������

The similarity of the predictor�corrector scheme to the two�dimensional Lax�

Wendro� scheme can be illustrated by considering some simple examples of linear

advection on regular grids such as those shown in Figure �	�	

�

�

�

� �

�

�
�

�

� �

�

�

�

ua

ub

uc

�� ��

dx

�ru

Figure �	�
 Examples of the equivalence of the predictor�corrector method with

a Lax�Wendro� scheme	

In the �rst case the data is arbitrary but the advection velocity is aligned with

one set of grid edges	 Simple analysis shows that the predictor�corrector update

for the central node is given by

un��i � uni �
�

�
��� � ���un
 � un� ��

�

�
��� � ���un� � un�� � ������

which is simply a one�dimensional Lax�Wendro� scheme where

� �
�� � ��n�� � �n����t

�S�
�

j��j�t

dx
� ������

in which dx is the distance between nodes � and � and S� is the area associated

with the central node	

��



The second example shown in Figure �	� uses data whose gradient is perpen�

dicular to one set of grid edges but the advection velocity is now arbitrary	 The

predictor�corrector scheme again reduces to a Lax�Wendro� style update� this

time taking the form

un��i � uni �
�

�
��� � ���unc � unb ��

�

�
��� � ���unb � una� � �����

where now

� �
�� � �n���t

S�
�

j��jcos�t

dx
� ������

and  is the angle between �� and �ru	 In this case the two�dimensional Lax�

Wendro� scheme of ��	���� also reduces to ��	�� while each of the fully upwind

schemes leads to a form of �rst order upwinding� i�e�

un��i � uni � ��unb � una� � ������

in which � is as in ��	���	

��� A Single Step Scheme

The above formulation does not result in a single step �uctuation distribution

scheme as it did in one dimension ��	� but it does provide hints as to how such a

goal might be achieved	 For example� distribution coe�cients may be evaluated

as follows


� Calculate the distribution coe�cients �j
i for the chosen �uctuation distri�

bution scheme� say the PSI scheme	

� Reverse the direction of the �ow �but not the sign of the �uctuation� and

calculate a second set of distribution coe�cients �j
i 	

� Apply a Lax�Wendro� style redistribution along the two edges which join

the upstream node�s� to the downstream node�s�� so if two vertices �� and

� say� are initially downstream then

�j
� �

�

�
��� ����

j
� �

�

�
��� ����

j
�

�j
� �

�

�
�� � ����

j
�

�j
� �

�

�
�� � ����

j
� � ��	���

��



whereas if only one vertex is downstream �vertex �� then

�j
� �

�

�
�� � ����

j
� �

�

�
�� � ����

j
�

�j
� �

�

�
�� � ����

j
�

�j
� �

�

�
�� � ����

j
� � ��	���

where �i �
b����li	t
S�

and�li is the edge opposite vertex i taken in the downstream

direction	

This scheme is still conservative since it remains true that

�j
� � �j

� � �j
� � � 	 j � ������

and it reduces to the predictor�corrector scheme �and hence Lax�Wendro�� when

the �ow is parallel to the edges of a regular grid	 Its major advantage over the

two stage scheme is that of speed	 However� in practice the scheme described

above lacks robustness and is far less reliable than the Lax�Wendro� scheme	

� Flux�Corrected Transport Techniques

As it stands� none of the above higher order algorithms is monotonic so spurious

oscillations can appear in the numerical solutions	 In the case of the predictor�

corrector and Lax�Wendro� schemes these are� as expected� usually to be found

immediately upstream of steep �ow gradients	

A simple and widely used approach to the imposition of monotonicity on

a scheme is the �ux�corrected transport �FCT� technique �� ��� which will be

described here in the context of �uctuation distribution schemes	 In the next

section a more sophisticated approach will be described which can be applied to

the single step Lax�Wendro� distribution scheme	

Flux�corrected transport requires a combination of two numerical schemes� a

low order monotonic scheme� taken here to be the PSI scheme of Section �� and

a high order �non�monotonic� scheme to which the smoothing is to be applied�

such as those described in Sections � and �	 In the �nite element and �uctuation

distribution contexts FCT requires that each scheme be written in a form which

�



isolates the contribution from each individual grid cell to the nodes of the grid	 An

antidi�usive cell contribution is then calculated by taking the di�erence between

the high order and low order contributions� and this is limited in such a way

as to prohibit unwanted extrema in the solution whilst retaining as much of the

antidi�usive component as possible	 As a result� the high order scheme should

dominate the algorithm in smooth regions of the �ow while the scheme may well

return to �rst order in regions where the solution gradient is high	

The FCT algorithm is described by the following six steps


�	 Compute the Low order Element Contributions �LEC� from the mass�

lumped PSI scheme	

�	 Compute the High order Element Contributions �HEC� from the consistent

PSI scheme� the predictor�corrector scheme or the Lax�Wendro� scheme	

�	 Calculate the Antidi�usive Element Contributions �AEC� given by

AEC � HEC� LEC � ����

�	 Compute the updated low order solution�

uLi � uni �
X
��i

LEC 	 i � ����

	 Correct the AEC in a manner such that the new solution �as de�ned in step

�� has no extrema not also found in either uLi or uni � so

AECc � CT 
AEC where � � CT � � � ����

�	 Calculate the �nal solution update�

un��i � uLi �
X
��i

AECc � ����

The limiting procedure of step  is designed to make AECc as large as possible

without introducing new extrema or knowing in advance the nodal updates due

to the high order scheme in adjacent cells	 It involves the following calculations


��



� Evaluate in order the quantities

u�i �
nmax
min �uLi � u

n
i �

u�T �
nmax
min �u��� u

�
�� u

�
��

u
max

min

i �
nmax
min u�T 	 T � ��i � �	�

the last of which give the extreme values of the solution at each node i

beyond which the updated solution is not allowed to go	

� De�ne

P�
i �

X
��i

max
min ���AEC�

Q�
i � u

max

min

i � uLi �	��

and subsequently

R�i �


��� min ��� Q�
i �P

�
i � if P�

i � �� P�
i � �

� if P�
i � � �

����

a nodal limiting factor for the antidi�usive contribution which ensures that

the new solution value at node i does not violate the prescribed bounds	

� Finally calculate each element�s limiting factor from the nodal values at its

vertices so that

CT � min
vertices


��� R�
i if AEC � �

R�i if AEC � � �
����

The above limiting is applied to the di�erence between the element contributions

of the two underlying schemes	

In the case of the low order PSI scheme the splitting into element contributions

is simple since the vector of nodal residuals Rn is assembled from the aforemen�

tioned element contributions and it is clear from ��	��� that a single component

takes the form

Ri �
X
��i

�k
i �k �

X
��i

Rk
i � ����

a simple sum of element contributions	 Thus� the fact that

ML �nU
L � �Rn � �����

��



in which ML is the lumped mass matrix and the symbol �n��� � ���n�� � ���n

represents a time di�erence� implies that the element contribution from cell k to

node i can be written

LECk
i � ML

�� ��k
i �k� �i � �����

in which �i is the zero vector with ith component �	 ML is a diagonal matrix so

that all of the inversion operations are local	

In the predictor�corrector case� precisely the same analysis applies to the high

order scheme when it is derived from the average of a forward and a backward

space di�erencing except that the de�nition of the residual has changed� cf� ��	���	

The high order element contribution is de�ned by

HECk
i �

�

�
ML

��
�
�k
i �k � �k

i �k
�
�i � �����

so that the antidi�usive element contribution evaluated in step � of the FCT

algorithm is straightforward to calculate and the limiting can then be applied	

The consistent �nite element scheme cannot be treated in the same manner

because although it is true that

MC �nU
H � �Rn � �����

the consistent mass matrix MC is not diagonal so inverting it results in each

component of the residual �	�� having a global e�ect on the nodal updates	

Instead� it is noted that

ML�nU
H � Rn � �ML �MC��nU

H � �����

from which it immediately follows that the antidi�usive terms can be written as

�nU
H ��nU

L � ML
���ML �MC��nU

H � ����

so the individual element contributions are given by

AECk � ML
�� �ML �MC�k �nU

H � �����

where the subscript k on the right hand side indicates the kth elementmass matrix

as de�ned in ��	���	 Now �	��� de�nes the antidi�usive element contributions as

local quantities so the limiting procedure described earlier can proceed	

��



FCT techniques are applied to the implicit time�stepping of ��	�� in precisely

the same manner	 The low order scheme is once more taken to be the explicit

mass�lumped PSI scheme and the high order scheme is the implicit consistent

PSI scheme	 The above analysis is then repeated� replacing the consistent mass

matrix by the corresponding matrix for the implicit scheme� i�e�

MC � MC � �tJ � �����

The residual R from which the Jacobian J � �R
�U

is calculated has already been

written in terms of element contributions in �	�� and it follows that the element

components of J can be assembled from the derivatives

J
k
i�j �

X
��i

�Rk
i

�Uj
for j � �� ���� Nn � �����

Since each residual component Rk
i depends only on the solution values at the

vertices of its own cell� denoted here by the superscript k� J reduces to an assembly

of � 
 � components in the same manner as MC and the new matrix of �	���

can thus be treated in the same way during the FCT stage of the algorithm	

� Limiting by Fluctuation Redistribution

FCT has proved to be an extremely successful technique for limiting �uxes to

impose monotonicity but a loss of accuracy relative to the high order scheme�

particularly noticeable when checking the error in the L� norm� is unavoidable

at turning points in the solution	 In the �uctuation distribution framework a far

more �exible technique for imposing accuracy is to redistribute the �uctuation as

distributed initially by the high order scheme	

The Lax�Wendro� scheme� as given by ��	���� is a single step �uctuation

distribution scheme and it is possible to combine it with the PSI scheme via

redistribution to ensure monotonicity with a minimal loss of accuracy	 The tech�

nique will be described below and FCT will be shown to be a special case of this

new limiting technique	
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��� The Distribution Point

A useful geometric interpretation of �uctuation distribution schemes is given by

the concept of a distribution point	 Consider a single grid cell in isolation
 the

distribution point is de�ned to be the point whose local area coordinates are

the distribution coe�cients for that triangle	 Unless stated otherwise� it will be

assumed from now on that the distribution coe�cients are non�negative �true for

both the Lax�Wendro� and PSI schemes� so that the distribution point is within

the cell	 Figure �	� shows typical distribution points for the two schemes which

will be considered in this section	 Note that the distribution point will lie on the

out�ow edge �or at the downstream vertex of a cell with one in�ow edge� of the

triangle when the scheme is fully upwind	

�

�

�

	 	

�

�

�
�d 


���t
� �d

Figure �	�
 The position of the distribution point for the Lax�Wendro� scheme

�left� and in the two�target case for a fully upwind scheme� e�g� PSI �right�	

The relationship between the distribution coe�cients and the local area coor�

dinates can be written explicitly using the numbering of Figure �	� as

�� �
Area ���

Area ���
� �� �

Area ���

Area ���
� �� �

Area ���

Area ���
� �����

from which it is obvious from this that

�� � �� � �� � � � �����

so the scheme is conservative� and that �k � � as long as the distribution point

remains within the triangle	

��



It is useful to note that the movement of the distribution point is equivalent to

the redistribution of the �uctuation within the triangle	 Furthermore� moving the

distribution point parallel to an edge is equivalent to keeping the proportion of

the �uctuation being sent to the opposite vertex constant� i�e� the redistribution

is taking place between the two nodes on that edge	

��� The Equivalent Equation

The di�usion vector �d labelled in Figure �	� represents the displacement of the

distribution point from the centroid of the triangle �the distribution point of a

symmetric central scheme�	 It can easily be shown by geometric arguments that

the distribution coe�cients of any scheme de�ned locally by the di�usion vector

�d are given by

�j
i �

�

�
�

�

�S�j

�d � �nji � �����

The relationship with the Lax�Wendro� scheme is obvious and comparison with

��	��� immediately gives

�d �
���t

�
�����

in this case� as noted in Figure �	�	

Further� a scheme with di�usion vector �d can be shown ��� to have the second

order equivalent equation

ut � �� � �ru � �d � �r��� � �ru� � ����

in which the right hand side represents the numerical di�usion of the distribution

scheme and can be used to analyse the accuracy of the method	

The di�usion vector of the Lax�Wendro� scheme ��	�� can be introduced into

the equivalent equation by rewriting ��	� as

ut � �� � �ru �
���t

�
� �r��� � �ru� �

���d� ���t

�

�A � �r��� � �ru� � �����

The �rst term on the right hand side of ��	�� represents the numerical di�usion

of the Lax�Wendro� scheme� which is second order accurate� while the second

term provides additional dissipation which decreases the accuracy of the scheme	

��



Hence� any choice of �d such that

�d�
���t

�
 �r��� � �ru� �����

will not alter the second order error term in the approximation� so the corre�

sponding distribution scheme should be second order accurate for the given local

data	 Therefore� moving the distribution point perpendicular to the local value

of �r��� � �ru� should not change the order of accuracy of the local approximation	

It is important to note here that the second order derivative in ��	�� can be

approximated locally by a �rst order derivative since

�r��� � �ru� � �rut �����

and ut can be approximated simply from the unlimited high order update using

�rut �
�

�t
��run�� � �run� � �����

This avoids calculating the second order spatial derivative that appears in ��	��

directly and the overall algorithm remains compact since it still involves only

local operations	

��� The Monotonicity Region

One of the stages of the FCT algorithm of Section  involves constructing bounds

on the antidi�usive element contributions to the cell vertices	 In �	�� the bound

for a cell is taken to be the most restrictive of those at its three vertices	 How�

ever� in the context of �uctuation distribution schemes this is not necessary and

separate bounds can be considered at each vertex	 Thus� in the notation of �	���

Ck
T � min

vertices


��� R�
i if AEC � �

R�i if AEC � � �
������

where node i corresponds to vertex k of triangle T 	 These bounds can be used

to construct a monotonicity region within each triangle� an example of which is

shown in Figure �	�	

By considering a general FCT�type algorithm� in which the monotonic scheme

is written in terms of low order �LO� and high order �HO� updates� the distribu�
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Figure �	�
 A monotonicity region for the distribution point based on the PSI

and Lax�Wendro� schemes	
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tion coe�cients can be expressed as

�� � �LO� � ��
�
�HO� � �LO�

�
�

�� � �LO� � ��
�
�HO� � �LO�

�
�

�� � �LO� � ��
�
�HO� � �LO�

�
� ��	���

in which the �k are limiting coe�cients	 In the situation considered here� �k � �

leads to the PSI coe�cients while �k � � returns the Lax�Wendro� scheme	 For

simplicity� the limiting coe�cients will be required to satisfy � � �k � � until

otherwise speci�ed	 These bounds are illustrated by dashed lines in Figure �	�	

The grey�shaded area in the diagram highlights the region of the triangle within

which placing the distribution point will satisfy these bounds	

Conservation requires that

�� � �� � �� � � � ������

so

��
�
�HO� � �LO�

�
� ��

�
�HO� � �LO�

�
� ��

�
�HO� � �LO�

�
� � � ������

The three terms on the left hand side of ��	��� represent� depending on one�s

point of view� either the displacement of the distribution point from that of the

PSI scheme �in terms of area coordinates� or the additional contributions from

the �uctuation to the corresponding vertices of the cell	

The bounds constructed in ��	��� can easily be translated into restrictions on

the limiting coe�cients since �maxk � Ck
T 	 In general

�� � ��mink � �k � �maxk � k � �� �� �� ������

which describes three pairs of �tramlines� parallel to the edges of the triangle�

the dotted lines in Figure �	�	 The region for which these bounds are satis�ed

surrounds the PSI distribution point and is shaded dark grey in the �gure	 Placing

the distribution point anywhere within this shaded area� the monotonicity region�

ensures that the subsequent nodal updates will not create any new local extrema

at the next time level and as a result imposes stability on the scheme	

Note that the perpendicular distance of each tramline from its parallel cell

edge depends linearly on the corresponding � and that � � � de�nes a line

��



passing through the low order distribution point while � � � corresponds to the

parallel line through the high order distribution point	 The aforementioned linear

dependence implies that FCT� for which

�� � �� � �� � min
k������

�maxk � �����

will position the distribution point at the intersection of the straight line joining

the Lax�Wendro� and PSI distribution points with the boundary of the mono�

tonicity region	

�
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�� � �
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�rut � constant

�� � �max

�

�� � �

�� � �max

�

�� � �

�� � �min

�

�� � �

FCT

�� � �min

�
� �

�� � �
�� � �max

�

��

���t

�

�� � �min

�

�

Figure �	�
 An extended monotonicity region for the distribution point based on

the PSI and Lax�Wendro� schemes	

The bounds described above may be relaxed to allow � � � or � � �� leading to

a much larger monotonicity region	 For example� restrictions on the antidi�usive

element contributions may be constructed as follows


� De�ne P�
i and Q�

i as in �	�� � although the low order update uLi could

be calculated using the PSI scheme with maximal time�step � but now take

�



nodal limiting factors of

�R�i �
max �


��� Q�
i �P

�
i if P�

i � � � P�
i � �

� if P�
i � � �

������

and

�R�i �
min �


��� �Q	
i �P

�
i if P�

i � � � P�
i � �

� if P�
i � � �

������

� Calculate cell�vertex limiting factors from

Ck
T �


��� �R�
i �

max if AEC � �

�R�i �
max if AEC � � �

Ck
T �


��� �R�
i �

min if AEC � �

�R�i �
min if AEC � � �

��	���

These are the �maxk of ��	���	

An example of an extended monotonicity region is shown in Figure �	�	 Note that

although this increase in �exibility should improve the accuracy of the scheme it

may well also allow the limited scheme to be less di�usive than the Lax�Wendro�

scheme or let the distribution point move beyond the cell	

��� Fluctuation Redistribution

It is clear from the previous sections that it is possible to control the stability and

accuracy of a �uctuation distribution scheme by manipulation of the distribution

point or� equivalently� redistribution of the �uctuation	

In particular� two schemes have been described� one having second order ac�

curacy �Lax�Wendro�� and the other being monotonic �PSI�� which can be com�

bined to produce a scheme with improved properties	 In essence this involves

constructing the monotonicity region of Section �	�� then �nding the distribu�

tion point within this region which minimises the error term according to the

equivalent equation ��	��� and redistributing the �uctuation so as to place the

distribution point here	 When the limiting is applied the distribution point is

moved from its high order position towards its low order position along some

path which minimises any loss of accuracy until the distribution satis�es the

local monotonicity constraints	

��



The path along which the distribution point travels is dictated by the �pre�

ferred direction� �perpendicular to �rut� which is suggested by ��	��	 Given that

the dominant error term of the scheme is proportional to some approximation to���d � ���t

�

�A � �r��� � �ru� � ������

the following algorithm is suggested


� Use the PSI scheme to construct a low order� monotonic update	

� Construct the monotonicity region surrounding the low order distribution

point using the bounds on the cell�vertex contributions de�ned by either

��	��� or ��	���	

� Calculate the high order updates due to the Lax�Wendro� scheme	

� Find the line passing through the high order distribution point perpendic�

ular to the locally constructed value of �rut �i�e� a contour line of ut�	

� Calculate the position of the point in the monotonicity region closest to the

line de�ned above	 If the two intersect then take the point of intersection

closest to the high order distribution point	

� Find the limiting coe�cients �k which place the distribution point in this

position and hence calculate the limited antidi�usive cell�vertex contribu�

tions	

� Add the limited antidi�usive contributions to the low order updates	

The limited distribution points are indicated by asterisks in Figures �	� and �	�	

Note that when the contour line does not intersect the monotonicity region the

limited distribution point will be at a corner of the region	

� Results

Numerical experiments have been carried out to test the schemes described in

this report	 The �rst case presented here is the advection of an initial pro�le

��



given by the double sine wave function

u � sin���x� sin���y� � �����

with velocity �� � ��� ��T over the domain ��� �� 
 ��� ��	 This problem has been

solved on three types of grid each of which is illustrated in Figure �	�	 Periodic

boundary conditions are applied	

A B C

Figure �	�
 The three grid types used for the numerical experiments	

Figure �	� shows two solutions to the above problem obtained on a �� 
 ��

type B grid� one obtained using the standard PSI scheme� ��	�� and ��	��� and

the second including the area weighting of the nodal updates described in Section

�	�	 Not only does the area weighted scheme advect the shape of the initial pro�le

much better but the resulting solution is also slightly smoother	 Further evidence

of this improvement in accuracy� particularly in the L� norm� is provided in

Table � which shows the errors in the solution at t � ��� and compares them

with the Lax�Wendro� scheme of ��	���	 As expected the last of these is by far

the most accurate since it is one order of accuracy higher than the other two	

Scheme L� L� L� Peak value

PSI �	���� �	���� �	���� �	���

Area weighted PSI �	���� �	���� �	���� �	���

Lax�Wendro� �	���� �	���� �	��� �	���

Table �
 Error norms of solutions for the double sine wave problem at t � ��� on

a ��
 �� type B grid	

The next comparison presented is of all the schemes without the application

of any post�processing limiting procedure	 A detailed accuracy study has been

��



Figure �	�
 Solutions for the double sine wave test case	
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carried out for each of the schemes under consideration and the results for the

double sine wave test case described above are shown in Figure �	�	 dt�dx takes

the value of �	�� throughout for this test case	

Error estimates in the L� norm for the solution when t � � are shown for

�ve di�erent schemes	 The errors in the L� and L� norms showed very similar

behaviour	 The least accurate method is the PSI scheme which can be seen in

practice in Table � to not even attain �rst order accuracy on any of the three

regular grids shown in Figure �	�	 The Lax�Wendro� scheme consistently achieves

second order accuracy on each of the grids and gives similar answers for each

case	 The predictor�corrector scheme is less reliable	 On the type A grid it is

comparable to Lax�Wendro� but on grid B the error actually increases as the

grid is re�ned �hence the lack of an entry in the table�	 The consistent �nite

element scheme based on PSI and combined with implicit Crank�Nicolson time�

stepping does indeed exhibit third order accuracy on grid A� but reduces to less

than second order on the other two types of grid	 In fact� on grid C it ceased

to be the most accurate of the schemes considered	 For comparison� the results

are pictured in Figure �	� alongside those of a cell�centre upwind �nite volume

scheme which combines a linear reconstruction algorithm with the MLG limiter

���	 The Lax�Wendro� scheme is signi�cantly more accurate on all but grid A

and even here it achieves a higher order of accuracy� although it should be noted

that the cell�centre scheme includes a limiter which makes it monotonic	

Scheme Grid A Grid B Grid C

PSI �	�� �	� �	��

Lax�Wendro� �	�� �	�� �	��

Predictor�corrector �	�� � �	��

Consistent PSI �	�� �	�� �	��

Cell�centre FV �	�� �	�� �	�

Table �
 L� orders of accuracy of the unlimited schemes on the three grid types

calculated when dx � �����	

The improvement in accuracy is illustrated evenmore dramatically by a second
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Figure �	�
 L� errors for the double sine wave test case on the three di�erent

types of grid	
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test case	 It involves the circular advection of the �cone� given by the initial

conditions

u �


��� cos����r� for r � ���

� otherwise
�����

where r� � �x � ���� � y�� with velocity �� � ����y� ��x�T around the domain

���� �� 
 ���� ��� the solution being continually set to zero at each of the in�ow

boundaries	 The initial pro�le should be advected in a circle without change of

shape until it returns to its original position when t � ���	

In the numerical experiments the ratio dt�dx � ����	 Three solution pro�les

obtained on a �� 
 �� type B grid are shown in Figures �	� and �	 using the

schemes without limiters being applied	 After one revolution the PSI scheme

has reduced the height of the peak from �	� to �	�� and is extremely di�usive�

particularly in the streamwise direction	 The Lax�Wendro� scheme keeps the

height of the peak at �	�� but oscillations are obvious in the wake of the cone so

that some form of limiting procedure is clearly necessary	 Less clear is a small

phase lag which positions the peak slightly downstream of its correct position	

Qualitatively� the predictor�corrector scheme gives very similar results� a small

phase lag with downstream oscillations	 From now on only the Lax�Wendro�

scheme will be considered since it is far more reliable �as indicated in Table ���

usually more accurate and computationally less expensive	 When the consistent

mass matrix and Crank�Nicolson time�stepping are introduced for the PSI scheme

small oscillations can be seen in front of the pro�le� although the cone is now at

��� of its original height � the best of the solutions shown	 It should be noted

though that the nature of the test case� in which the advection velocity changes

through a full ���
 signi�cantly reduces the size of the oscillations in this last

case	

The same test case is illustrated on the same grid in Figures �	�� this time

for schemes which have had monotonicity conditions imposed on them via the

application of limiters	 The oscillations have now disappeared from both the

Lax�Wendro� scheme �combined with the �uctuation redistribution technique

described in Section �� and the consistent PSI scheme �with FCT� although the

peak values of the solution have been reduced to �	�� and �	�� respectively	 They
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Initial conditions/exact solution

PSI scheme

Figure �	�
 Solutions for the rotating cone test case	
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Lax-Wendroff scheme

Consistent PSI scheme

Figure �	
 Solutions for the rotating cone test case	
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are compared with the cell�centre upwind MLG scheme ���� Figure �	�� which

is also monotonic but the peak value here is only �	�� after one revolution	 It

should be noted� though� that the cell�centre scheme performs considerably better

on grids of type A or C and is then comparable with the limited Lax�Wendro�

scheme	

The practical order of accuracy of the monotonic schemes can be investigated

using the double sine wave test case	 Table � shows error estimates which are

typical of the test case	 The monotonicity constraint has little e�ect on the

error approximations in the L� and L� norms but the �uctuation redistribution

technique is signi�cantly better than a standard FCT approach when the L�

norm is considered although some loss of accuracy is still incurred	

Scheme L� L� L� Peak value

Lax�Wendro� �	���� �	���� �	��� �	���

Lax�Wendro� � FCT �	���� �	���� �	���� �	���

Lax�Wendro� � FR �	���� �	���� �	���� �	���

Consistent PSI �	���� �	���� �	���� �	���

Consistent PSI � FCT �	���� �	��� �	���� �	���

Table �
 Error norms of solutions to the double sine wave problem at t � ��� on

a ��
 �� type B grid	

The e�ectiveness of the new method is also illustrated in Figure �	�� particu�

larly on the �ner grids	 The �uctuation redistribution scheme remains close to the

unlimited Lax�Wendro� scheme on each of the grids while the FCT solution dete�

riorates on the �ner grids for both the Lax�Wendro� and consistent PSI schemes	

It is interesting to note that the numerical order of accuracy in the L� norm on

the �nest grid is �	� for the Lax�Wendro� scheme with or without �uctuation

redistribution� but reduces to �	�� when FCT is used� while FCT reduces the

order of accuracy of the consistent PSI scheme from �	� to �	��	 In the L� and

L� norms little di�erence is detected in the error from that of the non�monotonic

scheme on any of the grids� although typically �uctuation redistribution is more

accurate than FCT on the �ner grids	

�



Lax-Wendroff with monotonicity

Consistent PSI with FCT

Figure �	�
 Monotonic solutions for the rotating cone test case	

��



Cell-centre upwind scheme

Figure �	�
 Monotonic solutions for the rotating cone test case	
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Figure �	�
 L� errors for the double sine wave test case	

��



Finally� the schemes have also been compared on distorted grids	 The grid

shown in Figure �	� is a random perturbation of a ��
�� type B grid in which each

interior node has been moved by a distance of at most dx�� in both coordinate

directions	 As expected� the accuracy deteriorates with the irregularity of the

grid	 Table � should be compared with Table � to see the loss in accuracy� which

is considerably worse in the case of FCT particularly in the L� norm	 Typically�

on the �nest perturbed grids� the order of accuracy is no worse than �	� for the

�uctuation redistribution algorithm� which matches the order of the unlimited

Lax�Wendro� scheme� while applying the FCT algorithm gives considerably worse

results	

Figure �	�
 The perturbed �� 
 �� grid	

Scheme L� L� L� Peak value

Lax�Wendro� �	���� �	��� �	��� �	���

Lax�Wendro� � FCT �	���� �	���� �	��� �	��

Lax�Wendro� � FR �	��� �	���� �	���� �	��

Table �
 Error norms of solutions to the double sine wave problem at t � ��� on

a ��
 �� type B grid	

��



	 Conclusions

In this report the problem of achieving high order accurate numerical solutions

to the two�dimensional scalar advection equation using upwind �uctuation dis�

tribution schemes on triangular grids has been addressed	

Three approaches have been compared
 a �nite elementmethod ���� a predictor�

corrector algorithm and the Lax�Wendro� scheme ���	 The consistent �nite ele�

ment scheme has been shown to achieve third order accuracy on some regular grids

but it involves the inversion of a mass matrix	 The predictor�corrector scheme

is much faster but not particularly robust whereas the single step Lax�Wendro�

distribution scheme is second order accurate on all of the grids considered	 It is

usually more accurate than the predictor�corrector scheme �they are equivalent

in some situations� and on some regular grids it even improves on the consistent

�nite element scheme	

Each of the above approaches is not inherently monotonic	 However� this

property may be imposed using an FCT approach as described in this report	

In the case of the Lax�Wendro� scheme� though� a more sophisticated approach

has been devised which involves a redistribution of the �uctuation	 Bounds on

the contributions to each node are calculated in a similar manner to those used

in FCT and the distribution coe�cients are then altered so that these bounds

are satis�ed	 A study of the equivalent equation of the scheme reveals that

there is also a preferred direction for the movement of the distribution point �

the point which geometrically represents the local distribution � which should

improve the retention of second order accuracy even when the limiting is applied	

Flux�corrected transport is a special case of �uctuation redistribution	

In practice� the Lax�Wendro� scheme with the additional �uctuation redis�

tribution step has proved to be second order accurate in each case tested here	

This is not true of FCT for which the L� error deteriorates rapidly as the grid is

re�ned	 The result is a fast� accurate and robust �uctuation distribution scheme

based on multidimensional upwind techniques for the solution of the scalar advec�

tion equation	 Furthermore� it should be straightforward to extend these schemes

to nonlinear systems of equations in the same manner as in the steady state case

��



���� although it remains to completely overcome the lack of robustness of these

extensions near to stagnation points	
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