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Abstract

This paper presents a direct method to determine the uncertainty
in pressure, flow and Net Present Value (NPV) of a reservoir, using
the time-dependent one phase 2-dimensional reservoir flow equations.
The uncertainty in the solution for pressures and ultimately, NPV, is
modelled as a probability distribution function. This is derived from
probability distribution functions for input parameters such as perme-
ability.

The method involves a perturbation expansion about a mean of the
parameters. Coupled equations for second order approximations to the
mean and the field covariance of the solution are developed and solved
numerically. This method involves only one (albeit complicated) solu-
tion of the equations, and contrasts with the more usual Monte-Carlo
approach, where many such solutions are required.

Second-order approximations for the statistical uncertainties of the
NPV, such as its mean value and variance, can be evaluated quantita-
tively. These approximations are then used to estimate the risked value
of a field for a given development scenario.

1 Introduction

This paper is an extension of previous work, [1], concerning the mathematical
and numerical modeling of physical systems where a precise knowledge of the
data that characterises the model is not available. In [1] a statistical pertur-
bation analysis is applied to the fluid flow equations to obtain the probability
distribution of the pressures in a reservoir with uncertain data. This technique



is extended here to the analysis of the risked value of the oil field. The net
present value, or NPV, of the field is used to assess risk, and is defined by

NPV = [T Qllea 1)

where Q(?) is the flow of oil at the relevant production well and « is some
weighting factor.

In the mathematical modelling of the field in a deterministic case, the flow
term Q(t) may be easily obtained if values for the pressure are known, and or
the field flow equations have been solved for at each time-step. For the simple
model dealt with in our previous work, the flow can be obtained just by the
formula,

Q(l) = —k-V(p), (2)

where k is the permeability and p the pressure.

In previous work, [1], we were dealing with cases where uncertainties in the
permeabilities caused corresponding uncertainties to propagate though to the
numerical solutions for the pressure. We now investigate how these uncertain-
ties propagate to cause uncertainties in the flow and, more importantly, in the

NPV.

2 Treatment of Pressure Equations

The earlier study, [1], is restricted to a fairly straightforward two-dimensional
model equation (with the implicit assumption that the results obtained may
be generalised to the three-dimensional case.) The model equation

ap_

7@ v(kvp) = f(rvt)v (3)

is used, where « is the compressibility, p the pressure, k the permeability, and
f(r,t) is some forcing function.
The uncertainties under consideration are all contained in the permeability,

which is assumed to have a mean value function and a permeability autocor-
relation function (P.A.F.), defined as

((A(r1) = ko(r1))(k(r2) — ko(r2)))

O'k(I'l)O'k(I'z)

) (4)

p(I‘l, I'z) =

a function of the two spatial positions in the permeability field, r1 and ro.
We assume the statistical uncertainties in the permeability can be written
as a perturbation about the mean value field,

F(r) = ko(r) + b (r).



where

ko(r) = (k(r)).
Then this form is substituted into the model equation, to allow a system of
hierarchical equations to be developed for the pressure solution, p, where,

p=potprtp2+---

For the case of an assumed lognormal distribution function for the perme-
ability, the perturbation expansion is determined about the geometric mean,
and the hierarchical equations take on the following form when analysed and
discretised:
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With the same discretisation, the equations for the variance-covariance func-
tion for the pressure solution can also be written,

Czn;—zl] i3l
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The quantity po is denoted to be the deterministic solution, which is that
which would normally be obtained by substituting the mean value fields into
the model equations. The higher order term in pressure, p; represents the
second order correction to the pressure obtained when including the statistical
uncertainties in the model. The term C'fj;,;; represents the pressure covariance
function at time-step n for discretised spatial positions (¢, 3’) and (¢, 7).

3 Fluid Flow

The straightforward conversion equation to obtain the flow from the pressure
of a fluid in a porous medium can be obtained in this model using Darcy’s law
and is given in simplest form

Q = —kVp. (9)



By using the previous assumption from [1] that the pressure may be writ-
ten as a series, we can substitute this, and the perturbation series for the
permeability into the equation (9) to give

Qz—(ko—l—kl—l—kz)V(po—l-}h—l-pz), (10)

where all terms up to and including second order have been retained.
If we now take mean values on either side, we obtain a vector expression
for the mean value of the flow,

(Q) ~ —koVpo — (k1Vp1) — (k2)Vpo — koV (p2). (11)

Also, the covariance of the flow may be written,
COUq ~ <k1k1> (vp0)2 + Qkovpo . <k1Vp1> + (k0)2<(Vp1) . (Vp1)> (12)

By using the values for pressure already computed with the methods de-
scribed in [1],we can then proceed to calculate the first two statistical moments
for the flow numerically. They only contain statistical information from the
pressure terms which is already available from previous considerations. Both
these terms can then be used in order to calculate the net present value and
its statistical moments up to second order.

It is fairly straightforward, when approaching the problem in a practical
way, to approximate equation (9) with a central difference approximation so
that it can be written,

Qij = — ki Vipi;. (13)
The equation for the mean value of the flow then takes the form

<Qij> = _k?jvhp?j - <k3jvhpzlj> - <ki2j>vhp?j - k?jv<p?j>7 (14)

and the equivalent covariance term is,

2
Covg,; <k21]k21]> (Vhp?j) + Qk?jvhp?j : <k}jvhpzlj> + (k?j)2<(vhp}j) : (vhpzl'j)>'
(15)
It is these discretised forms for the statistical moments of the flow that we
use when calculating our numerical approximations to the NPV.

4 Net Present Value

To assess the numerical value of the Net Present Value of the systems we are
considering, we must first treat it as a time-dependent variable; that is,

T
NPV = [C]Qlledr, (16)
0
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where T" — oco. The mean value of this term is then calculated quite straight-

forwardly,
T

(NPV) = [ Qi)lledt, (17)

and an approximation to the second moment may be written as

VPV = [ Qs — (@u))e i (18)

We are chiefly interested in how the mean value of the NPV compares with
the deterministic solution, which is that obtained by operating the numerical
process on the mean value of the permeability field,

. T .
NPV = [C]jQlletdr, (19)
0

where,

Q =k, Vipi;. (20)

J

5 Application

We now apply this technique to a specific example of a discretisation.
Examples of the discrete equations for pressure for the case of a simple
five-point difference scheme can be found in [1].

6 Results

In this section we present some illustrative samples of results that we have
obtained using this method to solve the full statistical problem.

In each case we consider a single Fourier mode as the initial pressure con-
dition in the reservoir, with no flow conditions around the boundary, and zero
forcing function. The region under investigation is square with unit length.
All lengths and times are normalised for the purposes of this research.

Using a single Fourier mode as the initial condition means that in the case
of a homogeneous mean value for the permeability, the solution for the pressure
p(x,y,1) to the p.d.e. under consideration, equation (3), may be expressed as
the Fourier mode with an exponentially decaying amplitude,

—72 @t

pla,y,t) =€ 7 7 cos(ma). (21)

It is fairly trivial to show by substitution that this is a solution to the model
equation, satisfying the zero boundary conditions. We choose this test function
as it 1s a straightforward solution whose deterministic behaviour is well-known.



We observe the values for the N.P.V. at the centre of the square region. Fig-
ure 6.1(a) shows the various mean values for the N.P.V. with different perme-
ability variances, compared with the deterministic solution. The homogeneous
mean value of the permeability is 0.2. In Figure 6.1(b) the corresponding rel-
ative variances are shown for the N.P.V., for the same permeability variances.

In Figure 6.2, we show the equivalent plots in the case of a smaller perme-
ability mean. Here, kmean = 0.1. In Figure 6.3, we show the plots of mean of
N.P.V. for a larger mean permeability field with kmean = 0.4.



Figure 6.1(a)

Figure 6.1(b)



Figure 6.2

Figure 6.3



In Figure 6.1(a) we can see that the mean values for the N.P.V.s corre-
sponding to the smaller values of the permeability field seem to converge to
a similar order of magnitude, but significantly different value, to the deter-
ministic solution (var(k) = 0.0). The value for the case where the covariance
of the permeability field is large with respect to its mean seems not to show
convergence.

This effect is repeated in Figures 6.2 and 6.3, with significant convergence
being shown in Figure 6.3 where the mean of the permeability is always larger
than the mean value field.

7 Conclusions

The types of permeability distribution functions we have considered here have
been of limited scope. It is hoped to study more complex instances in future
work, such as that with anisotropic correlation lengths and spatially varying
mean value fields, as studied in [1].

It is very significant that the mean, or second order approximation to the
mean, converges to comparable, but certainly different, values for N.P.V. in
cases where the permeability variance is small. This is not true in the cases
where significant proportions of the realisations of permeability field lie outside
the stability region for the numerical scheme. This, of course is broadly in line
with results for the pressure solutions found in [1]

The values for the variance of the N.P.V. do not seem to converge whatever
the original choice for permeability variance. This may be due to the fact that
the integration is being performed over each instantaneous variance and a true
approximation for the variance is not being obtained. More results concerning
the variance of the N.P.V will be published in the future.
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