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Abstract

Four Dimensional Variational Data Assimilation (4D Var) is needed to find the present
state of the atmosphere, to use as the initial conditions for numerical weather prediction
models. In this report, the 4D Var method is applied to a theoretical idealised case of
baroclinic instability, using the 2D Eady model. The Eady model describes the vertical
coupling between upper and lower boundary waves in the atmosphere.

The case where only part of the flow is observed is considered, to investigate how informa-
tion is propagated to the unobserved regions by the model dynamics. This is then extended
to include an a priori constraint, or background term. The effect of the background term
on the growth rate is also examined by assimilating horizontal lines of buoyancy observa-
tions.

These simple theoretical case studies allow us to develop a greater understanding of the
processes within 4D Var and the limitations of the method when used in the presence of
baroclinic instability.
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1 Introduction and Aims

The work presented in this report aims to isolate the baroclinic instability mechanism within a
4D Var framework. By performing identical twin experiments, we examine whether a 4D Var
system is capable of reconstructing the correct vertical structures of the atmosphere necessary
for the growth of mid-latitude cyclones.

1.1 Four Dimensional Variational Data Assimilation (4D Var)

Data assimilation is needed to find the best estimate of the present state of the atmosphere
by using observations, a forecast model and climatology. Recent data assimilation methods
assume that the analysis is given by an optimal blend of the observed values and a background
state (first guess given by a previous forecast). The weights that prescribe the blend are deter-
mined by error covariance matrices (Lorenc, 1986). Variational assimilation was introduced
to dynamic meteorology by Sasaki in 1958. Variational assimilation determines the analysis
by minimising a cost function. Three dimensional variational assimilation (3D Var) includes
observations at only one time level, however, four dimensional variational assimilation (4D
Var) extends this to include observations that are distributed in time (Sasaki, 1970).

Le Dimet and Talagrand (1986) applied optimal control theory to ’reduce the control vari-
able’. This means that instead of updating the state variables at every time level, only the
initial conditions are used as the control variables. This is achieved by constraining the state
variables to fit the model equations, through the use of an adjoint model (Errico, 1997).
Note that there are two uses of the word control variable. From control theory, the con-
trol variable refers to the variable that is updated and it is this definition that is used in
this report. However, in other literature, control variables can also refer to the transformed
variables that are used when defining the background error covariance matrix. The 4D Var
method can be used operationally by linearising the dynamical model to give an ’incremental’
formulation (Courtier et al., 1994). Despite these simplifications, 4D Var is still much more
computationally expensive than 3D Var.

Temperature Observation
‘JO
o e ‘JO
) . *\_Forecast o .
Analysis, ) N
J, Jo |-

Background _|

State \‘7 /:]; \\\\ $

Time

Figure 1: Schematic diagram of the Four Dimensional Variational data assimilation method: minimise
the squared distance between the analysis and the background state at the beginning of the assimilation
window, and the squared distance between the observations and the forecast state throughout the
assimilation window.



In general, the cost function J contains a background term J, and an observational term J,.
J(x0) = Jp + Jo (1)

where the background term is

1 _
Jp = 5 (%0 — x4)"B(x0 — x7) (2)
where x is the state vector, x( is the state vector at the initial time, used as the control
variable (updated), x} is the background state at the initial time, and B is the background

error covariance matrix. The observational term is

1 N

Jo=3 > (Hix; —yi) "Ry (Hix; — yi) (3)
i=1

where y; is a vector of observations at time t;, H; is the observation operator, which converts

from model space to observations space and R is the observational error covariance matrix.

The 4D Var problem is then to minimise J(xy) subject to the strong constraint(assume a
perfect model) that the sequence of model states must also be a solution of the nonlinear
model equations x = M(x,t). The 4D Var method is illustrated in Figure 1. In general this is
a nonlinear constrained optimization problem. However, by linearizing the dynamical model
and using an adjoint model, the problem can be transformed into an unconstrained quadratic
minimisation through the use of lagrange multipliers.

The work in this report aims to investigate what the capabilities and weaknesses of 4D Var
are in relation to 3D Var, by testing the the 4D Var method in a theoretical case of baroclinic
instability which leads to the rapid development of mid-latitude cyclones.

1.2 Baroclinic Instability

The meridional (north-south) temperature gradient of the atmosphere is associated with a
vertical shear of the zonal (west-east) wind. The vertical shear of the wind results in baro-
clinic instability, and hence mid-latitude cyclones (Holton, 1992). The baroclinic instability
mechanism is characterised by a pressure field that has a westward tilt with increasing height
and a temperature field that has an eastward tilt with increasing height. This mechanism is
illustrated in Figure 2. It is vital that a data assimilation system should be able to perform
well in these situations in order to provide good forecasts for severe storms.

The implementation of 4D Var in an operational system at ECMWF showed an improvement
in extratropical forecast scores, compared with 3D Var (Rabier et al., 1998). However, poor
analyses of mid-latitude storms are still generated from 4D Var. For example, the analyses of
the storm 'Lothar’ on the 26th December 1999, were not as intense as the observed system,
mainly due to the mishandling of observations (Ulbrich et al., 2001).

2 Identical Twin Experiments

The 4D Var method using the Eady model is investigated using identical twin experiments,
so that observational and model errors can be ignored.



Identical twin experiments are commonly used to investigate data assimilation methods. First,
synthetic observations are generated by integrating the forward model to give the ’true’ so-
lution. It can then be assumed that the model and observations are perfect, or known errors
can be added. All experiments, throughout this report, use perfect synthetic observations.

2.1 Mathematical Formalism: 4D Var

Suppose we have a set of N vectors of observationsy; ¢ = 1,..., N at discrete times 0 < ¢; <T
within an assimilation window of length T. We also suppose that the observations are a linear
combination of the true signal xAnd some random noise £? that is assumed to have a gaussian
distribution
yi=Hx! + € (i=1,...,N) (4)

where H is the linear observation operator which converts from model variables to ’observed’
parameters. Suppose we also have a background state at the initial time, xg. We assume that
this also has noise €® that has a gaussian distribution

xb =x} + b (5)
The aim is to find the state vector at the initial time x¢ which minimises the variance of the
analysis error and also satisfies the model equations throughout the assimilation time window
Bouttier and Courtier (1999). The model is assumed to be linear as the Eady model (used in
this work) is linear. Denoting the linear model integrated from time ¢; to ¢;4+1 by M;y1, then
we require x; to satisfy

xit1 = Mipix; (i =1,...,N - 1). (6)

In summary, we are to find the initial state xg such that the cost function:
1 1
J(xo) = 5 (%0 — x0) B! (%0 — x§) + 2 > (yi — Hx)) "Ri ' (yi — Hx;)) (7)
i=1
is minimised and x; also satisfies the model equations x; 11 = M;1x;.

To be able to calculate the gradient of the cost function at the beginning of the assimilation
window, an adjoint model is required. Simple linear algebra can be used to illustrate how the
method works.

Let N
Jo=Y_J; (8)
i=1
where ) S
Ji = 5(yi—Hixi))"R; (vi — Hix) (9)
= 2(yi— HM,;...Mix)TR; ' (y; — HiM; ... M%)
Then the gradient of J is given by:
Viedi = —(HM;...M)TR;  (y; — H;M; ... Mixo)

= -Mf...MIH!q; (10)

where d; = R; ! (y; — H;x;) denotes the departure vector at time ¢;. Hence the gradient of
the observation term is given by:

Vy,Jo = —HTdg + MT (HTd, + ML (HId,y + ... + MEHLdY) .. .). (11)



These equations can also be derived by using optimal control techniques to transform the
constrained optimization problem to an unconstrained problem (Griffith (1997), Le Dimet
and Talagrand (1986)). This technique is illustrated below by considering the continous
scalar case.

Minimize the functional fOT F(xz,t)dt, defined over an assimilation window [0,7] T' > 0, subject
to the (strong) model constraint % = f(z,t), where F' and f are scalar real valued functions
that are continuous with respect to x and ¢, and continuously differentiable with respect to
z, z(t) € R is the state vector and t € [0,7] is the time,

The lagrangian functional £ is constructed by using the method of Lagrange to give
L= [y (F(z,0) + Q)& — f(a,0)))dt (12)

where A(t) € C2[0,7] is a lagrange multiplier or adjoint variable. Letting G(z, A,x’,}\,t) =
F(z,t) + A(t)(Z — f(z,t)) then this can be written

T .
/;:/0 (G, M i, A, 8))dt (13)

Taking the first variation of £ and using a Taylor series expansion, then
T .
L = / [5sz + 635Gy + OAG + MGX] dt (14)
0

Note that G; = 0. Applying integration by parts then

T
5L = / [53; (Gx - %GQ + oA (GA - %G;)] dt + [5oGslg + [0XG5],  (15)
0

Necessary conditions for §£ = 0 are then given by Euler’s Equations:

G, — diGi =0 = A=Fy,—\fy (adjoint equation)

Gr— 3G;=0 = z=f (state (forward) equation) (16)
The transversality condition must also be applied. From
6L = [62G;]E = dx(T)N(T) — 52(0)A(0) (17)

then set A\(T') = 0. The gradient of £ at the beginning of the assimilation window is found
from the adjoint variable at the beginning of the window

oL
0z(0)

= -X(0). (18)

This theory can be extended to the multivariate discrete case: The lagrangian functional can

be constructed to give:
N-1

L=J+ Z AL (%1 — Mipix;) (19)
=1

Ai =0

i=N
Ai=MIXN 1 —VyJ i=N-1,...,0. (20)

8



Then the gradient of J, at the initial time is given by
Ve = —Ao (21)

If M is the forward linear model, then M7 is the adjoint model, X is the vector of adjoint
variable and Vy, J, = —HTR*l(yi —H;x;) is known as the adjoint forcing. Hence the adjoint
model is integrated backwards in time, using zero as the final state, and adding an adjoint
forcing at each step.

The adjoint equations find an equation for VJy which can then be used by a descent algorithm
to update the control vector x;—g.

2.2 The Eady Model

The 2D Eady model (Eady, 1949) is one of the most simple theoretical model used to study
baroclinic instability in the x-z plane. It is a simple linear Quasi-Geostrophic (QG) model
which can be used to describe the vertical coupling between waves at the tropopause and
the ground. The Eady model equations support two types of normal mode solutions; neutral
modes correponding to boundary waves with short wavelengths and unstable long waves, that
grow (or decay) exponentially (Farrell, 1982).

The Eady model basic state is given by a zonal wind with a linear shear with height. Pertur-
bations to this are described by the following non-dimensional equations, that are derived in
appendix B.

The quasi-geostrophic thermodynamic equation on the top and bottom boundaries

0 o\ oy 1
il i Rk A = 4= 22
<8t +23:1:> 5z ox 7 T3 (22)
and the quasi-geostrophic potential vorticity (QGPV) equation in the interior,
0%y 0% 1 1
[ j— _ ' = ] _ _ 9
1= 551 52 0 in 5 <2< (23)

where z € [—1, 1] is the height, z € [0, N] is the horizontal distance in the zonal direction, ¢ €
[0, 7] is the time, ¢ = 1(z, 2, t) is the streamfunction (similar to pressure), ¢ = q(z, z, t) is the
quasi-geostrophic potential vorticity (which combines both dynamical and thermodynamical
information). There are also periodic boundary conditions, the mean of the streamfunction
field is zero, and the initial state is prescribed by the interior QGPV and the buoyancy on
the upper and lower boundaries:

$(0,2,t) = %(N,z,t) inz€ -3, 3],
[[¢dzdz =0, inze[0,N], z€[—
q(z,2,0) = qo(z,2), inze€l0,N], z€ (-

1 l]

73 (24)
29

0 o

9 (2,0) = %2 (z)  onz==£l.

2)

From the non-dimensional hydrostatic equation, g—’zp = b, where b is the buoyancy which is a
measure of temperature and from geostrophic balance, g—f = v where v is the meridional wind.
Note that although there is no y-dependence in the model, it is the wind in the y-direction
that provides the crucial forcing for baroclinic instability. The buoyancy and streamfunction



fields are defined on staggered grids in the vertical, giving 11 vertical levels for streamfunction
and 12 vertical levels for buoyancy.

The 4D Var method is applied, using the Eady model as the strong constraint. The con-
trol variable, that is updated, is given by the buoyancy and the quasi-geostrophic potential
vorticity.

The initial conditions are given by the most unstable Eady Wave (normal mode for the non-
dimensional wave number k=1.6, equation (104)) , as shown in Figure 2.
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The streamfunction field tilts to the west with increasing height. From the omega
equation, there is ascent ahead of the cyclonic anomaly. This vertical motion

gives vortex stretching and so intensifies the lower level cyclonic anomaly.

Figure 2: The most unstable growing Eady wave used as the true solution in the identical twin
experiments, illustrating the baroclinic instability mechanism

2.3 Numerical Models

The numerical Eady model has previously been used by Badger and Hoskins (2001) and
Fletcher (1999). The advection equations are discretised using a leapfrog centred time centred
space (CTCS) scheme (with a Forward Time Centred Space (FTCS) scheme for the first
timestep). The matrix representation of the discrete laplace equation is defined using natural
ordering. So that the mean of the streamfunction field is also set to zero, a small positive
number is added to every element of the matrix. A NAG routine is used to perform an LU
factorisation to solve the laplace equation.

An adjoint model of the Eady model has been created directly from the forward model code,
in a similar way to Navon et al. (1992), and tested using the norm test and the gradient test
as described in Li et al. (1994). The adjoint model equations are derived in appendix A.

10



2.4 Minimisation

The data assimilation optimization problem requires a numerical minimisation algorithm.
This must be suitable for large-scale unconstrained problems. By making the forward model
linear, then the cost function becomes quadratic. This ensures that there exists a unique
minimum. Therfore, we need only ensure that the algorithm is capable of finding a local
minimum rather than the global minimum of a non-quadratic function.

The two most common methods for such a problem are conjugate gradient methods and
quasi-Newton methods. They both approximate Newton’s Method, which is first examined.

2.4.1 Newton’s Method

Consider the minimisation of an objective function F(x) with respect to a vector x. It
is possible to derive an iterative algorithm that can be used to find the value of x at the
minimum. By considering a second order Taylor series expansion of F(x), and using the fact
that the gradient of F' is zero at a minimum, then the Newton’s method algorithm is obtained
(Beale, 1988):

Xk+1 = Xk — akH_lgk (25)

where k is the iteration, H = VVF is the hessian matrix, and g = VF' is the gradient vector.
The parameter «j has been inserted into the equation so that a line minimisation of the
function F is performed in the direction H !g.

In a large scale problem such as data assimilation the hessian matrix H is too expensive
to calculate and store explicitly, and so approximations must be made. Four such suitable
approximations have been tested within the 4D Var framework applied to the Eady model.
These are the methods of steepest descent, conjugate gradient, quasi-Newton and limited-
memory; which are now described.

2.4.2 Steepest Descent Method

The steepest descent method approximates the hessian matrix by the identity matrix. The
algorithm therefore becomes:

Xf+1 = Xi — 8k (26)

The search direction is given by the ’downhill’ direction. However, this method can ’zig zag’
into the minimum, giving slow convergence when the condition number of H is large.

The numerical steepest descent algorithm used in this report uses the gradients only to provide
the search direction, and uses an inexact search to calculate the step length.

2.4.3 Conjugate Gradient Method

It is possible to use the gradient vectors to construct conjugate directions !, that take into
account the hessian matrix. A good description of conjugate directions is given in Shewchuk
(1994). Conjugate directions can be constructed using the conjugate Gram-Schmidt process

11



using a set of linearly independent vectors vi. The formula for constructing such directions

is given by:
k-1

dy =vi + Zﬂkjdj (27)
7=0

where the f8;; are chosen so that dedj = 0 for k£ # j. This gives:
v{de
d?de

Brj = (28)
The problem is that H is unknown. However, it is still possible to construct conjugate
directions by using the gradient vectors g at each point x; (Beale, 1972, 1988). That is, we
choose vy, = —g_1 = VF}_1, to obtain

di = —gr—1 + Brrdr—1 (29)

T
8r—1(8 —8j-1)
Brj = (30)
d] (g; — &;-1)
The final conjugate direction is conjugate to all previous directions, however, through the way
they have been constructed, only the previous search direction needs to be stored.

The conjugate gradient method used in this work is known as A22GCM (Nash, 1990) and is
a conjugate gradient method that uses a linear search to bracket a minimum.

The conjugate gradient method uses the hessian matrix information implicitly. However, the
quasi-Newton method approximates the hessian explicitly.

2.4.4 Quasi-Newton Method

The quasi-newton method (variable metric method) approximates the hessian matrix using
first derivatives. This information is built up during successive iterations.

The approximation to H should satisfy the quasi-Newton condition (Press et al., 1992):
H(xk11 — Xk) = k41 — 8k (32)
which is derived by performing a taylor expansion of the gradient of F'.

Suppose the hessian is approximated by Bx. Then By can be updated on each iteration using
rank 1 matrices. For example, Broydon’s update is given by:

B, = B,_; + czz’ (33)

By substituting this into the quasi-Newton condition (equation (32)), then formulae for z and
¢ can be found.

The quasi-Newton method allows the hessian to be approximated. However, it is not always
possible to store the approximation as it is too large (it is not possible for operational data
assimilation), and hence limited memory methods are required.

!Two vectors u and v are conjugate (or A-orthogonal) with respect to the matrix A if

uTAv=0u#v (31)

12



2.4.5 Limited Memory Methods

The properties of the quasi-newton method are combined with conjugate gradient method
to give limited memory methods. Instead of vi = —g in the conjugate gradient method,
choose vii = —H lgy to encorporate the curvature information aswell. The inverse hessian
does not need to be computed explicitly, so only the vector updates to the approximate H~!
are stored, (Navon and Legler, 1987).

The quasi-Newton and limited memory quasi-Newton methods that are used in this work,
are known as CONMIN or algorithm 500 from TOMS. The quasi-Newton method is based
on a (Broyden-Fletcher-Goldfarb-Shanno update) quasi-Newton method suggested by Shanno
and Phua (Shanno and Phua, 1976), and the limited memory method is a memoryless quasi-
Newton conjugate gradient algorithm with Beale restarts (Beale,1972,1988). The algorithms
have previously been used by Chao and Chang (1992).

2.4.6 Testing Minimisation Methods

An experiment using no background state and observations of buoyancy on the lower bound-
ary, and zero QGPYV in the interior over 2 time levels is used to compare minimisation methods.

A comparison of the methods is given in Figure 3. The steepest descent algorithm takes a
long time to converge - the algorithm was terminated at 50 iterations, before the algorithm
converged. There is a sharp decrease initially, where the buoyancy values on the observed
lower boundary are obtained. The rest of the iterations are needed to obtain the information
on the unobserved top boundary. This experiment has been run until 200 iterations, with no
further change in the rate of descent.

The other methods use the hessian information to speed up the rate of descent of the min-
imisation (Lea, 2001). The conjugate gradient method calculates conjugate directions, that
take into account the shape of isocontours of J, that is given by the hessian matrix, whilst
the quasi-Newton method evaluates an approximation to the hessian. Both methods give a
dramatic increase in the rate of convergence, and the conjugate gradient method is slightly
faster than the quasi-Newton method in this experiment. However, the conjugate-gradient
performs more evaluations of the cost function (simulations), and so in this case is computa-
tionally more demanding. The limited-memory method combines the quasi-Newton method
and the conjugate gradient method, but in this case, does not perform as well.

Therefore, the quasi-Newton method is used in all further experiments.

Termination criteria are required to be able to stop the minimisation algorithm. An experi-
ment assimilating a horizontal line of the streamfunction field, with a zero background state
is used to investigate the behaviour of the quasi-Newton method. The decrease of the cost
function using the quasi-Newton method is shown in Figure 4(a). There are 44 evaluations
of the cost function on the 7th iteration, showing that machine precision has been reached.
It is important that the minimisation is terminated just before this point, so that computer
time is not wasted. However, it is important that the minimum has been found before the
algorithm is stopped.

The magnitude of a vector can be described using different norms. The 2-norm or Euclidean
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Figure 3: Behaviour of the cost function using (a) Steepest Descent Method and (b) Conjugate Gra-
dient Method (¢) Quasi-Newton Method (d) Limited Memory Method, with increasing ’iterations’ or
gradient evaluations. The solid line corresponds to the cost function J, and the dotted line corresponds
to the squared euclidean norm of the gradient, |VJ||? with the magnitude on the left hand axes. The
circles show the number of ’simulations’ or function evaluations to calculate the next step, with the
magnitude on the right hand axes This minimisation is for the case with no observations on the top

boundary.

norm is defined by

Il = (Z x) , (34)

and the infinity norm or maximum norm is defined by

%ljo0 = max |- (35)

The absolute error of the gradient of J is defined as:
abs(VJ) = |[VJ|, (36)
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Figure 4: The behaviour of the cost function with increasing iterations (a) cost function (solid line),
squared 2-norm of the gradient vector (dashed line), simulations or function evalutions (circles) (b) The
set of termination criteria (equations 39, 40, 41) (c)Comparison of Maximum Norms of VJ (equation
35) (d)Comparison of Euclidean Norms of VJ (equation 34).

the relative error is defined as:
_ IVl

rel(VJ) = T (37)
and the combination error (Gill et al., 1981) is defined as:
comb(VJ) = K—Jﬂ (38)

Figure 4 (c) shows a comparison of the absolute, relative and combination errors defined using
the maximum norm. It is harder to specify a tolerance for the absolute error as it does not
take into account the value of J. Although the relative error does take the size of J into
account, there are problems when J is zero at the minimum. The combination error is a
combination of both errors, and has a value in between the absolute error and the relative
error in Figure 4 (c).

Figure 4 (d) shows a similar comparison, but using the Euclidean norm. The graphs (c) and
(d) are very similar until the 6th iteration, where the maximum norm reaches a lower value.

From these comparisons a maximum norm, combination error has been chosen for the set of
termination criteria, which are defined as:
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1. Gradient of J

IV Jlloo
— =< 39
1+J — (39)
2. Change in x

T+ Ixklloo —
3. Change in J

VI =/ Jk-1
W <73 (41)

where 7; is a specified tolerance.

The behaviour of these criteria are shown in Figure 4 (b), and from this graph, the tolerances
are specified. If any of these stopping criteria are satisfied, then the minimisation algorithm
is stopped.

3 No Background Term: Observability

In the data assimilation problem the null space’ needs to be eliminated by adding constraints
to the cost function. In 4D Var, we add the model equations as a strong constraint. That
is, the solution must also satisfy the model equations. The null space of the 4D Var problem
with no background term is now investigated.

For ease of notation, define v = vI'v. Consider an assimilation window length of 1 timestep
(2 time levels), and identity error covariance matrices. The cost function is

J = % [(yo — Hxo)? + (y1 — Hx1)?] (42)

where H is the observation operator. This can be written in the form

Jsa) = 5 [tv0 ~ Fixo? + s~ Finsa?] = 5 (| 30 ] = | (g, | xO)Q. (43)

where M is the linear model. Note that from this, we can write the gradient of J as:

VJ(x¢) = —H” (yo — Hx¢) - MTH” (y; — HMxy). (44)

If xg is of length n, then for a unique minimum, we require the matrix

H = ( HITVI ) (45)

to have rank n. This is equivalent to saying that H ! exists and that Hx = y has a unique
solution x for every y. If this is the case, then the system is said to be observable. If the
matrix is not of full rank, then it means that the same information is given at least twice.

!The null space of a matrix A is the set of solutions to Ax = 0. The dimension of the null space is equal to
the number of zero singular values. The null space corresponds to the undetermined part of state space Strang
(1986)
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We therefore know that with no background term, we need at least as many observations as
unknowns (the observations may be distributed in time). Further, the rank of the observation
operator H must be equal to the number of unknowns equal to the size of the control vector,
n.

3.1 Reconstructing the buoyancy wave on the top boundary

Consider the case where the lower boundary buoyancy and interior quasi-geostrophic potential
vorticity are observed over two time levels, but the upper boundary is not observed.

Let the state vector be
by
x=| b; (46)
q

where the buoyancy on the lower level by and the buoyancy on the upper level by are vectors
of length n and the interior QGPYV q is a vector of length m. Suppose that only by and q are
observed, so that the observation operator is

H:[I;gl?n]. (47)

The potential vorticity is advected with no forcing, the buoyancy is also advected and also
forced by the streamfunction, which is determined from the buoyancy on both boundaries
and the interior potential vorticity. So, the model can be approximated through scaling and
data-flow arguments by the linear operator:

I, alI, bI,
M=|al, I, b, (48)
0 o0 I,

where a,b are scalar constants such that |a| < 1 and |b] < 1. Then, we can write

| I, al, bI,
HM = [ o o 1 (49)
and hence
I, al, b1,
o o I,
H= I, o 0 (50)
o o0 I,

In this case H has rank m + 2n and so the problem is well-determined.

4 Results

Results from the identical twin experiments using the 4D Var method with the Eady model
and the quasi-Newton minimisation method, are now presented. All the experiments in this
report use perfect observations.

17



10

o

height

height

I

/99_3\

10

N

40 20

20 30 .30 40
zonal direction zonal direction

(a) (b)

Figure 5: Streamfunction Analysis from (a) 3D Var and (b) 4D Var where there are no observations
given on the upper boundary. 4D Var is able to reconstruct the upper wave, through the use of the
model dynamics.
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Figure 6: The behaviour of the solution with increasing iterations for the Quasi-Newton Method. The
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4.1 No Background Term

In the following numerical experiment, the buoyancy on the lower boundary and the interior
zero QGPV are ’observed’. However, the upper boundary buoyancy is not observed. With 2
time levels for the assimilation window, this system is observable (as proved in section 3).

The results are shown in Figure 5. The 3D Var uses only the bottom boundary and interior
potential vorticity as the control variable, and the top boundary is left as zero. This is a
trivial case, so the minimisation reaches a minimum in one iteration. However, the 4D Var
system is able to propagate information from the observations on the lower level through the
model dynamics to reconstruct the upper level wave that is needed to give the growth of the
observed lower level wave.

It is also of interest to investigate how the information is propagated to the top boundary.



The gradient fields (produced on output from the adjoint model) and actual fields (produced
on output from the minimisation) with increasing iterations are shown in Figure 6. The
adjoint model produces gradient fields with buoyancy waves on both boundaries on the first
iteration. The wave on the lower boundary (observed) has the correct phase, but the wave on
the upper boundary (unobserved) has the wrong phase and is of a smaller magnitude. The
amplitudes of both waves increases on the second iteration. To be able to compensate for
the fact that the observed wave is growing, the amplitude of the bottom wave is slightly too
large at this point. However, on the next iteration, the phase of the upper boundary wave is
shifted to the correct position. This wave is then in the optimal position to give the growth
in amplitude of the analysed wave. Hence on further iterations, the amplitude of the lower
level wave is reduced. Thus, the gradient field on the lower boundary on the fourth iteration
is the complete opposite of that on the first iteration.

4.2 With the Background Term

Figure (7) shows the results from an experiment where observations are given again on the
lower boundary and interior at two time levels. A zero background state x) = 0 is also
included, with identity covariance matrices, so that the cost function is of the form:

1

J(x0) = 0, %(x0 —%x0)* + > _ 0, % (yi — Hx;)’ (51)
1=0

In Figure 7(a) the respective weights to the J, and Jj, terms are such that equal weight is
given to the background and the observations. The analysis of the buoyancy on the bottom
boundary is halfway between the background state and the observations as expected with
equal weights. However, the wave on the upper boundary has not been reconstructed. The
weighting to the observations is increased in Figure 7(b). Although the analysis on the lower
boundary is very close to the truth, there is still very little information on the top boundary.
Increasing the weighting so that the observed field is given 1000 times more weighting than
the background field (and note that the observed field is also given on two time levels, which
effectively doubles the weighting), means that there is a wave on the top boundary. However,
the wave still has an amplitude that is too small.

From these results, we see that the background state has a significant impact on the regions
which are not observed, but obtain information through the model dynamics.

4.3 Assimilating Temperature Observations

The assimilation of temperature (buoyancy) observations is now considered. The control
variable is still given by buoyancy on the upper and lower boundaries and quasi-geostrophic
potential vorticity in the interior. However the forward observation operator is modified
to convert from buoyancy on the boundaries and QGPV in the interior to streamfunction
using the laplace solver. Then, the vertical derivative is taken to give the buoyancy field
throughout the whole domain. The adjoint of this operator is also required, and is derived
from the discrete equations, given in appendix A.

A background state is required so that the problem is well-determined. Therefore in the
following experiments a zero background state is specified, with a 20 time level assimilation
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window.

4.3.1 Growing Eady Wave

The true solution is given by the most unstable Eady wave. A horizontal line of buoyancy is
observed at the end of the assimilation window. The analysis, shown in Figure 8, is close to
zero at the beginning of the assimilation window, but has a wave structure at the end. This
fast growing solution is characterised by the streamfunction field that tilts to the west with
increasing height.

4.3.2 Decaying Eady Wave

Now the true solution is given by the most unstable decaying Eady wave. The streamfunction
fields tilts to the east with increasing height, and the temperature field tilts to the west. With
the horizontal line of observations at the end only, we find (trivially) that the results are
exactly the same as for the growing Eady wave. Instead of a decaying solution, as partly
observed, a growing solution is obtained, due to the zero background state.

The experiment is repeated, but a horizontal line of buoyancy is observed at every time level
the assimilation window. The analysis is shown in Figure 9. The 4D Var scheme is provided
with conflicting information. The zero background state means that the solution should grow,
however, a decaying solution is observed. The analysis decays for the first part of the time
window and grows for the second part.

The growth rate throughout the time window depends on the relative weight given to the
background state, as shown in Figure 10. With a large weight given to the observations,
the analysis also decays throughout the analysis window. With a large weight given to the
background state, the analysis grows throughout the window. With equal weights we see that
the analysis decays through the first part and grows through the second part of the window.
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5 Conclusions and Future Work

This report has examined the 4D Var method by applying the method to a theoretical case
of baroclinic instability using the Eady model. This work has shown that 4D Var (with no Jj
term) is able to propagate information from observations to the unobserved regions using the
model dynamics, giving clear benefits over 3D Var.

It is necessary to add a background constraint to the cost function so that the problem is
well determined. However, this work has shown that this can be detrimental to the analysis
in the case of a poor background state and poor error statistics. In particular, the J, Term
has a large impact on the regions that are unobserved but obtain information through the
model dynamics. The benefits of 4D Var over 3D Var are now lost by adding the background
constraint.

With observations at the end of the assimilation window and a zero background state, the
analysis increments are projected onto a fast growing solution. If the amplitude of the back-
ground state is in conflict with the observations, then the growth rate of the system may be
incorrect.

We conclude that the 4D Var method is able to extract much more information from the
observations than 3D Var. However, the background constraint must be applied with care.

Future work will continue experiments with a background state using theoretical case studies
such as singular vector type structures. In particular, we aim to identify which parts of
the atmosphere should be observed to correct a phase error, and to give the correct vertical
structure. This work will be able to compare the effect of different observing systems by
simulating satellite data, radiosondes and aeroplane data within the Eady model.

The specification of the background error covariance matrix is extremely important as it
determines where they information from the observations should be spread. It is known that
in a 4D Var system, the background error covariance matrix evolves implicitly through the
assimilation window, giving some flow dependency and better vertical structures than 3D
Var analyses (Thepaut et al., 1996). This property of 4D Var will be investigated within the
simple Eady model context.
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A The Adjoint Model

The general structure of the forward Eady model and the corresponding Adjoint model are
shown in Figure 11. The equations for the models are given below.

Forward Model

q(t=0) —> q(t=1)

dpsi / dx (t=0)

b(t=0) b(t=1)

Adjoint Model

q(t=0) <€——— (q(t=1)
A A

psi(t=0) psi(t=1)
dpsi / dx (t=0)

Y \ Y

b(t=0) b(t=1)

Figure 11: The structure of the linear models. In the forward model, the initial conditions are given
by potential vorticity,q and buoyancy, b at time t=0. b(t=0) and q(t=0) are then used to calculate the
streamfunction, psi at the same time. The QGPV and buoyancy are then advected to the next time
level t=1, with the buoyancy also forced by the streamfunction field. The arrows show the direction

of propagation of information.

A.1 General Advection Equation

Consider the general structure of an advection equation:
A=B+a(C—-D)+pBE

In matrix form this can be written as:

= AQW
I

The adjoint of this matrix is:

QW
I

_o O O =

SO OO -

Q oo ~o

S O O = O

o = O O

OO = O O
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where the hat denotes adjoint variable. For the minimisation problem, the adjoint variable

aJ

for A, for example, is A = 22. And therefore the discrete adjoint model corresponding to

A
equation 52 is:

Il
+ +
® 0 Q2

N

o N bj> b> Q> m>
Il

S hj> b> Q> m>
+

The adjoint equations for the numerical schemes used in the Eady model are now given.

A.2 Forward Time Centred Space (FTCS)

For the equation
u}”l =u; + R(ujyy —uj_q) + SF}

the corresponding discrete adjoint model is:

Note that this is equivalent to the adjoint equation:

A an+l ~n+1 ~n+1
aj = a5 = R(ag, —45%)

A.3 Centred Time Centred Space (CTCS), Leapfrog

For the equation
u;-l'H = u;-l_l + R(ujy —uj_y) + SF}

the corresponding discrete adjoint model is:

,ah?fl — A;'_Lfl _‘_,&;H—l
AT Y 1) ~n—+1
Gy =g + Ruj+1
YR A » ¥ ()
Uy, =145, }i";a

mn n ~T
Fj+1_ Fj + Su]
u? =0
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A.4 Calculating g—iﬁ

The forward equation for calculating g—f is:

n T~ Y5
i = 2Azx (62)

In matrix form this can be written as:

Pj+1 1 00 Vit
Yioo = 0 10 Pj- (63)
Fj Az 25z U Fj
The adjoint of this is:
i1 1.0 $ Yi1
bi-n | =1 01 -5z b1 (64)
F; 0 0 0 F;
and therefore the discrete adjoint model is:
@41 = @H + ﬁFJ
Yj1= i1 — saz i (65)
F;,=0
J
Note that this is equivalent to the adjoint equation:
~ _ F]+1 - Fj_l
V=TT R (6)
A.5 Solving the Laplace Equation
To solve the equations
V=g (67)

subject to b = g—’f on the top and bottom boundaries and periodic boundaries, we solve the
matrix equation:

Ay=B (68)
Qbottom + bo
for 1, where B = | Qinterior
Qtop + bl
The adjoint of this is to solve
ATB =) (69)

for B. In this case A is symmetric, so A = AT,

B Derivation of the Eady model equations

The non-dimensional equations and normal mode solutions used in this report are now derived.
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B.1 Quasi-Geostrophic Equations

The Eady model consists of a basic state and a small amplitude perturbation which represents
the baroclinic wave or cyclone. The Eady Model equations are derived from the Quasi-
Geostrophic Potential Vorticity (QGPV) equation, and the QG Thermodynamic equation
which are given in Holton (1992).

The QG Thermodynamic equation states that potential vorticity is conserved following the
flow (assuming dry, adiabatic motion). More specifically, it states that as air rises, it cools
via adiabatic expansion.

Dé

— =0 70

Dt (70)
where 0 is potential temperature. We consider the perturbations from a hydrostatically bal-
ance reference state that is only a function of height, z (Boussinesq approximation) to remove

the large static state of the atmosphere. Let § = 6(z) + ¢'(z,v,t), then

D no_
Ft(O-I—H) =0. (71)
Expand to give
0 0 a0\ ,, 0 -
el = — = —w— 2
(6t+u6:1:+v8y>0 w6z9 (72)

Assuming that the winds are close to geostrophic and defining D, = % + “ga% + ”ga% where

g denotes geostrophic then _
00

D,0' + wa- = 0 (73)
If we now define buoyancy b, by
gy
b =20 74
/ (74)
and static stability N2 or Brunt-Vaisala frequency N as
g 00
N?>=7— 75
0 0z (75)
then the QG thermodynamic equation can be rearranged to give
Dyb' +wN? = 0. (76)

The horizontal momentum and continuity equations can be used to derive the QG Vorticity
Equation:

Dy(f +&) = fog—f- (77)

This equation states that if a column of air is stretched vertically, then its absolute vorticity
(f + &) will increase.

The QG vorticity equations (equation (77)) and the QG thermodynamic equation (equation
(76)) can be combined by eliminating the vertical velocity w, to give the Quasi-Geostrophic
Potential Vorticity (QGPV) equation:

Dyq=0 (78)

where

i=1+6+ 5 (7). (19)
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The quasi-geostrophic potential vorticity q combines both dynamical and thermodynamical
information and is conserved following adiabatic motion.

These equations can now be used to derive the Eady model equations, by linearizing about a
basic state.

B.2 Basic State

Assume that the basic state has a linear vertical wind shear, 4 = Az. The vertical wind shear
is associated with a meridional temperature gradient, as given by the thermal wind equation

foa— S (80)

ﬂ _
0z oy
The thermal wind relation is shown in Figure 12. Although the (2D) Eady model equations

only describe the flow in the zonal and height directions, they do incorporate the meridional
temperature gradient, which is vital for the baroclinic instability mechanism.

>

u=Az
Cold

Warm

Figure 12: Basic state of the Eady model: The meridional temperature gradient is proportional to the
zonal wind shear, through thermal wind balance

The geostrophic streamfunction 1) is defined by:

¢I
~ fo
where ¢ is the geopotential height. The equations of geostrophic balance (from the horizontal
momentum equations) can then be written in the form:

P (81)

o) o)
ugz—a—;f Vg = %. (82)

Similarly, hydrostatic balance (from the vertical momentum equation) can be written as:

oY
b = fo—. 83
fog? (53)
Assuming that the perturbation is independent of y and we then linearise the equations using,
ug = 1u(z) +uy (2, 2,t)
vg = (w2,
g = qy) +4¢'(z, 2, 1)
b= by +b"(z, 2, t)

Note that ¢ = f, the coriolis parameter.

30



B.3 Equations on the Boundaries

Assume that the vertical velocity w is zero on both the upper and lower boundaries. Then,
the QG thermodynamic equation becomes:

0 0 0\ -~
DV = v — nY 1 Y A 84
b O:>(at+(u+u)a$+v8y)(b(y)+b) 0 (84)
Expanding out, and neglecting small terms then,
o _o0., ,0b
8t+u8zb +vay (85)

Using hydrostatic balance, geostrophic balance and thermal wind balance, then this can be
written in terms of the geostrophic streamfunction:

0 _0\oy Oy 0% B
(8t+u8z>éh_+6x8ﬁw__0 (86)
Now, @ = Az so
0 [0y ou
o _— = —— = —A
0z ( oy ) 0z (87)
and therefore, the equations on the top and bottom boundaries are:
o0  _0\oy oY
(8t+u8w)3z__A6$' (88)

Thus, the temperature field is determined by linear advection, and (on the RHS of the equa-
tion), by the meridional wind forcing.

B.4 Equations in the Interior

The QGPYV equation (78) can be expanded (and small terms neglected):

0 0 0
D.g— v - nY9 19\ n _
94 0:>(8t+(u+u)8w+vay>(q+q) 0 (89)

to give linear advection of q in the interior:

0 2\ ,

_ 7] —— = 90
(m+“m>q 0 (90)

where the equation for QGPYV is given by:

;L 62¢I f_382¢/
T~ 52 T N2 92 |

(91)

Equations (88, 89 and 90) give the equations for the Eady Model. The meridional wind prop-
agates information between the edge waves to give vertical coupling. In the 2D Eady model,
the meridional wind is not defined explicitly, but as a forcing to the boundary equations, and
is in fact the vital part for the growth and decay of the waves.
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B.5 Non-dimensionalising and Co-ordinate Change

To eliminate the constants within the equations, we now apply a coordinate change to non-
dimensionalise the problem, and also so that the x-coord is in the middle of the domain, and
the origin of z is at mid-levels.

H
. R
= 2
i=1 (92)
AH
o X — Tt
z= “In (93)
- fA
I 4
t Nt (94)
where Ly = % is the Rossby radius of deformation. Then the equations can be rewritten
as:
o _o\op oy
RIS R A 95
(aﬁ 0&) 0z~ 0@ (95)
o0 .0\ . _
(B_f + z%) qg =0 (96)
where . .
_ ) ¢I o ¢I
"= = 97
oz T o 70 (67)
and v
)= 98
P ™ (98)
L2
~ R 1
== 99
7= (99)

and 1) is the ampliude of 7'

An extra equation is needed to ensure that the model is well-posed. We impose the condition

that
/ / P'dzdz = 0 (100)

so that the mean value of the streamfunction in the domain is zero.

B.6 Solutions of the equations

A growing and decaying wave-like solutions of the form

(@, 2,1) = P(z)e D (101)

where £ is the wave number, and ¢ is the phase speed, is substituted into equation (97) too
give

B )
= k%) + — 102
0=k + - (102)
which has the solution R 3 3
1 = Cysinh(kz) + Cacosh(kz). (103)
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Figure 13: Real Part: Neutral Modes corresponding to boundary waves for & > 2.4
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Figure 14: Complex Part: Exponentially growing and decaying solutions for K < 2.4
Therefore the normal mode solutions can be written as:
P = one&g[cosh(lgé)cos(lg:i) — asinh(kz)sin(kz)] (104)

where the non-dimensional growth rate is & = iké.

By substituting this into equation (95), then we find that:
k k
— Ztanh%
o=\l (105)
§COth§ -
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and that

¢ = % (tanh (g) - g) (g — coth (g)) (106)

There are 2 modes of behaviour, depending on whether c is real or complex. If % > coth (%)
(Short Wavelength) then both roots are real corresponding to two trapped neutral boundary
waves. If % < coth (%) (Long Wavelength) then the roots are complex conjugates giving 2

normal modes. One root corresponds to the growing mode, whilst the other corresponds to
the decaying mode. Thus there are 2 normal modes for each wave number, k. The critical

value of k is therefore at % = coth (%), which gives k = 2.3994. These normal mode solutions
are shown in Figures 13 and 14.

Note that the non-dimensional wavenumber is related to the dimensional wavenumber by

- NH
k=——k=Lgk (107)
f
so the wavelength is also dependent on the height of the domain, as well as the static stability
and coriolis parameter.

The exponential growth rate o = ikc = k¢; is shown in Figure 15. The maximum growth is at
k = 1.6, corresponding to a growth rate of & = 0.31. This maximum growth rate corresponds
to the most unstable Eady Wave.
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Figure 15: Growth Rate of Normal Modes

B.7 Vertical Structure of the Normal Mode Solutions

By rewriting the wave 104 in the form:

) = A(Z)sin[k(i — &y)] = A(Z)[sin(kZ)cos(kiy) — cos(kE)sin(kiy)] (108)
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where %y = Z¢(Z), then we find that, for the most unstable growing Eady wave,
- 1 ~
tanhZy = —coth(kz) =~ 1 (109)
@

and hence k7o ~ 45°. The wave tilts 45° between mid levels and the tropopause and hence,
tilts to the west by 7 or % between the ground and the tropopause. Similarly, this can be
repeated for the temperature field, by first finding the vertical derivative of the streamfunction.

We find that the temperature field tilts eastward with height, and in this case kg = 23.7°.
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